New Exact Solutions of Nonlinear Partial Differential Equations Using Tan-Cot Function Method

Anwar Ja'afar Mohamad Jawad


In this paper, we established a traveling wave solution by using the proposed Tan-Cot function algorithm for nonlinear partial differential equations. The method is used to obtain new solitary wave solutions for various type of nonlinear partial differential equations such as, the (2+1) - dimensional nonlinear Schr$\mathrm {\ddot{o}}$dinger equation, Gardner equation, the modified KdV equation, perturbed Burgers equation, general Burger's-Fisher equation, and Benjamin-Bona-Mahony equation, which are the important Soliton equations. Proposed method has been successfully implemented to establish new solitary wave solutions for the nonlinear PDEs.


Nonlinear PDEs; Exact solutions; Tan-cot function method; Schr$\mathrm {\ddot{o}}$dinger equation; Gardner equation; The modified KdV equation; Perturbed Burgers equation; General Burger's-Fisher equation; and Benjamin-Bona-Mahony equation

Full Text:




  • There are currently no refbacks.


If you have already registered in Journal A and plan to submit article(s) to Journal B, please click the CATEGORIES, or JOURNALS A-Z on the right side of the "HOME".

We only use three mailboxes as follows to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:;;

Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures
Address: 9375 Rue de Roissy Brossard, Québec, J4X 3A1, Canada

Telephone: 1-514-558 6138