Related Distribution of Prime Numbers

$$
\text { Kaifu } \mathrm{SONG}^{[\mathrm{a}], *}
$$

${ }^{[a]}$ East Lake High School, Yichang, Hubei, China.
* Corresponding author.
Address: East Lake High School, Yichang 443100, Hubei, China; E-Mail: skf08@ sina.com

Received: March 6, 2013/ Accepted: May 10, 2013/ Published: May 31, 2013

Abstract

The surplus model is established, and the distribution of prime numbers are solved by using the surplus model.

Key words: Surplus model; Distribution of prime numbers

Song, K. (2013). Related Distribution of Prime Numbers. Studies in Mathematical Sciences, 6(2), 96-103. Available from http://www.cscanada.net/index.php/sms/article/ view/j.sms.1923845220130602.478 DOI: 10.3968/j.sms.1923845220130602.478

1. SURPLUS MODEL

In the range of $1 \sim N, r_{1}$ represents the quantity of numbers which do not contain a factor $2, r_{1}=\left[N \cdot \frac{1}{2}\right]$ ($[x]$ is the largest integer not greater than $\left.x\right) ; r_{2}$ represents the quantity of numbers which do not contain factor 3 , $r_{2}=\left[r_{1} \cdot \frac{2}{3}\right] ; r_{3}$ represents the quantity of numbers do not contain factor $5, r_{3}=\left[r_{2} \cdot \frac{4}{5}\right] ; \ldots$

In the range of $1 \sim N, r_{i}$ represents the quantity of numbers which do not contain factor p_{i}, the method of the surplus numbers r_{i-1} to r_{i} is called the residual model of related distribution of prime numbers.

In the range of $1 \sim N$, excluding all multiples of prime numbers which are not greater than $\sqrt{M}(M \leq N)$, then r is the surplus number. For the factor that $\left[\frac{r M}{N}\right] \leq r$, so there are at least $\left[\frac{r M}{N}\right]$ related primes in the range os M.

2. RELATED DISTRIBUTION OF PRIME NUMBERS

2.1. Distribution of Prime Numbers

Exclusion the multiples of $2,3,5$ in natural numbers, the rest numbers can be categorized as eight numeric axes: $A_{1}, B_{1}, A_{3}, B_{3}, A_{7}, B_{7}, A_{9}, B_{9}$ (Axis $A: 3 n+2$, axis $B: 3 n+1)$.

On number axis (A-axis or B-axis), r_{0} represents the quantity of numbers which do not contain factors $2,3,5,7, r_{0}=\left[\frac{8}{35} \cdot N\right] ; r_{1}$ represents the quantity of numbers which do not contain prime factor $P_{1}\left(P_{1}>7\right), r_{1}=\left[r_{0} \cdot \frac{p_{1}-1}{p_{1}}\right] ; r_{2}$ represents the quantity of numbers which do not contain prime factor $P_{2}, r_{2}=\left[r_{1} \cdot \frac{p_{2}-1}{p_{2}}\right] ; \ldots$ $r_{i}=\left[r_{i-1} \cdot \frac{p_{i}-1}{p_{i}}\right]$.

The method of the surplus numbers r_{i-1} to r_{i} is called the surplus model of distribution of prime numbers.
S_{n} is the quantity of prime numbers in the range of N, make $M=p_{n}^{2}$, by

$$
\begin{gather*}
S_{n}=\left[r_{n-1} \cdot \frac{p_{n}-1}{p_{n}} \cdot \frac{M}{N}\right]=\left[r_{n-1} \cdot \frac{p_{n}-1}{p_{n}} \cdot \frac{p_{n}^{2}}{N}\right] . \tag{1}\\
S_{n-1}=\left[\left[r_{n-2} \cdot \frac{p_{n-1}-1}{p_{n-1}}\right] \frac{p_{n-1}^{2}}{N}\right] . \tag{2}
\end{gather*}
$$

We can obtain

$$
S_{n}=\left[\frac{\left(p_{n}-1\right) p_{n}}{p_{n-1}^{2}} \cdot S_{n-1}\right]
$$

where $\left.\left.S_{1}=\left[\frac{8 \times 10 \times 11}{35}\right]=25 .\left(r_{n-1}=\left[\ldots\left[\frac{8}{35} \cdot N\right] \frac{p_{1}-1}{p_{1}}\right] \ldots\right] \frac{p_{n-1}-1}{p_{n-1}}\right]\right)$.
For the fact that $\frac{\left(p_{i}-1\right) p_{i}}{p_{i-1}^{2}}>1$, so $\left\{\left[\frac{\left(p_{i}-1\right) p_{i}}{p_{i-1}^{2}} \cdot S_{i-1}\right]\right\}(i=1,2, \ldots, n)$ are ascending series in which all numbers are not less than 25 . Therefore, $\lim _{n \rightarrow \infty} S_{n}=\infty$, there are infinite prime numbers in natural numbers.

2.2. Distribution of Primes in Arithmetic Series

$S_{(a, r)}$ is the quantity of prime numbers which have the form $a n+r((a, r)=1)$, then

$$
S(a, r)=\frac{S_{n}}{\varphi(a)}=\left[\frac{p_{n}\left(p_{n}-1\right)}{\varphi(a) p_{n-1}^{2}} \cdot S_{n-1}\right]
$$

where $S_{1}=25 .(\varphi(a))$ is Euler function of a.)
a is a constant, $\varphi(a)$ is a constant. There are infinite prime numbers which have the form $a n+r((a, r)=1)$.

2.3. Distribution of Prime Numbers Between n^{2} and $(n+1)^{2}$

Make $n^{2}=p_{n}^{2},(n+1)^{2}=\left(p_{n}+1\right)^{2}$, then S_{n}^{\prime} is the quantity of prime numbers in the range of $\left(p_{n}+1\right)^{2}$,

$$
S_{n}{ }^{\prime}=\left[\frac{\left(p_{n}+1\right)\left(p_{n}+1-1\right)}{p_{n}^{2}} \cdot S_{n}\right] .
$$

Let $f(n)=S_{n}{ }^{\prime}-S_{n}=\left[\frac{\left(p_{n}+1\right)\left(p_{n}+1-1\right)}{p_{n}^{2}} \cdot S_{n}\right]-\left[S_{n}\right]=\left[\frac{\left[S_{n}\right]}{p_{n}}\right]$, where $S_{1}=$ 25.

For $f(n)=\left[\frac{\left(p_{n}-1\right)}{p_{n-1}}\left[\frac{\left(p_{n-1}-1\right)}{p_{n-2}}\left[\frac{\left(p_{n-2}-1\right)}{p_{n-3}}\left[\ldots\left[\frac{\left(p_{2}-1\right)}{p_{1}^{2}} \cdot S_{1} \ldots\right]\right.\right.\right.\right.$, and $\frac{p_{i}-1}{p_{i-1}}>1$. Then $\lim _{n \rightarrow \infty} f(n)=\infty$.

The quantity of prime numbers between n^{2} and $(n+1)^{2}$ are increasing along with the increasing of n. In a small range, there is at least one prime number between n^{2} and $(n+1)^{2}$. Therefore, there is at least one prime number between n^{2} and $(n+1)^{2}$; and the quantity of the prime number are increasing along with the increasing of n.

