Path-Independence of Work Done Theorem Is Invalid in Center-Bound Force Fields

Jakub Czajko

Abstract


Abstract: The notion of work done, and the corresponding to it concept of potential energy, was incompletely defined making the path independence theorem of work done by center-bound force fields invalid for other than radial/conservative forces. Hence nonradial effects along equipotential surfaces, whose presence was suggested by experiments, can exist. New, mathematically complete representation of work done by center-bound force fields (generated by a single source) is offered.


Keywords


Path independence theorem of work done; Potentials; Nonradial effects

Full Text:

PDF

References


Anton, H. (1999). Calculus: A new horizon. New York: Wiley, p.1080f.
Barr, T. H. (1997). Vector calculus. Upper Saddle River, NJ: Prentice-Hall.
Basu, D. (1998). Radius of the sun in relation to solar activity. Solar Phys., 183, 291-294.
Beatrous, F., & Curjel, C. R. (2002). Multivariable calculus. A geometric approach. Upper Saddle River, NJ: Prentice Hall.
Beiser, A. (1973). Concepts of modern physics. New York: McGraw-Hill.
Bers, L. (1967). Calculus I. New York: Holt, Rinehart and Winston.
Birkhoff, G. (Ed.) (1973). A source book in classical analysis. Cambridge, MA: Harvard University Press.
Capra, F. (1975). The Tao of physics. Boston: Shambhala.
Cartan, E. (1984c). Les récents généralisations de la notion d’espace [Recent generalizations of the notion of space]. In E. Cartan (Ed.), Œuvres complètes. Part 3.1 (pp.863-889). Paris: Éditions du CNRS.
Cartan, E. (1984a). Notice historique sur la notion de parallélisme absolu [Historical note on the concept of absolute parallelism]. In E. Cartan (Ed.), Œuvres complètes Part 3.2 (pp.1121-1129). Paris: Éditions du CNRS.
Cartan, E. (1984b). Sur la connexion affine des surfaces [The affine connection surfaces]. In E. Cartan (Ed.), Œuvres complètes. Part 3.1.( pp.909-912). Paris: Éditions du CNRS.
Cartan, E. (1986). On manifolds with an affine connection and the general theory of relativity. Napoli: Bibliopolis.
Chirgwin, B. H., & Plumpton, C. (1964). A course of mathematics for engineers and scientists 4. New York: Macmillan.
Corben, H. C. & Stehle, P. (1950). Classical mechanics. New York: Wiley.
Cronin-Scanlon, J. (1967). Advanced calculus. Boston: Heath.
Czajko, J. (1990). On the Hafele-Keating experiment. Ann. Phys. (Leipzig), 47, 517-518.
Czajko, J. (1991). Experiments with flying atomic clocks. Exper. Tech. Phys., 39, 145-147.
Czajko, J. (2000). On conjugate complex time II: Equipotential effect of gravity retrodicts differential and predicts apparent anomalous rotation of the Sun. Chaos, Solit. Fract. 11, 2001-2016.
Czajko, J. (2011). Radial and nonradial effects in Frenet frame. Appl. Phys. Res., 3(1), 2-7.
Doran, C., Lasenby, A., & Gul, S. (1993). Imaginary numbers are not real– the geometric algebra of spacetime. Found. Phys., 23(9), 1175-1201.
Dyson, F. (1921). Relativity and the eclipse observation of May 1919. Nature, 106, 786-787.
Edwards, C. H., & Penney, D. E. (1999). Multivariable calculus with analytic geometry. Upper Saddle River, NJ: Prentice-Hall.
Edwards, C. H., & Penney, D. E. (2002). Calculus. Upper Saddle River, NJ: Prentice-Hall.
Einstein, A. (1916). The foundations of the general theory of relativity. In H. A. Lorentz, et al. (Ed.), The principle of relativity (pp.111-164). New York: Dover.
Einstein, A. (1948). A generalized theory of gravitation. Rev. Mod. Phys., 20, 35-39.
Eisenman, R. L. (2005). Matrix vector analysis. Mineola, NY: Dover.
Feynman, R. P., Leighton, R. B., & Sands, M. (1977). The Feynman lectures on physics I: Mainly mechanics, radiation and heat. Reading, MA: Addison-Wesley.
Finney, R. L., Thomas, G. B., Demana, F., & Waits, B. K. (1995). Calculus: Graphical, numerical, algebraic. Single variable version. Reading, MA: Addison-Wesley.
Fitzpatrick, P. M. (1996). Advanced calculus: A course in mathematical analysis. Boston: PWS.
Gigolashvili, M. S., Gogoladze, N. A., & Khutsishvili, E. V. (1995). Revealing of periodicities in the variations of differential rotation of the Sun. Astron. Nachr., 316(5), 285-290.
Halliday, D., & Resnick, R. (1974). Fundamentals of physics. New York: Wiley.
Hart, W. L. (1955). Calculus. Boston: Heath.
Heitsch, W. (1978). Mathematik und Weltanschaung [Mathematics and worldview]. Berlin: Akademie-Verlag.
Hughes-Hallett, D., McCallum, W. G., Gleason, A. M., Flath, D. E, Lock, P. F., Gordon, S. P., …Tucker, T. W. (2005). Calculus. Single and multivariable. Hoboken, NJ: Wiley.
Jaeger, J. C. (1951). An introduction to applied mathematics. Oxford: Clarendon Press.
Johnson, J. L. (1999). On magnetohydrodynamic equilibrium and stability in stellarators. Plasma Phys. Rep., 25(12), 1013-1023.
Larson, R. E., & Hostetler, R. P. (1986). Calculus with analytic geometry. Lexington, MA: Heath.
Lerner, R. G., & Trigg, G. L. (Eds.) (2005). Encyclopedia of physics I. Third, completely revised and enlarged edition. Weinheim: Wiley-VCH.
McCallum, W. G., et al. (2005). Multivariable calculus. Hoboken, NJ: Wiley.
Merat, P. (1974). Observed Deflection of Light by the Sun as a Function of Solar Distance. Astron. Astrophys., 32, 471-475.
Mercier, A. (1959). Analytical and canonical formalism in physics. Amsterdam: North-Holland.
Mercier, A. (1977). Speculative remarks on physics in general and relativity in particular. In V. De Sabbata & J. Weber (Eds.), Topics in theoretical and experimental gravitation physics (pp.295-303). London: Plenum Press.
Postnikov, M. M. (1983). The variational theory of geodesics. New York: Dover.
Ryder, L. H. (1996). Quantum field theory. Cambridge: Cambridge Univ. Press.
Sadeh, D., Knowles, S. H., & Yaplee, B. S. (1968). Search for a frequency shift of the 21-centimeter line from Taurus a near occultation by Sun. Science, 159, 307-308.
Sadeh, D., Knowles, S., & Au, B. (1968). The effect of mass on frequency. Science, 161, 567-569.
Salas, S. L., & Hille, E. (1990). Calculus: One and several variables. New York: Wiley.
Seaborn, J. B. (2001). Mathematics for the physical sciences. New York: Springer.
Stein, S. K., & Barcellos, A. (1992). Calculus and analytic geometry. New York: McGraw-Hill.
Stewart, J. (1999). Calculus: Early transcendentals. Pacific Grove, CA: Brooks/Cole.
Struik, D. J. (1988). Lectures on classical differential geometry. New York: Dover.
Swokowski, E. W. (1992). Calculus: Late trigonometry version. Boston: PWS.
Thomas, J. B., & Finney, R. L. (1996). Calculus and analytic geometry II. Reading, MA: Addison-Wesley.
Toretti, R. (1996). Relativity and geometry. New York: Dover.
Varberg, D., Purcell, E. J., & Rigdon, S. E. (2000). Calculus. Upper Saddle River, NJ: Prentice Hall.
Vyal’tsev, A. N. (1965). Discrete spacetime. Moscow. [in Russian].
Wenzl, A. (1954). Die philosophischen Grenzfragen der modernen Naturwissenschaft [The philosophical frontier issues of modern natural science]. Stuttgart: Kohlhammer Verlag.
Williams, J., Franklin, F. E., & Metcalfe, H. C. (1984). Modern physics. New York: Holt, Rinehart and Winston.




DOI: http://dx.doi.org/10.3968%2Fj.sms.1923845220130702.2469

Refbacks

  • There are currently no refbacks.


Reminder

If you have already registered in Journal A and plan to submit article(s) to Journal B, please click the CATEGORIES, or JOURNALS A-Z on the right side of the "HOME".


We only use three mailboxes as follows to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:
caooc@hotmail.com; sms@cscanada.net; sms@cscanada.org

Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures
Address: 730, 77e AV, Laval, Quebec, H7V 4A8, Canada

Telephone: 1-514-558 6138
Http://www.cscanada.net
Http://www.cscanada.org
E-mail:caooc@hotmail.com