
89 Copyright © Canadian Research & Development Center of Sciences and Cultures

ISSN 1923-0176 [Print]
ISSN 1923-0184 [Online]

www.cscanada.net
www.cscanada.org

Studies in Sociology of Science
Vol. 5, No. 2, 2014, pp. 89-95
DOI:10.3968/4845

The Software Reliability Increase Method

Svetlana A. Yaremchuk[a],*; Dmitry A. Maevsky[a]

[a]Institute of Electro Mechanics and Electrical Management, Odessa
National Polytechnic University, Odessa, Ukraine.
*Corresponding author.

Received 5 February 2014; accepted 26 April 2014
Published online 26 May 2014

Abstract
Our investigation purpose is to create the software
reliability increase method. The proposed method allows
creators to calculate statistic, probabilistic and valuating
reliability indices of software components which contain
defects. The method’s aim is to take into consideration
the statistic components complexity by means of
composite metrics. The use of received indices provides
for components finding which contain much more defects
for refactoring and the first testing process. It contributes
to increase identified and corrected defects quantity and
improve the software reliability on average about 8%.
Key words: Software reliability; Complexity
Software components; Defects; Predictable reliability
indexes; Refactoring; Components testing

S v e t l a n a A . Ya r e m c h u k , & D m i t r y A . M a e v s k y (2 0 1 4) .
T h e S o f t w a r e R e l i a b i l i t y I n c r e a s e M e t h o d . S t u d i e s i n
Sociology of Science, 5 (2), 89-95. Available from: URL: http://
w w w. c s c a n a d a . n e t / i n d e x . p h p / s s s / a r t i c l e / v i e w / 4 8 4 5
DOI: http://dx.doi.org/10.3968/4845

INTRODUCTION
The use of human beings software quantity grows
up continuously. The American analytical company
«Gartner» evaluations testify that the development and
maintenance software expenditures are about 2, 8 trillion
dollars in 2013 which is more than 4 % in the previous
year. At the same time the mankind’s dependence of
software quality grows up.

According to the standard (ISO/IEC 25010, 2010)
the reliability is one of the eight major characteristics
of software quality. The priori evaluation of software
reliability is determined during the development phase
before its functioning as total amount of the software
defects. The total amount of defects can be calculated on
bases of models and methods which are offered in the
works of Maevsky (Maevsky & Yaremchuk, 2012).

In addition to the reliability evaluation the real number
of defects allows test-managers to plan the required
testing resources (the period of time, number of testers,
units of equipment and software packages) for testing
implementation within the limits of the planned term and
budget. However these steps do not assist to reveal much
more defects amount and increase reliability.

The undetected defects are very expensive for people.
Multibillion losses, accident and disasters are well-known
and described by Neumann (Neumann, 1995) which were
caused by defects existence in software critical function
systems. That’s way it’s necessary to detect as more
defects as possible. For this purpose it’s necessary to know
detailed software reliability indices and in particular what
components contain defects, what the probability of defects
existence is and what defects quantity is in each component.

These development characteristics use permits to
carry out valid and well-timed refactoring and during the
component testing to reveal as more defects as possible.
All this provides for the software reliability increase. That
is why the software reliability increase method creating is
a relevant and actual task.

1. CURRENT PROBLEM’S STATUS
The standard (IEEE 610.12:1990) determines the
component (module) as separate discrete identifiable
structural software unit. The software components
substantially differ in size, complexity and amount of
defects.

90Copyright © Canadian Research & Development Center of Sciences and Cultures

The Software Reliability Increase Method

The software components differ in complexity when
the size is equal. At the same time the components
of the identical complexity or size may contain the
different amount of defects. Many experts find the
software complexity as an important and objective factor
determining the probability of the defects occurrence.
At the same time the amount of defects dependence
on the software complexity is an under-researched and
problematic question.

The well-known methods prediction analysis of the

defects amount in the software components permit to
divide them into four classes (Figure 1).

The authors of the article (Ma, at al., 2007) used the
algorithms of machine learning for defects prediction in
the Software components. But these algorithms make a
low degree evaluation of accuracy. The authors of the
article (Mahaweerawat, at al., 2002) used the fuzzy logic
algorithms. These methods do not guarantee the needed
accuracy when this model is not so tough. The authors
(Thwin, at al., 2005) also used neural networks.

The methods of amount defects
prediction in the software components

The algorithms of
machine learning

The software fault
prediction usage

fuzzy logic

Neural networks
for software

quality prediction

The use Bayesian
belief networks

Figure 1
The Methods of Amount Defects Prediction in Software Components

Their main problem is that they have not explained
why the given result had been obtained. That is why it is
impossible to understand the reasons of defects occurrence
and to take actions on the situation improvement. Besides,
it exists the problem of so called «catastrophic forgetting»
which explains the loss or distortion of the initially learned
information in the process of the network retraining.

The Ukra in ian exper t s O. Pomorova and T.
Hovorushchenko (Pomorova, at al . , 2012) were
confronted by difficulties to use in-built functions MatLab
packet treatment metric’s value without losing the
significant information when researching the peculiarities
of the software metric’s ranging.

Another article authors (Fenton, at al. , 1999)
investigated the methods which are based on the Bayesian
belief networks. This method has a lot of disadvantages
such as the necessity the experts recruitment, subjectivity
of expert’s evaluation, the full automatization complexity
and high presenting work content.

Thus the analysis of well-known methods revealed
the problems of low accuracy, and particularization of
valuated software reliability indices, high complexity and
work content, impossibility to understand the reasons
of defects occurrence and also the necessity of experts
recruitment.

These problems may be resolved by means of creating
and using another method based on software complexity
accounting. As distinct from well-known methods, the
new one must:

provide the higher accuracy and particularization of
valuated reliability indices

be simpler being used by the software company
engineers without having a vast knowledge of higher
mathematics

be based on accounting indices without using
expensive experts’ evaluations.

These presuppositions determine the purposes and
tasks of present research.

2. PURPOSES AND TASKS OF THE
RESEARCH
The purpose of the following article is to increase
the software reliability by using detailed indices of
components containing defects while refactoring and
testing process.

It is necessary to work out a new method to obtain and
apply needed indices.

To achieve the purpose it is necessary to solve the
following problems:

a. To define the assumptions of the method;
b. To describe the method as a set of phases and steps;
c. To describe the example of the use of this method;
d. To make necessary conclusions for accuracy of the

method estimation and increasing software reliability.

3. THE RESULTS OF THE RESEARCH

3.1 The Assumptions of the Method
The assumptions of the method are based on following
hypotheses. In the software engineering the middle

91 Copyright © Canadian Research & Development Center of Sciences and Cultures

Svetlana A. Yaremchuk; Dmitry A. Maevsky (2014).
Studies in Sociology of Science, 5(2), 89-95

branches or intra company reliability indices are very
often used which had been obtained while developing
preceding projects. However the investigations showed
that the complexity of the software components and
defects amount dependency in different projects of one
developer are unique.

So the appreciation of indices of defects containing
components based on the middle branches data or previous
projects’ ones may have significant digression from actual
values. It is therefore appropriate to use the indices of the
developing and valuating software for increasing accuracy
appreciation.

The offered method is based on the following
assumptions:

1) The defects amount in the Software components
depends on the complexity of these components;

2) Other influencing factors do not change in the
developing process of the software;

3) The components complexity may be quantitatively
expressed by means of composite metric values of static
program code complexity;

4) The space of simple events { }nωωωω ,...,, 210=Ω
for the probabilistic rates calculation of components
containing defects are those facts which detect
components without defects (ω0), with only one defect
(ω1), with two of them (ω2), …, with n defects (ωn). In

this case 1
0

=∑
=

n

i
i

Pω ;

5) The indices of the components containing defects
are identical within a single software project. That is why
the fined results of the components containing defects and
defects of one already tested part of the project may be
used for prediction indices accounting.

3.2 The Method Description
This method supposes the segmentation of all

the components of the project Aproj for two subsets:
basic baseA and predictive Apred with the following
qualities 0, == predbasepredbaseproj AAAAA  .

It is necessary to determine and test the subsets of
the basic components Abase. For each component it is
necessary to estimate its complexity which is expressed by
the composite metric value on basis of standard generally
known metrics.

For the purpose of decreasing the method’s work
content it is proposed to divide the diapason of composite
metric value into plenty of intervals { }mkINT k ,1|int ==
and to group the components on intervals.

The revealed quantity of the components containing
defects allow to get the reliability indices for all intervals
of the complexity. Then the estimation of reliability indices
for predictive subset Apred is carried out on their basis.

The method’s algorithm consists of the sequence of
four stages and twenty steps.

Stage 1. Testing Abase, of the Software components
complexity determination.

To determine Abase. For this purpose it is necessary
to choose about ten components for each standard
complexity metrics and to test Abase. To obtain the
composite metric based on the standard metrics values
and the number of defects in the components Abase.

To estimation the complexity of each component by
means of the composite metric value.

To divide the diapason of complexity value into
intervals.

Stage 2. The counting of initial data for basic subset
Abase

a. To count the total components amount kNBint
mod

k
defNBint

mod_

k
defiNBint

mod

k
defNBint

kNPint
mod

.
b. To count the amount of the components containing

defects

kNBint
mod

k
defNBint

mod_

k
defiNBint

mod

k
defNBint

kNPint
mod

 and also the components with 1,2,3,i…

defects

kNBint
mod

k
defNBint

mod_

k
defiNBint

mod

k
defNBint

kNPint
mod

.

c. To count the total amount of defects

kNBint
mod

k
defNBint

mod_

k
defiNBint

mod

k
defNBint

kNPint
mod

. To

count the total amount of the components

kNBint
mod

k
defNBint

mod_

k
defiNBint

mod

k
defNBint

kNPint
mod

 for
predictive subset

Apred.

Stage 3. The calculation of probabilistic, statistic
and estimated reliability indices

The probability of existence of the component
containing defects into complexity intervals

k

k
k

NB

NB
P def

def int
mod

int
mod_int

mod_ 

k

k
k

def

defi
defi NB

NB
P int

mod_

int
_mod_int

mod 

k

k
k

NB

NB
N def

def int
mod

int
int 

kkk
defdef PNPN int

mod_
int
mod

int*
mod_ 





m

k
defdef

kNN
1

int*
mod_

*
mod_

kkk
defdef NNPN intint

mod
int* 





m

k
defdef

kNN
1

int**

%100
int
mod

1

int
mod_

1 









k

k

NB

NB
CBDD m

k

def

m

k

 (1)

The probability of existence in components 1,2,3,i…
defects

k

k
k

NB

NB
P def

def int
mod

int
mod_int

mod_ 

k

k
k

def

defi
defi NB

NB
P int

mod_

int
_mod_int

mod 

k

k
k

NB

NB
N def

def int
mod

int
int 

kkk
defdef PNPN int

mod_
int
mod

int*
mod_ 





m

k
defdef

kNN
1

int*
mod_

*
mod_

kkk
defdef NNPN intint

mod
int* 





m

k
defdef

kNN
1

int**

%100
int
mod

1

int
mod_

1 









k

k

NB

NB
CBDD m

k

def

m

k

 (2)

The average number of defects in the components

k

k
k

NB

NB
P def

def int
mod

int
mod_int

mod_ 

k

k
k

def

defi
defi NB

NB
P int

mod_

int
_mod_int

mod 

k

k
k

NB

NB
N def

def int
mod

int
int 

kkk
defdef PNPN int

mod_
int
mod

int*
mod_ 





m

k
defdef

kNN
1

int*
mod_

*
mod_

kkk
defdef NNPN intint

mod
int* 





m

k
defdef

kNN
1

int**

%100
int
mod

1

int
mod_

1 









k

k

NB

NB
CBDD m

k

def

m

k

 (3)

The estimation of the component containing defects in
the complexity intervals

k

k
k

NB

NB
P def

def int
mod

int
mod_int

mod_ 

k

k
k

def

defi
defi NB

NB
P int

mod_

int
_mod_int

mod 

k

k
k

NB

NB
N def

def int
mod

int
int 

kkk
defdef PNPN int

mod_
int
mod

int*
mod_ 





m

k
defdef

kNN
1

int*
mod_

*
mod_

kkk
defdef NNPN intint

mod
int* 





m

k
defdef

kNN
1

int**

%100
int
mod

1

int
mod_

1 









k

k

NB

NB
CBDD m

k

def

m

k

 (4)

and the estimation of the amount of the components
containing defects in the predictive subset Apred

k

k
k

NB

NB
P def

def int
mod

int
mod_int

mod_ 

k

k
k

def

defi
defi NB

NB
P int

mod_

int
_mod_int

mod 

k

k
k

NB

NB
N def

def int
mod

int
int 

kkk
defdef PNPN int

mod_
int
mod

int*
mod_ 





m

k
defdef

kNN
1

int*
mod_

*
mod_

kkk
defdef NNPN intint

mod
int* 





m

k
defdef

kNN
1

int**

%100
int
mod

1

int
mod_

1 









k

k

NB

NB
CBDD m

k

def

m

k

 (5)

The estimation of the amount of defects in the
complexity intervals

k

k
k

NB

NB
P def

def int
mod

int
mod_int

mod_ 

k

k
k

def

defi
defi NB

NB
P int

mod_

int
_mod_int

mod 

k

k
k

NB

NB
N def

def int
mod

int
int 

kkk
defdef PNPN int

mod_
int
mod

int*
mod_ 





m

k
defdef

kNN
1

int*
mod_

*
mod_

kkk
defdef NNPN intint

mod
int* 





m

k
defdef

kNN
1

int**

%100
int
mod

1

int
mod_

1 









k

k

NB

NB
CBDD m

k

def

m

k

 (6)

and the estimation of defects amount in the predictive
subset Apred

k

k
k

NB

NB
P def

def int
mod

int
mod_int

mod_ 

k

k
k

def

defi
defi NB

NB
P int

mod_

int
_mod_int

mod 

k

k
k

NB

NB
N def

def int
mod

int
int 

kkk
defdef PNPN int

mod_
int
mod

int*
mod_ 





m

k
defdef

kNN
1

int*
mod_

*
mod_

kkk
defdef NNPN intint

mod
int* 





m

k
defdef

kNN
1

int**

%100
int
mod

1

int
mod_

1 









k

k

NB

NB
CBDD m

k

def

m

k

 (7)

The code base defectiveness degree

92Copyright © Canadian Research & Development Center of Sciences and Cultures

The Software Reliability Increase Method

k

k
k

NB

NB
P def

def int
mod

int
mod_int

mod_ 

k

k
k

def

defi
defi NB

NB
P int

mod_

int
_mod_int

mod 

k

k
k

NB

NB
N def

def int
mod

int
int 

kkk
defdef PNPN int

mod_
int
mod

int*
mod_ 





m

k
defdef

kNN
1

int*
mod_

*
mod_

kkk
defdef NNPN intint

mod
int* 





m

k
defdef

kNN
1

int**

%100
int
mod

1

int
mod_

1 









k

k

NB

NB
CBDD m

k

def

m

k (8)

g. The criterion of the necessary reliability achievement
when the recourses of development are not sufficient
it is proposed to be determine on basis of the required
defect density DDresult and the latent defect density

estimation
KLOC
N

LDDE def
*

* = . *
defN (calculated according

to (7)). The amount of discovered defects is calculated
a s KLOCDDLDDE result ⋅−)(* . k

defN int* i s c a l c u l a t e d
according to (6). After that there is a choice n complexity
intervals)(mn < , when the estimation of defects amount

in them is KLOCDDLDDEN result
n

k
def

k 


)(*

1

int*

 ;1

int**

*
KLOC

NN
LDDE

n

k
defdef

k




 resultDDLDDE *

. Testing

of all the components from chosen complexity intervals
allows achieving DDresult . The permissible defects

amount which was not discovered is ∑
=

−
n

k
defdef

kNN
1

int** .

These considerations allow formalizing a criterion of the
necessary reliability achievement when the development
recourses are not sufficient

KLOCDDLDDEN result
n

k
def

k 


)(*

1

int*

 ;1

int**

*
KLOC

NN
LDDE

n

k
defdef

k




 resultDDLDDE *

(9)

The received final results allow the developers, test
– managers and testers to make decisions directed to
increase the software reliability.

Stage 4. To make decisions directed to increase the
software reliability.

a. The probability of the component containing defects
k

defPint
mod_ according to the formulas (1) informs the

testers about the advisability of testing. For example, in 10
components of one complexity interval, five components
had defects. If 5.0int

mod_ =k
defP , it is possible to make a

reasonable conclusion, that the testing of the rest five
components is not advisable.

b. The probability of components with 1, 2, 3, i…
defects k

defiPint
mod according to the formulas (2) informs

the testers about the most probable defects amount in
then testing component.

c. The index of the average number of defects in the
component k

defN int
 according to the formulas (3) allows

the developers to choose refactoring components, and the
testers to sort testing components in descending order of
defects amount. It facilitates the purposeful testing the
components containing a great number of defects, the
most rapid discovering and elimination of defects which
increase the software reliability.

d. The estimation of the number of the components
containing defects k

defN int*
mod_ according to the formulas

(4), *
mod_ defN according to the formulas (5) allows

test-managers and testers to determine the number of
the residual components containing defects. Then it is
necessary to analyze the risk of defects and to make an
additional test of those components which contain critical
and serious defects.

e. The number of defects estimation k
defN int* according

to the formulas (6), *
defN according to the formulas (7)

in the testable components allows to test-managers and
testers to determine the required recourses using the
average time to discover and eliminate one defect. And
also to calculate the undiscovered defects number, to
estimate the effectiveness of testing, to make a reasonable
decision to continue or finish testing process.

f. The code base defectiveness degree CBDD
according to the formulas (8) informs the developers about
the quality of the code development and test-managers
about necessary testing volumes. The following gradation
of this index is offered: 1) when CBDD≤30% the code
base defectiveness degree is low, the development quality
is high it is demanded a little testing recourse volume; 2)
when 30<CBDD≤60% we have the average defectiveness
degree and we have the average development quality so
the average testing recourse volume is demanded; 3) when
CBDD>60% the defectiveness degree is high and the
development quality is low. Is this case the defects are in
the majority of components regardless of their complexity.
That is why it is necessary to test the majority of
components what calls for increasing the testing recourse
volume.

g. The criterion of the necessary reliability achievement
according to the formulas (9) allows to choose the
components for testing to achieve the demanded defects
density when the development recourses are not sufficient.

3.3 The example of the method’s use
The project data http://code.google.com/p/promisedata/
wiki/xalan, version 2.6 (http://promisedata.googlecode.
com, 2014) were used as the example for this method
utilization. The project contains 885 components, more
than 400 thousand lines of code (KLOC). In data’s
depositary the metrics’ account was presented and also the
defects amount for the project’s components.

Stage 1. The complexity level of the software
components was made. For each project’s component the
composite metric was calculated. The numeral diapason of
the composite metric was divided into following intervals
[0-2], [2-7], [7-11], [11-15], [15-20], [20-30], [30-50],
[50-100], [100-130], [130-600]. 135 components of basic
subset Abase were chosen. Each complexity interval was
presented no less than 10 components with different
defects amount.

Stage 2. The count of initial data was made which is
given in Table 1 below.

93 Copyright © Canadian Research & Development Center of Sciences and Cultures

Svetlana A. Yaremchuk; Dmitry A. Maevsky (2014).
Studies in Sociology of Science, 5(2), 89-95

Stage 3. The count of reliability indices was made,
according to the formulas (1)-(9). The indices are given in

Tables 2, 3, 4.

Table 2
The Indices S of the Components’ Reliability

№ The intervals of the composite
metric

Probabilities

k
defPint

mod_

k
defiPint

mod
k

defN int

with 1 def. with 2 def. with3 def. with 4 def.

1 2 0,22 0,22 0,22
2 7 0,27 0,27 0,27
3 11 0,29 0,24 0,06 0,35
4 15 0,40 0,40 0,40
5 20 0,40 0,30 0,10 0,50
6 30 0,33 0,17 0,17 0,50
7 50 0,31 0,25 0,06 0,38
8 100 0,56 0,41 0,07 0,07 0,78
9 130 1,00 0,18 0,64 0,09 0,09 2,27
10 600 1,00 0,50 0,33 0,17 1,67

Table 1
The Initial Data of the Basic Subset Abase.

№
The intervals of
the composite

metric

The number of components and defects

kNBint
mod

k
defNBint

mod_

k
defiNBint

mod

k
defNBint

kNPint
mod

Apred
kNBint

mod

k
defNBint

mod_

k
defiNBint

mod

k
defNBint

kNPint
mod

kNBint
mod

k
defNBint

mod_

k
defiNBint

mod

k
defNBint

kNPint
mod

kNBint
mod

k
defNBint

mod_

k
defiNBint

mod

k
defNBint

kNPint
mod

kNBint
mod

k
defNBint

mod_

k
defiNBint

mod

k
defNBint

kNPint
mod

with 1 def. with 2 def. with 3 def. with 4 def.
1 2 9 2 2 2 19
2 7 11 3 3 3 87
3 11 17 5 4 1 6 48
4 15 10 4 4 4 45
5 20 10 4 3 1 5 67
6 30 12 4 2 2 6 108
7 50 16 5 4 1 6 102
8 100 27 15 11 2 2 21 172
9 130 11 11 2 7 1 1 25 33
10 600 12 12 6 4 2 20 69
Total 135 65 41 17 5 1 98 750

Table 3
The Estimation of the Components Containing Defects in Abase.

№ The intervals of the
composite metric

The estimation of the components containing defects

k
defN int*

mod_
k

defiN int*
mod

with 1 def. with 2 def. with 3 def. with 4 def.
1 2 4 4
2 7 23 23
3 11 15 12 3
4 15 18 18
5 20 27 20 7
6 30 36 18 18
7 50 32 26 6
8 100 96 71 12 12
9 130 33 6 21 3 3
10 600 69 35 23 12

*
mod_ defN 353 233 90 27 3

94Copyright © Canadian Research & Development Center of Sciences and Cultures

The Software Reliability Increase Method

Table 4
The Estimation of Defects Number in Components predA .

№ The intervals of the
composite metric

The estimation of defects number in components

with 1 def. with 2 def. with 3 def. with 4 def. k
defN int*

1 2 4 4
2 7 23 23
3 11 12 6 18
4 15 18 18
5 20 20 14 34
6 30 18 36 54
7 50 26 12 38
8 100 71 24 36 131
9 130 6 42 9 18 75
10 600 35 46 36 117

*
defN 233 180 81 18 512

is a compromise between demined software reliability
and limited testing recourses. The number of unrevealed
defects represents the information of maintenance
organization and determination the release date of the
software service pack.

4.6 Table 1 represents that the total number
o f c o m p o n e n t s f o r t e s t i n g i s 7 5 0 . T h e i n d e x
CBDD=353/750·100%=48% shows the average quality
of development code that demands the average testing
volumes.

4.7 For the under test software project is KLOD=400,
512* =defN , 3.1400/512* ==LDDE . To achieve DDresult=0.5

it is necessary to reveal (1.3-0.5)·400=280 defects.
From 10 complexity intervals which are represented in
table 4, the intervals selectINT ={8,9,10} were chosen. For

these intervals is ,323
10

8

int 
k

def
kEN

;47.0
400
189

400
323512

400

512
10

8

int*

* 








k

def
kN

LDDE 5.0* LDDE

 323>280. After testing

all the components of chosen intervals was achieved the
necessary defects density and needed reliability. The
criterion of the necessary reliability achievement when the
development recourses are not sufficient is

,323
10

8

int 
k

def
kEN

;47.0
400
189

400
323512

400

512
10

8

int*

* 








k

def
kN

LDDE 5.0* LDDE

However, it is necessary to analyze the defects’ risks
and those components additional testing which contain
critical and serious defects.

CONCLUSIONS
The fo l lowing a r t i c le dea l s wi th the sof tware
reliability increase method which allows to calculate
the following indices: the probability of existence of
the component containing defects; the probability of
existence in components 1,2,3,i… defects; the average
number of defects in the components; the estimation
of the component containing defects in the complexity

Stage 4. Making decisions which are directed to
increase Software reliability.

4.1 Table 2 represents the probability of availability
of the defects containing component 1int

mod_ =k
defP for the

9-th and 10-th complexity intervals. It informs the testers
about the necessity of testing all the components in these
intervals. The rest of other probable cases represent
different advisability of testing components.

4.2 Table 2 represents the number of defects which
is more probable in these components with different
complexity level.

4.3 Table 2 represents that 5.0int ≥k
defN i s for 5

complexity intervals. For the 9th complexity interval is

2int >k
defN . This information allows developers to choose

the components for refactoring and testers to sort out the
components in descending order of the defects number. It
makes for choosing and dedicated testing the components
containing the greater number of defects and also to reveal
and correct the great number of defects and to increase the
software reliability

4.4 Table 3 represents that 353*
mod_ =defN . After

testing 300 components contained defects. It means that
there are as far back as 53 components with defects. It
is necessary to analyze the defects’ risk and additional
testing the components with makes contain critical and
serious defects.

4.5 Table 4 represents that 512* =defN . If the average
period of time for one defect reveal in the previous
projects was 3 labor hours it is necessary to spend
512.3=1536 labor hours for all defects reveal. 450
defects were revealed in the conditions of limited testing
recourses. The number of not revealed defects is 512-
450=62. The degree of defects reveal is 450/512=0,88.
To make a decision of continuing or stopping the testing

95 Copyright © Canadian Research & Development Center of Sciences and Cultures

Svetlana A. Yaremchuk; Dmitry A. Maevsky (2014).
Studies in Sociology of Science, 5(2), 89-95

intervals; the estimation of the amount of the components
containing defects in the predictive subset; the estimation
of the amount of defects in the complexity intervals; the
estimation of defects amount in the predictive subset;
the code base defectiveness degree; the criterion of the
necessary reliability achievement when the recourses of
development are not sufficient.

The verification of the method was made for twenty
Software projects. The results showed, that the average
estimations deflection of real amount of components
containing defects were 3,22%; the estimations of
component with 1,2,3,4 defects were 5,08%; the
estimations of the total defects amount were 7,83%.
Insignificant (till 10%) deflections prove that the offered
method makes the required accuracy of quantitative
estimation of reliability indices.

The demanded data set for the following method obtain
by means of the counting the components containing
defects and defects in tested part of developing program
project.

It provides the accounting of its specific complexity
and development peculiarities. It facilitates increasing
of estimation accuracy. The accuracy and exactness of
getting indices are undoubted advantages of the method.

In contrast to the basics Bayesian belief networks
the given method does not use the expert estimations. In
contrast to the basics of neural networks and the machine
learning the given method has the simple mathematics
calculations which may be made by means of electron
tables’ editor. This method does not use the complex and
expensive program tools.

For automatization the initial data set accounting it
is necessary to use the simple program tool which can
be created by any software company specialists. The
specialty of the method is the static multidimensional
complexity accounting which is based on well-known
standards of metrics. Therefore, the method is independent
from the programming language.

This method is used in the software development by
different companies in Izmail, Ukraine. This method
allowed reducing the unrevealed defects number, to
decrease the estimation of the latent defects density,
to increase the software reliability on the average 8 %.

The practical application of the method confirmed the
possibility and advisability of its use in the engineering
program practice to increase the reliability. It is especially
actual when the recourses of development are not sufficient.

REFERENCES
ISO/IEC 25010. (2011). Systems and Software engineering -

Systems and software quality requirements and evaluations
(SQuaRE) - System and Software Quality models.

Maevsky, D. A., & Yaremchuk, S. A. (2012). A priori estimation
of the amount of faults in information system software.
Radio Electronic and Computer Systems, 4(56), 73-80.
Kharkiv: KHAI,.

Maevsky, D. A., & Yaremchuk, S. A. (2012). The estimation
of the amount of software faults on the complexity metric
basis. Electrical Engineering and Computer Systems,
07(83), 113–120. Kiev: Technica.

Neumann, P. G. (1995). Computer related risks. Reading. MA:
Addison-Wesley.

IEEE Std 610.12. (1990). IEEE standard glossary of software
engineering terminology.

Ma Y., Guo L., Cukic B. (2007). Statistical framework for the
prediction of fault proneness. Advances in machine learning
application in software engineering (pp.237–265). Idea
Group Inc..

Mahaweerawat, A., Sophasathit, P., & Lursinsap, C. (2002).
Software fault prediction using fuzzy clustering and radial
basis function network. In International conference on
intelligent technologies. Vietnam, 304-313.

Thwin, M. M. T., & Quah, T.-S. (2005). Application of neural
networks for software quality prediction using object-
oriented metrics. J. System Software. May., 76, 147–156.

Pomorova, O. V., & Hovorushchenko, T. O. (2012). The research
of Mat Lab function features for scaling input data of
Software quality evaluation artificial neural network. Radio
Electronic and Computer Systems, 5(57). Kharkiv: KHAI,
219-224.

Fenton, N. E., & Neil, M. A. (1999). Critique of software defect
prediction models. IEEE Trans. Softw. Eng., 25(5), 675–689.

The PROMISE Repository of empirical software engineering
data. http://promisedata.googlecode.com – 01-04-2014.