2.4. The Interval Between Primes p_{i-1} and p_{i}

During the distribution of prime numbers,

$$
S_{n}=\left[\frac { p _ { n } } { p _ { n - 1 } } \left[\frac { (p _ { n } - 1) } { p _ { n - 2 } } \left[\frac { (p _ { n - 1 } - 1) } { p _ { n - 3 } } \left[\ldots\left[\frac{p_{3}-1}{p_{1}}\left[\frac{p_{2}-1}{p_{1}} \cdot S_{1}\right] \ldots\right] .\right.\right.\right.\right.
$$

Let $\overline{p_{i}-p_{i-1}}$ be the average interval between two primes p_{i-1} and p_{i}, then in the range of p_{n}^{2},

$$
\overline{p_{i}-p_{i-1}}=\frac{p_{n}^{2}}{S_{n}}=\left[\frac { p _ { n } } { p _ { n - 1 } } \left[\frac { p _ { n - 1 } } { p _ { n - 1 } - 1 } \left[\ldots\left[\frac{p_{2}}{p_{2}-1}\left[\frac{p_{1}^{2}}{S_{1}}\right] \ldots\right], \frac{p_{i}}{p_{i}-1}>1 .\right.\right.\right.
$$

and $\lim _{n \rightarrow \infty} \overline{p_{i}-p_{i-1}}=\infty$.
There is no maximum value of the average interval between primes p_{i-1} and p_{i}. Therefore, the maximum value of the average interval between primes p_{i-1} and p_{i} tends to infinity.

2.5. Distribution of Twin Primes

On number axis pair $\left(A_{1}-B_{3}\right.$ or $A_{7}-B_{9}$ or $\left.A_{9}-B_{1}\right)$, r_{0} represents the quantity of numbers which do not contain factors $2,3,5,7, r_{0}=\left[\frac{1}{14} \cdot N\right] ; r_{1}$ represents the quantity of numbers which do not contain factor $p_{1}, r_{1}=\left[r_{0} \cdot \frac{p_{1}-2}{p_{1}}\right] ; r_{2}$ represents the quantity of numbers which do not contain factor $p_{2}, r_{2}=\left[r_{1} \cdot \frac{p_{2}-2}{p_{2}}\right] ; \ldots r_{i}=$ $\left[r_{i-1} \cdot \frac{p_{i}-2}{p_{i}}\right]$.

The method of the surplus numbers r_{i-1} to r_{i} is called the surplus model of distribution of twin primes.
L_{n} is the quantity of twin primes in the range of N, let $M=p_{n}^{2}$, by

$$
\begin{gather*}
L_{n}=\left[r_{n-1} \cdot \frac{p_{n}-2}{p_{n}} \cdot \frac{M}{N}\right]=\left[r_{n-1} \cdot \frac{p_{n}-2}{p_{n}} \cdot \frac{p_{n}^{2}}{N}\right] \tag{3}\\
L_{n-1}=\left[\left[r_{n-2} \cdot \frac{p_{n-1}-2}{p_{n-1}}\right] \frac{p_{n-1}^{2}}{N}\right] . \tag{4}
\end{gather*}
$$

We can obtain that

$$
L_{n}=\left[\frac{\left(p_{n}-2\right) p_{n}}{p_{n-1}^{2}} \cdot L_{n-1}\right],
$$

where $\left.\left.L_{1}=\left[\frac{11 \times 9}{14}\right]=7 .\left(r_{n-1}=\left[\ldots\left[\frac{1}{14} N\right] \frac{p_{1}-2}{p_{1}}\right] \ldots\right] \frac{p_{n-1}-2}{p_{n-1}}\right]\right)$.
For the fact that $\frac{\left(p_{i}-2\right) p_{i}}{p_{i-1}^{2}}>1$, so $\left\{\left[\frac{\left(p_{i}-2\right) p_{i}}{p_{i-1}^{2}} \cdot L_{i-1}\right]\right\}(i=1,2, \ldots, n)$ are ascending series in which all numbers are not less than 7 . Therefore, $\lim _{n \rightarrow \infty} L_{n}=\infty$, there are infinite twin primes in natural numbers.

2.6. Distribution of Twin Prime Numbers Within Ten

There are two pairs of twin prime numbers within 10 , these two pairs of twin prime numbers are called twin prime numbers within ten. For example, 11, 13, 17, 19 are twin prime numbers within ten.

On number axis pair $\left(A_{1}-B_{3}-A_{7}-B_{9}\right), r_{0}$ represents the quantity of numbers which do not contain factors $2,3,5,7, r_{0}=\frac{1}{70} \cdot N ; r_{1}$ represents the quantity of numbers which do not contain factor $p_{1}, r_{1}=r_{0} \cdot \frac{p_{1}-4}{p_{1}} ; r_{2}$ represents the quantity of numbers which do not contain factor $p_{2}, r_{2}=r_{1} \cdot \frac{p_{2}-4}{p_{2}} ; \ldots r_{i}=r_{i-1} \cdot \frac{p_{i}-4}{p_{i}}$.

The method of the surplus numbers r_{i-1} to r_{i} is called the surplus model of distribution of twin prime numbers within 10.
T_{n} indicates the quantity of twin prime numbers within 10 , let $M=p_{n}^{2}$, by

$$
\begin{gather*}
T_{n}=r_{n-1} \cdot \frac{p_{n}-4}{p_{n}} \cdot \frac{M}{N}=r_{n-1} \cdot \frac{p_{n}-4}{p_{n}} \cdot \frac{p_{n}^{2}}{N} . \tag{5}\\
T_{n-1}=r_{n-2} \cdot \frac{p_{n-1}-4}{p_{n-1}} \cdot \frac{p_{n-1}^{2}}{N} . \tag{6}
\end{gather*}
$$

We can obtain that

$$
T_{n}=\frac{\left(p_{n}-4\right) p_{n}}{p_{n-1}^{2}} \cdot T_{n-1}
$$

where $T_{1}=\frac{11 \times 7}{70} \cong 1.10 .\left(r_{n-1}=\frac{1}{70} \cdot N \cdot \frac{p_{1}-4}{p_{1}} \cdot \ldots \cdot \frac{p_{n-1}-4}{p_{n-1}}\right)$. By

$$
\begin{aligned}
T_{n} & =\frac{p_{n}\left(p_{n}-4\right)}{p_{n-1}^{2}} \cdot \frac{p_{n-1}\left(p_{n-1}-4\right)}{p_{n-2}^{2}} \cdot \frac{p_{n-2}\left(p_{n-2}-4\right)}{p_{n-3}^{2}} \cdot \ldots \cdot \frac{p_{2}\left(p_{2}-4\right)}{p_{1}^{2}} \cdot T_{1} \\
& =\frac{p_{n}}{p_{n-1}} \cdot \frac{\left(p_{n}-4\right)}{p_{n-2}} \cdot \frac{\left(p_{n-1}-4\right)}{p_{n-3}} \cdot \ldots \cdot \frac{p_{3}-4}{p_{1}} \cdot \frac{p_{2}-4}{p_{1}} \cdot T_{1}
\end{aligned}
$$

For the fact that $\frac{p_{3}-4}{p_{1}} \cdot \frac{p_{2}-4}{p_{1}} \cdot T_{1}>1, \frac{p_{i}-4}{p_{i-2}}>1(i=4, \ldots, n)$, so $\lim _{n \rightarrow \infty} T_{n}=\infty$, there are infinite twin prime numbers within 10 (For example, 36 pairs in the range of 10^{5}).

2.7. Distribution of $n^{2}+1$ Prime Numbers

Lemma 7.1 $4(m p+10 x)^{2}+1 \equiv 4(m p-10 x)^{2}+1(\bmod p)$, where p is an odd prime.
Proof.

$$
4(m p+10 x)^{2}+1-4(m p-10 x)^{2}-1=16 m x p .
$$

Lemma 7.2 If $x \pm y \not \equiv 0(\bmod p)$, then $4(m p+10 x)^{2}+1 \not \equiv 4(m p+10 y)^{2}+$ $1(\bmod p)$.

Proof.

$$
4(m p+10 x)^{2}+1-4(m p+10 y)^{2}-1=80 m p(x-y)+400(x+y)(x-y)
$$

Because 400 and $x \pm y \bmod p$ are not of congruence, then this Lemma is proved.
$n^{2}+1$ is a composite number when n is odd; let $n=2 t$ when n is even, g is the units digit of t. $n^{2}+1$ is a multiple of 5 , when $n^{2}+1=4 t^{2}+1, g=1,4,6,9$. And $g=2,3,5,7,8,0$ when $4 t^{2}+1$ is a prime number.
$\left(4 n^{2}+1,4 n+3\right)=1$, denote the prime numbers with the form $4 n+1$ by q_{i}.
Theorem 7.1 On the number axis $4 t^{2}+1$, there are two multiples of q_{i} at every q_{i} distance.

Proof. By Lemma 7.1, Lemma 7.2 know, $4 t^{2}+1$ number axis appear multiples of the q_{i}, distributed $4\left(m q_{i}\right)^{2}+1$ into a center of symmetry.

For example, there are two numbers which are multiples of 13 at every distance of 13 on $4(10 k+2)^{2}+1$ number axis, shown in Figure 1.

Therefore, the surplus model of distribution of $n^{2}+1$ prime numbers on number axis $4(10 k+2)^{2}+1$ is similar with that of distribution of twin prime numbers on number axis $A_{1}-B_{3}$, and the trend is similar too. As a result, there is no maximum value of twin prime number in natural numbers, and there are infinite prime numbers which have the form $n^{2}+1$.

Figure 1

Note: Numbers $4,5,0, \ldots$ shown below the axis are the remainders of $4(10 k+2)^{2}+1$ divided by 13.

2.8. Distribution of Prime Triplet

If $p_{i}, p_{i}+2, p_{i}+6$ are all prime numbers, then these three-digits group is called a prime triplet.

On number axes group $\left(A_{1}-B_{3}-A_{7}\right.$ or $\left.A_{7}-B_{9}-A_{3}\right)$, similarly, $r_{0}=\left[\frac{4}{105} \cdot N\right]$; $r_{1}=\left[r_{0} \cdot \frac{p_{1}-3}{p_{1}}\right] ; r_{2}=\left[r_{1} \cdot \frac{p_{2}-3}{p_{2}}\right] ; \ldots r_{i}=\left[r_{i-1} \cdot \frac{p_{i}-3}{p_{i}}\right]$.

The method of the surplus numbers r_{i-1} to r_{i} is called the residual model of distribution of prime triplet.
E_{n} is a prime triplet in the range of N, let $M=p_{n}^{2}$, by

$$
\begin{gather*}
E_{n}=\left[r_{n-1} \cdot \frac{p_{n}-3}{p_{n}} \cdot \frac{M}{N}\right]=\left[r_{n-1} \cdot \frac{p_{n}-3}{p_{n}} \cdot \frac{p_{n}^{2}}{N}\right] . \tag{7}\\
E_{n-1}=\left[\left[r_{n-2} \cdot \frac{p_{n-1}-3}{p_{n-1}}\right] \frac{p_{n-1}^{2}}{N}\right] . \tag{8}
\end{gather*}
$$

We can obtain that

$$
E_{n}=\left[\frac{\left(p_{n}-3\right) p_{n}}{p_{n-1}^{2}} \cdot E_{n-1}\right],
$$

where $\left.\left.E_{1}=\left[\frac{4 \times 11 \times 8}{105}\right]=3 .\left(r_{n-1}=\left[\ldots\left[\frac{4}{105} \cdot N\right] \frac{p_{1}-3}{p_{1}}\right] \ldots\right] \frac{p_{n-1}-3}{p_{n-1}}\right]\right)$.
For the fact that $\frac{\left(p_{i}-3\right) p_{i}}{p_{i-1}^{2}}>1$, so $\left\{\left[\frac{\left(p_{i}-3\right) p_{i}}{p_{i-1}^{2}} \cdot S_{i-1}\right]\right\}(i=1,2, \ldots, n)$ are ascending series in which all numbers are not less than 3 . Therefore, $\lim _{n \rightarrow \infty} E_{n}=\infty$, there are infinite prime triplets in natural numbers.

2.9. Primes Distribution of $n^{2}-n+p_{i}$ Primes

Lemma 9.1 There are only $\frac{p+1}{2}$ residual classes in $n^{2}-n$ for odd prime p.

Proof. $n=1,(p \pm 1)(p \pm 0) \equiv 0(\bmod p)$;
$n=2,(p \pm 2)(p \pm 1) \equiv 2 \times 1(\bmod p) ;$
$n=3,(p \pm 3)(p \pm 2) \equiv 3 \times 2(\bmod p) ;$
...;
$n=\frac{p-1}{2},\left(p \pm \frac{p-1}{2}\right)\left(p \pm \frac{p-3}{3}\right) \equiv \frac{p-1}{2} \times \frac{p-3}{2}(\bmod p) ;$
$n=\frac{p+1}{2},\left(p \pm \frac{p+1}{2}\right)\left(p \pm \frac{p-1}{3}\right) \equiv \frac{p+1}{2} \times \frac{p-1}{2}(\bmod p) ;$
$n=\frac{p+3}{2},\left(p \pm \frac{p+3}{2}\right)\left(p \pm \frac{p+1}{3}\right) \equiv \frac{p+3}{2} \times \frac{p+1}{2} \ldots \equiv \frac{p-1}{2} \times \frac{p-3}{2}+2 p \equiv$ $\frac{p-1}{2} \times \frac{p-3}{2}(\bmod p) ;$

That is $f\left(\frac{p+3}{2}\right) \equiv f\left(\frac{p-1}{2}\right)(\bmod p)$. Let $f(n)=(p \pm n)(p \pm(n-1)) \equiv$ $n(n-1)(\bmod p)$;

$$
\begin{aligned}
& \frac{p+1+2 t}{2} \times \frac{p+1+2(t-1)}{2}=\frac{p+1-2 t+4 t}{2} \times \frac{p+1-2(t+1)+4 t}{2} \\
= & \frac{p+1-2 t}{2} \times \frac{p+1-2(t+1)}{2}+2 t p \equiv \frac{p+1-2 t}{2} \times \frac{p+1-2(t+1)}{2}(\bmod p) .
\end{aligned}
$$

That is $f\left(\frac{p+1+2 t}{2}\right) \equiv f\left(\frac{p+1-2 t}{2}\right)(\bmod p)$.
Therefore, there are only $1 \times 0,2 \times 1, \ldots, \frac{p+1}{2} \cdot \frac{p-1}{2}$ different residual classes in $n^{2}-n$ for prime p.
$0 \leq n \leq N, n^{2}-n+p_{i}$ are all prime numbers, the first three numbers must be prime triplet, and p_{i} must be on A_{1} (or A_{7}) number axis.

Lemma 9.2 Let $n^{2}-n \equiv r_{2}\left(\bmod p_{i}\right), A_{1}$ number axes $\frac{p_{i}+1}{2}$ residue class are no longer make proposition holds.

Proof. Let $a \in A_{1}, a \equiv r_{1}\left(\bmod p_{i}\right), r_{1}=0,1, \ldots, p_{i-1}$.
$n^{2}-n \equiv r_{2}\left(\bmod p_{i}\right)$, then by Lemma $9.1, r_{2}=0,2,6, \ldots, \frac{p_{i}+1}{2}$.
If $r_{1}+r_{2} \equiv 0\left(\bmod p_{i}\right)$, then $a+r_{2} \equiv 0\left(\bmod p_{i}\right), a+r_{2}$ is a composite number.
Any number in r_{2} can make $r_{1}+r_{2} \equiv 0\left(\bmod p_{i}\right)$ established, then $a+r_{2}$ is a composite number.

