Related Distribution of Prime Numbers

Kaifu SONG^{[a],*}

^[a] East Lake High School, Yichang, Hubei, China.

* Corresponding author.

Address: East Lake High School, Yichang 443100, Hubei, China; E-Mail: skf08@ sina.com

Received: March 6, 2013/ Accepted: May 10, 2013/ Published: May 31, 2013

Abstract: The surplus model is established, and the distribution of prime numbers are solved by using the surplus model.

Key words: Surplus model; Distribution of prime numbers

Song, K. (2013). Related Distribution of Prime Numbers. *Studies in Mathematical Sciences*, 6(2), 96–103. Available from http://www.cscanada.net/index.php/sms/article/view/j.sms.1923845220130602.478 DOI: 10.3968/j.sms.1923845220130602.478

1. SURPLUS MODEL

In the range of $1 \sim N$, r_1 represents the quantity of numbers which do not contain a factor 2, $r_1 = [N \cdot \frac{1}{2}]$ ([x] is the largest integer not greater than x); r_2 represents the quantity of numbers which do not contain factor 3, $r_2 = [r_1 \cdot \frac{2}{3}]$; r_3 represents the quantity of numbers do not contain factor 5, $r_3 = [r_2 \cdot \frac{4}{5}]$; ...

In the range of $1 \sim N$, r_i represents the quantity of numbers which do not contain factor p_i , the method of the surplus numbers r_{i-1} to r_i is called *the residual model of related distribution of prime numbers*.

In the range of $1 \sim N$, excluding all multiples of prime numbers which are not greater than \sqrt{M} $(M \leq N)$, then r is the surplus number. For the factor that $\left[\frac{rM}{N}\right] \leq r$, so there are at least $\left[\frac{rM}{N}\right]$ related primes in the range os M.

2. RELATED DISTRIBUTION OF PRIME NUMBERS

2.1. Distribution of Prime Numbers

Exclusion the multiples of 2, 3, 5 in natural numbers, the rest numbers can be categorized as eight numeric axes: A_1 , B_1 , A_3 , B_3 , A_7 , B_7 , A_9 , B_9 (Axis A: 3n+2, axis B: 3n + 1).

On number axis (A-axis or B-axis), r_0 represents the quantity of numbers which do not contain factors 2, 3, 5, 7, $r_0 = [\frac{8}{35} \cdot N]$; r_1 represents the quantity of numbers which do not contain prime factor P_1 ($P_1 > 7$), $r_1 = [r_0 \cdot \frac{p_1 - 1}{p_1}]$; r_2 represents the quantity of numbers which do not contain prime factor P_2 , $r_2 = [r_1 \cdot \frac{p_2 - 1}{p_2}]$; ... $p_i - 1_1$

 $r_i = [r_{i-1} \cdot \frac{p_i - 1}{p_i}].$

The method of the surplus numbers r_{i-1} to r_i is called the surplus model of distribution of prime numbers.

 S_n is the quantity of prime numbers in the range of N, make $M = p_n^2$, by

$$S_n = [r_{n-1} \cdot \frac{p_n - 1}{p_n} \cdot \frac{M}{N}] = [r_{n-1} \cdot \frac{p_n - 1}{p_n} \cdot \frac{p_n^2}{N}].$$
 (1)

$$S_{n-1} = [[r_{n-2} \cdot \frac{p_{n-1} - 1}{p_{n-1}}] \frac{p_{n-1}^2}{N}].$$
⁽²⁾

We can obtain

$$S_n = \left[\frac{(p_n - 1)p_n}{p_{n-1}^2} \cdot S_{n-1}\right],$$

where $S_1 = \left[\frac{8 \times 10 \times 11}{35}\right] = 25. \ (r_{n-1} = \left[\dots \left[\frac{8}{35} \cdot N\right] \frac{p_1 - 1}{p_1}\right] \dots \left[\frac{p_{n-1} - 1}{p_{n-1}}\right]\right).$

For the fact that $\frac{(p_i-1)p_i}{p_{i-1}^2} > 1$, so $\{[\frac{(p_i-1)p_i}{p_{i-1}^2} \cdot S_{i-1}]\}$ (i = 1, 2, ..., n) are ascending series in which all numbers are not less than 25. Therefore, $\lim_{n \to \infty} S_n = \infty$, there are infinite prime numbers in natural numbers.

