Superstrate CuInSe2-Printed Solar Cells on In2S3/TiO2/FTO/Glass Plates

Duy-Cuong Nguyen, Seigo Ito, Masamichi Inoue, Shin-ichi Yusa


CuInSe2 powders synthesized by ball milling were printed on In2S3/TiO2/FTO/glass substrates, resulting in superstrate solar cells.  Although particle structure of CuInSe2 in the layer remained after heating at 600 °C under N2 gas, photovoltaic effects were observed; the open-circuit voltage and short-circuit current density were 0.45 V and 5.6 mA/cm2, respectively.  The effects of annealing time on the structural, optical and photovoltaic properties of CuInSe2 were studied by scanning electron micrograph (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and UV-Vis reflectance absorption spectroscopy.  The CuInSe2 solar cells were printed in air ambient without vacuum processing and without toxic and explosive chemicals (e.g., hydrazine, H2Se and H2S), which can offer a promising strategy for future research and industrial investigation into cost-effective photovoltaic systems.

Key words: Photovoltaic system; Photovoltaic effects; CuInSe2 solar cells


Photovoltaic system; Photovoltaic effects; CuInSe<sub>2</sub> solar cells

Full Text:



[1] Mendonca, M. (2007). Feed-in Tariffs, Accelerating the Deployment of Renewable Energy. USA: Earthscan Ltd.

[2] Klaer, J., Bruns, J., Henninger, R., Siemer, K., Klenk, R., Ellmer, K., & Bräunig, D. (1998). Efficient CuInS2 Thin-Film Solar Cells Prepared by a Sequential Process. Semicond. Sci. & Technol., 13(12),1456-1458.

[3] Zweigart, S., Sun, S. M., Bilger, G., & Shock, W. H. (1996). CuInSe2 Film Growth Using Precursors Deposited at Low Temperature. Sol. Energy Mater. & Sol. Cells, 41/42, 219-229.[4] Repins, I., Contreras, M. A., Egaas, B., De Hart C., Scharf, J., Perkins, C. L., To, B., Noufi, R. (2008). 19.9%-Efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor

Progress in Photovoltaics: Research and Applications, 16(3), 235-239.

[5] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi (1999). Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline Thin-Film Solar Cells. Progress in Photovoltaics: Research and Applications, 7(4), 311-316.

[6] Battaglia, C., Söderström, K., Escarré, J., Haug, F.-J., Dominé, D., Cuony, P., Boccard, M., Bugnon, G., Denizot, C., Despeisse, M., Feltrin, A., & Ballif, C. (2010). Efficient Light Management Scheme for Thin Film Silicon Solar Cells via Transparent Random Nanostructures Fabricated by Nanoimprinting. Appl. Phys. Lett., 96(21), 213504.

[7] Aramoto, T., Kumazawa, S., Higuchi, H., Arita, T., Shibutani, S., Nishio, T., Nakajima, J., Tsuji, M., Hanafusa, A., Hibino, T., Omura, K., Ohyama, H., & Murozono, M. (1997). 16.0% Efficient Thin-Film CdS/CdTe Solar Cells. Jpn. J. Appl. Phys., 36, 6304-6305.

[8] Bach, U., Lupo, D., Comte, P., Moser, J. E., Weissörtel, F., Salbeck, J., Spreitzer, H., & Grätzel, M. (1998). Nature, 395, 583-585.

[9] Nakada, T., Kume, T., & Kunioka, A. (1998). Superstrate-Type CuInSe2-Based Thin Film Solar Cells by a Low-Temperature Process Using Sodium Compounds. Sol. Energy. Mater. Sol. Cells, 50(1-4), 97-103.

[10] Ramanathan, K., Teeter, G., Keane, J. C., & Noufi, R. (2005). Properties of High-Efficiency CuInGaSe2 Thin Film Solar Cells. Thin Solid Films, 480/481, 499-502.

[11] Deepa, K. G., Jayakrishinan, R., Vijayakumar, K. P., Kartha, C. S., & Ganesan, V. (2009). Sub-micrometer Thick CuInSe2 Films for Solar Cells Using Sequential Elemental Evaporation. Solar Energy, 83(7), 964-968.

[12] Song, H. K., Kim, S. G., Kim, H. J., Kim, S. K., Kang, K. W., Lee, J. C., & Yoon, K. H. (2003). Preparation of CuIn1xGaxSe2 Thin Films by Sputtering and Selenization Process. Sol. Energy Mater. Sol. Cells, 75(1-2), 145-153.