Similarly, $r_{0}=\left[\frac{1}{35} \cdot N\right]$; surplus numbers (with the quantity of r_{0}) divided by p_{1} respectively residual $0,1,2, \ldots, p_{1}-1$. $n^{2}-n$ divided by p_{1} have different residue class, by Lemma 9.2, p_{1} exclude $\left[r_{0} \cdot \frac{p_{1}+1}{2 p_{1}}\right]$ numbers, $r_{1}=r_{0}-\left[r_{0} \frac{p_{1}+1}{2 p_{1}}\right]=\left[r_{0} \frac{p_{1}-1}{2 p_{1}}\right]$; r_{2} represents the numbers which do not contain factor $p_{2}, r_{2}=\left[r_{1} \cdot \frac{p_{2}-1}{2 p_{2}}\right]$; $r_{i}=\left[r_{i-1} \cdot \frac{p_{i}-1}{2 p_{i}}\right]$.

The method of the surplus numbers r_{i-1} to r_{i} is called the residual model of distribution of $n^{2}-n+p_{i}$ prime numbers.
Q_{n} is a proposition holds the number of the N-range, let $M=p_{n}^{2}$, by

$$
\begin{gather*}
Q_{n}=\left[r_{n-1} \cdot \frac{p_{n}-1}{2 p_{n}} \cdot \frac{M}{N}\right]=\left[r_{n-1} \cdot \frac{p_{n}-1}{2 p_{n}} \cdot \frac{p_{n}^{2}}{N}\right] . \tag{9}\\
Q_{n-1}=\left[\left[r_{n-2} \cdot \frac{p_{n-1}-1}{2 p_{n-1}}\right] \frac{p_{n-1}^{2}}{N}\right] . \tag{10}
\end{gather*}
$$

We can get:

$$
Q_{n}=\left[\frac{\left(p_{n}-1\right) p_{n}}{2 p_{n-1}^{2}} \cdot Q_{n-1}\right],
$$

where $\left.\left.Q_{1}=\left[\frac{11}{7}\right]=1 .\left(r_{n-1}=\left[\ldots\left[\frac{1}{35} \cdot N\right] \frac{p_{1}-1}{2 p_{1}}\right] \ldots\right] \frac{p_{n-1}-1}{2 p_{n-1}}\right]\right)$. and then

$$
Q_{n}=\left[\frac{\left(p_{n}-1\right) p_{n}}{2 p_{n-1}^{2}} \cdot Q_{n-1}\right] \leq \frac{p_{n}^{2}}{35 \cdot 2^{n}} \prod_{i=1}^{n} \frac{p_{i}-1}{p_{i}}
$$

Based of Bertrand assumption, there is at least one prime between n and $2 n$ and at least one prime between 2^{n-1} and 2^{n}. When $n \geq 12\left(p_{12}=53\right)$,

$$
\frac{p_{i}^{2}}{2^{i}}<1,(i \geq 12), \frac{p_{i}-1}{p_{i}}<1,(i=1,2, \ldots, n) .
$$

Thereby, $\lim _{n \rightarrow \infty} Q_{n}=0$.
There are infinitely primes p_{i} when $N=2,3$; all $n^{2}-n+p_{i}$ are primes when $0 \leq n \leq N$; only some special natural numbers N when $N=p_{i}-1$; all $n^{2}-n+p_{i}$ are primes when $0 \leq n \leq N$. The greater N is, the smaller possibility the proposition holds. Therefore, there are only 6 primes $\left(p_{i}=2,3,5,11,17,41\right)$ that make the proposition hold.

REFERENCES

[1] Hua, Loo-Keng. (1979). An introduction to number theory (In Chinese). Beijing: Science Press.
[2] Song, K. (2007). Elementary number theory (In Chinese). Beijing: China Drama Press.