2.2. Distribution of Primes in Arithmetic Series

 $S_{(a,r)}$ is the quantity of prime numbers which have the form an + r((a,r) = 1), then

$$S(a,r) = \frac{S_n}{\varphi(a)} = \left[\frac{p_n(p_n-1)}{\varphi(a)p_{n-1}^2} \cdot S_{n-1}\right],$$

where $S_1 = 25$. ($\varphi(a)$) is Euler function of a.)

a is a constant, $\varphi(a)$ is a constant. There are infinite prime numbers which have the form an + r((a, r) = 1).

2.3. Distribution of Prime Numbers Between n^2 and $(n+1)^2$

Make $n^2 = p_n^2$, $(n+1)^2 = (p_n+1)^2$, then S'_n is the quantity of prime numbers in the range of $(p_n+1)^2$,

$$S_n' = \left[\frac{(p_n+1)(p_n+1-1)}{p_n^2} \cdot S_n\right].$$

Let
$$f(n) = S_n' - S_n = \left[\frac{(p_n+1)(p_n+1-1)}{p_n^2} \cdot S_n\right] - [S_n] = [\frac{[S_n]}{p_n}]$$
, where $S_1 = \frac{(p_n+1)(p_n+1-1)}{p_n} \cdot S_n$

25.

For $f(n) = [\frac{(p_n-1)}{p_{n-1}} [\frac{(p_{n-1}-1)}{p_{n-2}} [\frac{(p_{n-2}-1)}{p_{n-3}} [\dots [\frac{(p_2-1)}{p_1^2} \cdot S_1 \dots]]$, and $\frac{p_i-1}{p_{i-1}} > 1$. Then $\lim_{n \to \infty} f(n) = \infty$.

The quantity of prime numbers between n^2 and $(n + 1)^2$ are increasing along with the increasing of n. In a small range, there is at least one prime number between n^2 and $(n + 1)^2$. Therefore, there is at least one prime number between n^2 and $(n + 1)^2$; and the quantity of the prime number are increasing along with the increasing of n.

2.4. The Interval Between Primes p_{i-1} and p_i

During the distribution of prime numbers,

$$S_n = \left[\frac{p_n}{p_{n-1}} \left[\frac{(p_n-1)}{p_{n-2}} \left[\frac{(p_{n-1}-1)}{p_{n-3}} \left[\dots \left[\frac{p_3-1}{p_1} \left[\frac{p_2-1}{p_1} \cdot S_1\right]\dots\right]\right]\right]\right]$$

Let $\overline{p_i - p_{i-1}}$ be the average interval between two primes p_{i-1} and p_i , then in the range of p_n^2 ,

$$\overline{p_i - p_{i-1}} = \frac{p_n^2}{S_n} = \left[\frac{p_n}{p_{n-1}} \left[\frac{p_{n-1}}{p_{n-1} - 1} \left[\dots \left[\frac{p_2}{p_2 - 1} \left[\frac{p_1^2}{S_1}\right]\dots\right], \frac{p_i}{p_i - 1} > 1.\right]\right]$$

and $\lim_{n \to \infty} \overline{p_i - p_{i-1}} = \infty$.

There is no maximum value of the average interval between primes p_{i-1} and p_i . Therefore, the maximum value of the average interval between primes p_{i-1} and p_i tends to infinity.

2.5. Distribution of Twin Primes

On number axis pair $(A_1 - B_3 \text{ or } A_7 - B_9 \text{ or } A_9 - B_1)$, r_0 represents the quantity of numbers which do not contain factors 2, 3, 5, 7, $r_0 = [\frac{1}{14} \cdot N]$; r_1 represents the quantity of numbers which do not contain factor p_1 , $r_1 = [r_0 \cdot \frac{p_1 - 2}{p_1}]$; r_2 represents the quantity of numbers which do not contain factor p_2 , $r_2 = [r_1 \cdot \frac{p_2 - 2}{p_2}]$;... $r_i =$ $[r_1 - \frac{p_i - 2}{p_1}]$

$$[r_{i-1} \cdot \frac{p_i - 2}{p_i}].$$

The method of the surplus numbers r_{i-1} to r_i is called the surplus model of distribution of twin primes.

 L_n is the quantity of twin primes in the range of N, let $M = p_n^2$, by

$$L_n = [r_{n-1} \cdot \frac{p_n - 2}{p_n} \cdot \frac{M}{N}] = [r_{n-1} \cdot \frac{p_n - 2}{p_n} \cdot \frac{p_n^2}{N}]$$
(3)

$$L_{n-1} = [[r_{n-2} \cdot \frac{p_{n-1} - 2}{p_{n-1}}] \frac{p_{n-1}^2}{N}].$$
(4)

We can obtain that

$$L_n = \left[\frac{(p_n - 2)p_n}{p_{n-1}^2} \cdot L_{n-1}\right],$$

where $L_1 = [\frac{11 \times 9}{14}] = 7$. $(r_{n-1} = [...[\frac{1}{14}N]\frac{p_1 - 2}{p_1}]...]\frac{p_{n-1} - 2}{p_{n-1}}]).$

For the fact that $\frac{(p_i-2)p_i}{p_{i-1}^2} > 1$, so $\{[\frac{(p_i-2)p_i}{p_{i-1}^2} \cdot L_{i-1}]\}$ (i = 1, 2, ..., n) are ascending series in which all numbers are not less than 7. Therefore, $\lim_{n \to \infty} L_n = \infty$, there are infinite twin primes in natural numbers.

2.6. Distribution of Twin Prime Numbers Within Ten

There are two pairs of twin prime numbers within 10, these two pairs of twin prime numbers are called *twin prime numbers within ten*. For example, 11, 13, 17, 19 are twin prime numbers within ten.

On number axis pair $(A_1 - B_3 - A_7 - B_9)$, r_0 represents the quantity of numbers which do not contain factors 2, 3, 5, 7, $r_0 = \frac{1}{70} \cdot N$; r_1 represents the quantity of numbers which do not contain factor p_1 , $r_1 = r_0 \cdot \frac{p_1 - 4}{p_1}$; r_2 represents the quantity of numbers which do not contain factor p_2 , $r_2 = r_1 \cdot \frac{p_2 - 4}{p_2}$;... $r_i = r_{i-1} \cdot \frac{p_i - 4}{p_i}$.

The method of the surplus numbers r_{i-1} to r_i is called the surplus model of distribution of twin prime numbers within 10.

 T_n indicates the quantity of twin prime numbers within 10, let $M = p_n^2$, by

$$T_n = r_{n-1} \cdot \frac{p_n - 4}{p_n} \cdot \frac{M}{N} = r_{n-1} \cdot \frac{p_n - 4}{p_n} \cdot \frac{p_n^2}{N}.$$
 (5)

$$T_{n-1} = r_{n-2} \cdot \frac{p_{n-1} - 4}{p_{n-1}} \cdot \frac{p_{n-1}^2}{N}.$$
(6)

We can obtain that

$$T_n = \frac{(p_n - 4)p_n}{p_{n-1}^2} \cdot T_{n-1},$$

where
$$T_1 = \frac{11 \times 7}{70} \approx 1.10. \ (r_{n-1} = \frac{1}{70} \cdot N \cdot \frac{p_1 - 4}{p_1} \cdot \dots \cdot \frac{p_{n-1} - 4}{p_{n-1}}).$$
 By

$$\begin{split} T_n &= \frac{p_n(p_n-4)}{p_{n-1}^2} \cdot \frac{p_{n-1}(p_{n-1}-4)}{p_{n-2}^2} \cdot \frac{p_{n-2}(p_{n-2}-4)}{p_{n-3}^2} \cdot \dots \cdot \frac{p_2(p_2-4)}{p_1^2} \cdot T_1 \\ &= \frac{p_n}{p_{n-1}} \cdot \frac{(p_n-4)}{p_{n-2}} \cdot \frac{(p_{n-1}-4)}{p_{n-3}} \cdot \dots \cdot \frac{p_3-4}{p_1} \cdot \frac{p_2-4}{p_1} \cdot T_1 \end{split}$$

For the fact that $\frac{p_3-4}{p_1} \cdot \frac{p_2-4}{p_1} \cdot T_1 > 1$, $\frac{p_i-4}{p_{i-2}} > 1$ (i = 4, ..., n), so $\lim_{n \to \infty} T_n = \infty$, there are infinite twin prime numbers within 10 (For example, 36 pairs in the range of 10^5).

2.7. Distribution of $n^2 + 1$ Prime Numbers

Lemma 7.1 $4(mp+10x)^2 + 1 \equiv 4(mp-10x)^2 + 1 \pmod{p}$, where p is an odd prime.

Proof.

$$4(mp+10x)^{2} + 1 - 4(mp-10x)^{2} - 1 = 16mxp.$$

Lemma 7.2 If $x \pm y \not\equiv 0 \pmod{p}$, then $4(mp + 10x)^2 + 1 \not\equiv 4(mp + 10y)^2 + 1 \pmod{p}$.

Proof.

$$4(mp+10x)^{2} + 1 - 4(mp+10y)^{2} - 1 = 80mp(x-y) + 400(x+y)(x-y).$$

Because 400 and $x \pm y \mod p$ are not of congruence, then this Lemma is proved.

 $n^2 + 1$ is a composite number when n is odd; let n = 2t when n is even, g is the units digit of t. $n^2 + 1$ is a multiple of 5, when $n^2 + 1 = 4t^2 + 1$, g = 1, 4, 6, 9. And g = 2, 3, 5, 7, 8, 0 when $4t^2 + 1$ is a prime number.

 $(4n^2 + 1, 4n + 3) = 1$, denote the prime numbers with the form 4n + 1 by q_i .

Theorem 7.1 On the number axis $4t^2 + 1$, there are two multiples of q_i at every q_i distance.

Proof. By Lemma 7.1, Lemma 7.2 know, $4t^2 + 1$ number axis appear multiples of the q_i , distributed $4(mq_i)^2 + 1$ into a center of symmetry.

For example, there are two numbers which are multiples of 13 at every distance of 13 on $4(10k + 2)^2 + 1$ number axis, shown in Figure 1.

Therefore, the surplus model of distribution of $n^2 + 1$ prime numbers on number axis $4(10k + 2)^2 + 1$ is similar with that of distribution of twin prime numbers on number axis $A_1 - B_3$, and the trend is similar too. As a result, there is no maximum value of twin prime number in natural numbers, and there are infinite prime numbers which have the form $n^2 + 1$.

Song, K./Studies in Mathematical Sciences, 6(2), 2013						
$4 \cdot 2^2 + 1$	$4 \cdot 12^2 + 1$	$4 \cdot 22^2 + 1$	$4\cdot 32^2 + 1$	$4 \cdot 42^2 + 1$	$4\cdot 52^2+1$	$4 \cdot 62^2 + 1$
L	1	1	1	1		
4	5	0	2	11	$1^{(\mathrm{center})}$	11
$4 \cdot 72^2 + 1$	$4 \cdot 82^2 + 1$	$4 \cdot 92^2 + 1$	$4 \cdot 102^2 + 1$	$4 \cdot 112^2 +$	$1 4 \cdot 122^2 -$	$+1 4 \cdot 132^2 + 1$
L						
2	0	5	4	10	10	4
$4 \cdot 142^2 + 1$	$4 \cdot 152^2 +$	$-1 4 \cdot 162^{2}$	$2^{2} + 1 4 \cdot 1^{2}$	$72^2 + 1 4$	$\cdot 182^2 + 1$	$4 \cdot 192^2 + 1$
L		1		1		
5	0	2		11	$1^{(\text{center})}$	11

Figure 1

Note: Numbers 4, 5, 0, ... shown below the axis are the remainders of $4(10k + 2)^2 + 1$ divided by 13.

2.8. Distribution of Prime Triplet

If p_i , $p_i + 2$, $p_i + 6$ are all prime numbers, then these three-digits group is called a *prime triplet*.

On number axes group $(A_1 - B_3 - A_7 \text{ or } A_7 - B_9 - A_3)$, similarly, $r_0 = [\frac{4}{105} \cdot N]$; $r_1 = [r_0 \cdot \frac{p_1 - 3}{p_1}]$; $r_2 = [r_1 \cdot \frac{p_2 - 3}{p_2}]$; ... $r_i = [r_{i-1} \cdot \frac{p_i - 3}{p_i}]$.

The method of the surplus numbers r_{i-1} to r_i is called the residual model of distribution of prime triplet.

 E_n is a prime triplet in the range of N, let $M = p_n^2$, by

$$E_n = [r_{n-1} \cdot \frac{p_n - 3}{p_n} \cdot \frac{M}{N}] = [r_{n-1} \cdot \frac{p_n - 3}{p_n} \cdot \frac{p_n^2}{N}].$$
 (7)

$$E_{n-1} = [[r_{n-2} \cdot \frac{p_{n-1} - 3}{p_{n-1}}] \frac{p_{n-1}^2}{N}].$$
(8)

We can obtain that

$$E_n = \left[\frac{(p_n - 3)p_n}{p_{n-1}^2} \cdot E_{n-1}\right],$$

where $E_1 = [\frac{4 \times 11 \times 8}{105}] = 3$. $(r_{n-1} = [\dots [\frac{4}{105} \cdot N] \frac{p_1 - 3}{p_1}] \dots]\frac{p_{n-1} - 3}{p_{n-1}}]$.

For the fact that $\frac{(p_i-3)p_i}{p_{i-1}^2} > 1$, so $\{[\frac{(p_i-3)p_i}{p_{i-1}^2} \cdot S_{i-1}]\}$ (i = 1, 2, ..., n) are ascending series in which all numbers are not less than 3. Therefore, $\lim_{n \to \infty} E_n = \infty$, there are infinite prime triplets in natural numbers.

2.9. Primes Distribution of $n^2 - n + p_i$ Primes

Lemma 9.1 There are only $\frac{p+1}{2}$ residual classes in $n^2 - n$ for odd prime p.

$$\begin{array}{l} Proof. \ n = 1, \ (p \pm 1)(p \pm 0) \equiv 0 \pmod{p};\\ n = 2, \ (p \pm 2)(p \pm 1) \equiv 2 \times 1 \pmod{p};\\ n = 3, \ (p \pm 3)(p \pm 2) \equiv 3 \times 2 \pmod{p};\\ \dots;\\ n = \frac{p-1}{2}, \ (p \pm \frac{p-1}{2})(p \pm \frac{p-3}{3}) \equiv \frac{p-1}{2} \times \frac{p-3}{2} \pmod{p};\\ n = \frac{p+1}{2}, \ (p \pm \frac{p+1}{2})(p \pm \frac{p-1}{3}) \equiv \frac{p+1}{2} \times \frac{p-1}{2} \pmod{p};\\ n = \frac{p+3}{2}, \ (p \pm \frac{p+3}{2})(p \pm \frac{p+1}{3}) \equiv \frac{p+3}{2} \times \frac{p+1}{2} \dots \equiv \frac{p-1}{2} \times \frac{p-3}{2} + 2p \equiv \frac{p-1}{2} \times \frac{p-3}{2} \pmod{p};\\ \end{array}$$

That is $f(\frac{p+3}{2}) \equiv f(\frac{p-1}{2}) \pmod{p}$. Let $f(n) = (p \pm n)(p \pm (n-1)) \equiv n(n-1) \pmod{p}$;

$$\frac{p+1+2t}{2} \times \frac{p+1+2(t-1)}{2} = \frac{p+1-2t+4t}{2} \times \frac{p+1-2(t+1)+4t}{2}$$
$$=\frac{p+1-2t}{2} \times \frac{p+1-2(t+1)}{2} + 2tp \equiv \frac{p+1-2t}{2} \times \frac{p+1-2(t+1)}{2} \pmod{p}.$$

That is $f(\frac{p+1+2t}{2}) \equiv f(\frac{p+1-2t}{2}) \pmod{p}$.

Therefore, there are only 1×0 , 2×1 , ..., $\frac{p+1}{2} \cdot \frac{p-1}{2}$ different residual classes in $n^2 - n$ for prime p.

 $0 \le n \le N$, $n^2 - n + p_i$ are all prime numbers, the first three numbers must be prime triplet, and p_i must be on A_1 (or A_7) number axis.