[13] Wada, T., Matsuo, Y., Nomura, S., Nakamura, Y., Miyamura, A., Chiba, Y., Yamada, A., & Konagai, M. (2006). Fabrication of Cu(In,Ga)Se2 Thin Films by a Combination of Mechanochemical and Screen-Printing/Sintering Processes. Phys. stat. sol. (a), 203(11), 2593-2597.

[14] Ahn, S. J., Kim, C. W., Yun, J. H., Gwak, J., Jeong, S., Ryu, B. H., & Yoon, K. H. (2010). CuInSe2 (CIS) Thin Film Solar Cells by Direct Coating and Selenization of Solution Precursors. J. Phys. Chem. C, 114(17), 8108-8113.

[15] Goossens, A., & Hofhuis, J. (2008). Spray-Deposited CuInS2 Solar Cells, Nanotechnology, 19(42), 424018.

[16] Lincot, D., Guillemoles, J. F., Taunier, S., Guimard, D., Sicx-Kurdi, J., Chaumont, A., Roussel, O., Ramdani, O., Hubert, C., Fauvarque, J. P., Bodereau, N., Parissi, L., Panheleux, P., Fanouillere, P., Naghavi, N., Grand, P. P., Benfarah, M., Mogensen, P., Kerrec, O. (2004). Chalcopyrite Thin Film Solar Cells by Electrodeposition. Solar Energy, 77(6), 725-737.

[17] Mitzi, D. B., Yuan, M., Liu, W., Kellock, A. J., Chey, S. J., Deline, V., & Schrott, A. G. (2008). A High-Efficiency Solution-Deposited Thin-Film Photovoltaic Device. Adv. Mater., 20(19), 3657-3662.

[18] Todorov, T. K., Reuter, K. B., & Mitzi, D. B. (2010). High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber. Adv. Mater., 22(20), E156-E159.

[19] Ito, S., Liska, P., Comte, P., Charvet, R., Péchy, P., Bach, U., Schmidt-Mende, L., Zakeeruddin, S. M., Kay, A., Nazeeruddin, M. K., & Grätzel, M. (2005). Control of Dark Current in Photoelectrochemical (TiO2/I--I3-)) and dye-sensitized solar cells. Chem. Commun., 34, 4351-4353. [20] Knight, K. S. (1992). The Crystal Structures of CuInSe2 and CuInTe2. Mater. Res. Bull., 27, 161-167.

[21] Gobeaut, A., Laffont, L., Tarascon, J.-M., Parissi, L., Kerrec, O. (2009). Influence of Secondary Phases During Annealing on Re-crystallization of CuInSe2 Electrodeposited Films. Thin Solid Films, 517(15), 4436-4442.

[22] Nakada, T., Mizutani, M., Hagiwara, Y., & Kunioka, A. (2001). High-Efficiency Cu(In,Ga)Se2 Thin-Film Solar Cells with a CBD-ZnS Buffer Layer. Sol. Energy. Mater. Sol. Cells, 67(1-4), 255-260.

[23] Shafarman, W. N., & Zhu, J. (2000). Effect of Substrate Temperature and Depostion Profile on Evaporated Cu(InGa)Se2 Films and Devices. Thin Solid Films, 361/362, 473-477.

[24] Rahlfs, P. (1936). The Cubic High-Temperature Modifications of Sulfides, Selenides and Tellurides of Silver and of Univalent Copper. Z. Phys. Chem. B, 31, 157-194.

[25] Gates, B., Yin, Y., & Xia, Y. (2000). A Solution-Phase Approach to the SYNTHesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10-30 nm. J. Am. Chem. Soc., 122, 12582-12583.

[26] Paulson, P. D., Haimbodi, M. W., Marsillac, S., Birkmire, R. W., & Shafarman, W. N. (2002). Cu(In1-xAlx)Se2 Thin Films and Solar Cells. J. Appl. Phys., 91(12), 10153.

[27] Agilan, S., Managalaraj, D., Narayandass, S. K., & Rao, G. M. (2005). Effect of Thickness and Substrate Temperature on Structure and Optical Band Gap of Hot Wall-Deposited CuInSe2 Polycrystalline Thin Films. Physica B: Condensed Matter, 365(1-4), 93-101.




  • There are currently no refbacks.

Copyright (c)

Share us to:   


If you have already registered in Journal A and plan to submit article(s) to Journal B, please click the CATEGORIES, or JOURNALS A-Z on the right side of the "HOME".

We only use three mailboxes as follows to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:;;

 Articles published in Energy Science and Technology are licensed under Creative Commons Attribution 4.0 (CC-BY).


Address: 9375 Rue de Roissy Brossard, Québec, J4X 3A1, Canada 
Telephone: 1-514-558 6138 
Website: Http:// Http://;

Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures