Properties of the Extended Whittaker Function

Daya K. Nagar, Rau´l Alejandro Mor´an-V´asquez, Arjun K. Arjun K. Gupta

Abstract


In this article, we define an extended form of the Whittaker function by using extended confluent  hypergeometric function of the first kind and study several of its properties. We also define the extended confluent hypergeometric function of the second kind and show that this function occurs naturally in statistical distribution  theory.


Keywords


Beta function; Extended beta function; Extended confluent hypergeometric function; Extended gamma function; Extended Gauss hyper- geometric function; Gamma distribution; Gauss hypergeometric function

Full Text:

PDF

References


[1]          Chaudhry, M. A. , & Zubair S. M. (1994). Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., 55, 303–324.

[2]          Aslam Chaudhry,M., Asghar Qadir, M. Rafique & Zubair, S. M. (1997). Extension of Euler’s beta function, J. Comput. Appl. Math., 78(1), 19–32.

[3]          Chaudhry, M. A., Qadir, A.,  Srivastava, H. M. et.al. (2004). Extended hypergeometric and conuent hypergeometric functions. Appl. Math. Comput., 159(2), 589-602

[4]          Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products. Translated from the Russian. Sixth edition. Translation edited and with apreface by Alan Jerey and Daniel Zwillinger. Academic Press, Inc., San Diego, CA

[5]          Gupta, A. K., & Nagar, D. K. (2000). Matrix variate distributions, Chapman & Hall/CRC, Boca Raton,

[6]          Iranmanesh, A. , Arashi, M. , Nagar, D. K. et,al.. (2013). On inverted matrix variate gamma distribution. Comm. Stat. Theor. Meth., 42(1), 28–41.

[7]          Johnson, N. L., Kotz, S. , & Balakrishnan, N. (1994). Continuous univariate distributions-2 .  Second Edition. John Wiley & Sons, New York

[8]          Luke, Y. L. (1969). The special functions and their approximations, Vol. 1 . Academic Press, New York

[9]          Miller, A. R. (1998). Remarks on a generalized beta function. J. Comput. Appl. Math., 100(1), 23–32.

[10]      Nagar, D. K. , Rold´an-Correa , A. , & Gupta, A. K. (2013). Extended matrix variate gamma and beta functions. J. Multivariate Anal., 122, 53–69

[11]      Nagar, D. K. & Rold´an-Correa , A., (2013). Extended matrix variate beta distributions. Progr. Appl. Math., 6(1), 40–53.

[12]      Whittaker, E. T. (1903). An expression of certain known functions as generalized hypergeometric functions. Bull. Amer. Math. Soc., 10(3), 125–134.

[13]      Whittaker, E. T. & Watson, G. N. (1996). A course of modern analysis (4 ed). Cambridge Mathematical Library,  Cambridge University Press, Cambridge. 




DOI: http://dx.doi.org/10.3968%2Fj.pam.1925252820130602.2807

Refbacks

  • There are currently no refbacks.


Reminder

If you have already registered in Journal A and plan to submit article(s) to Journal B, please click the CATEGORIES, or JOURNALS A-Z on the right side of the "HOME".


We only use the follwoing mailboxes to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:
pam@cscanada.org
pam@cscanada.net

Copyright © 2010 Canadian Research & Development Center of Sciences and Cultures
Address: 758, 77e AV, Laval, Quebec, Canada H7V 4A8

Telephone: 1-514-558 6138
Http://www.cscanada.net
Http://www.cscanada.org
E-mail:office@cscanada.net office@cscanada.org caooc@hotmail.com