Lemma 9.2 Let $n^2 - n \equiv r_2 \pmod{p_i}$, A_1 number axes $\frac{p_i + 1}{2}$ residue class are no longer make proposition holds.

Proof. Let $a \in A_1$, $a \equiv r_1 \pmod{p_i}$, $r_1 = 0, 1, ..., p_{i-1}$.

 $n^2 - n \equiv r_2 \pmod{p_i}$, then by Lemma 9.1, $r_2 = 0, 2, 6, ..., \frac{p_i + 1}{2}$.

If $r_1 + r_2 \equiv 0 \pmod{p_i}$, then $a + r_2 \equiv 0 \pmod{p_i}$, $a + r_2$ is a composite number.

Any number in r_2 can make $r_1 + r_2 \equiv 0 \pmod{p_i}$ established, then $a + r_2$ is a composite number.

Similarly, $r_0 = [\frac{1}{35} \cdot N]$; surplus numbers (with the quantity of r_0) divided by p_1 respectively residual 0, 1, 2, ..., $p_1 - 1$. $n^2 - n$ divided by p_1 have different residue class, by Lemma 9.2, p_1 exclude $[r_0 \cdot \frac{p_1 + 1}{2p_1}]$ numbers, $r_1 = r_0 - [r_0 \frac{p_1 + 1}{2p_1}] = [r_0 \frac{p_1 - 1}{2p_1}]$; r_2 represents the numbers which do not contain factor p_2 , $r_2 = [r_1 \cdot \frac{p_2 - 1}{2p_2}]$; ... $r_i = [r_{i-1} \cdot \frac{p_i - 1}{2p_i}]$.

The method of the surplus numbers r_{i-1} to r_i is called the residual model of distribution of $n^2 - n + p_i$ prime numbers.

 Q_n is a proposition holds the number of the N-range, let $M = p_n^2$, by

$$Q_n = [r_{n-1} \cdot \frac{p_n - 1}{2p_n} \cdot \frac{M}{N}] = [r_{n-1} \cdot \frac{p_n - 1}{2p_n} \cdot \frac{p_n^2}{N}].$$
(9)

$$Q_{n-1} = \left[\left[r_{n-2} \cdot \frac{p_{n-1} - 1}{2p_{n-1}} \right] \frac{p_{n-1}^2}{N} \right].$$
(10)

We can get:

$$Q_n = \left[\frac{(p_n - 1)p_n}{2p_{n-1}^2} \cdot Q_{n-1}\right],$$

where $Q_1 = [\frac{11}{7}] = 1$. $(r_{n-1} = [...[\frac{1}{35} \cdot N] \frac{p_1 - 1}{2p_1}]...] \frac{p_{n-1} - 1}{2p_{n-1}}]$. and then

$$Q_n = \left[\frac{(p_n - 1)p_n}{2p_{n-1}^2} \cdot Q_{n-1}\right] \le \frac{p_n^2}{35 \cdot 2^n} \prod_{i=1}^n \frac{p_i - 1}{p_i}.$$

Based of Bertrand assumption, there is at least one prime between n and 2n and at least one prime between 2^{n-1} and 2^n . When $n \ge 12$ $(p_{12} = 53)$,

$$\frac{p_i^2}{2^i} < 1, \ (i \ge 12), \ \frac{p_i - 1}{p_i} < 1, \ (i = 1, 2, ..., n).$$

Thereby, $\lim_{n \to \infty} Q_n = 0.$

There are infinitely primes p_i when N = 2,3; all $n^2 - n + p_i$ are primes when $0 \le n \le N$; only some special natural numbers N when $N = p_i - 1$; all $n^2 - n + p_i$ are primes when $0 \le n \le N$. The greater N is, the smaller possibility the proposition holds. Therefore, there are only 6 primes $(p_i = 2, 3, 5, 11, 17, 41)$ that make the proposition hold.

REFERENCES

- [1] Hua, Loo-Keng. (1979). An introduction to number theory (In Chinese). Beijing: Science Press.
- [2] Song, K. (2007). *Elementary number theory* (In Chinese). Beijing: China Drama Press.