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Abstract: In this paper, we consider certain system of delay difference
equations

∆y1(n) = p(n)y2(n)

∆y2(n) = −f(n, y1(g(n)))

where p(n) ∈ C[N0, R
+], yf(n, y) ≥ 0, f ∈ C[N0 ×R,R], y sup

n≥n0

| f(n, y) |>

0 for any y 6= 0, g(n) ∈ C[N0, R], g(n) ≤ n.
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1. INTRODUCTION

The theory of time scales, which has recently received a lot of attention, was intro-
duced by Stefan Hilger in his Ph.D. Thesis in 1988 in order to unify continuous and
discrete analysis [1]. A time scale T, is an arbitrary nonempty closed subset of the
reals, and the cases when this time scale is equal to the reals or to the integers rep-
resent the classical theories of differential and of difference equations. Many other
interesting time scales exist, and they give rise to many applications [9].

On any time scale T, we define the forward and backward jump operators by

σ(t) := inf{s > t : s ∈ T}, ρ(t) := sup{s < t : s ∈ T}.
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A point t ∈ T, t > inf T, is said to be left-dense if ρ(t) = t, right-dense if
t < supT and σ(t) = t, left-scattered if ρ(t) < t and right-scattered if σ(t) > t. The
graininess function µ for a time scale T is defined by µ(t) := σ(t)− t.

A function f : T→ R is called rd-continuous function provided it is continuous
at right-dense points in T and its left-sided limits exist (finite) at left-dense points
in T. The set of rd-continuous functions f : T→ R is denoted by Crd = Crd(T) =
Crd(T,R).

Let f be a differentiable function on [a, b]. Then f is increasing, decreasing,
nondecreasing, and non-increasing on [a, b], if f∆(t) > 0, f∆(t) < 0, f∆(t) ≥ 0,
and f∆(t) ≤ 0 for all t ∈ [a, b), respectively.

For a function f : T → R (the range R of f may be actually replaced by any
Banach space) the delta derivative is defined by

f∆(t) =
f(σ(t))− f(t)

σ(t)− t
, (1)

if f is continuous at t and t is right-scattered. We will make use of the following

product and quotient rules for the derivative of the product fg and the quotient
f

g
(where ggσ 6= 0) of two differentiable functions f and g

(fg)∆ = f∆g + fσg∆ = fg∆ + f∆gσ (2)

(
f

g
)∆ =

f∆g − fg∆

ggσ
(3)

For t0, b ∈ T, and a differentiable function f , the Cauchy integral of f∆ is defined
by ∫ b

t0

f∆(t)∆t = f(b)− f(t0).

An integration by parts formula reads∫ b

t0

f(t)g∆(t)∆t = [f(t)g(t)]bt0 −
∫ b

t0

f∆(t)gσ(t)∆t. (4)

and infinite integral is defined as∫ ∞
t0

f(t)∆t = lim
b→∞

∫ b

t0

f(t)∆t (5)

Our aim in this paper is to obtain sufficient conditions for existence of positive
solutions of system of delay difference equations{

∆y1(n) = p(n)y2(n)
∆y2(n) = −f(n, y1(g(n)))

(6)

where p(n) ∈ C[N0, R
+], yf(n, y) ≥ 0, f ∈ C[N0 ×R,R], y sup

n≥n0

| f(n, y) |> 0 for

any y 6= 0, g(n) ∈ C[N0, R], g(n) ≤ n. ∆y(n) = y(n + 1) − y(n) N0 = {1, 2, . . .},
P (n) =

n∑
i=n0

p(i). First, we need the definition to use it for the general case.
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Definition 1. A solution of (1) is said to be oscillatory (resp. weakly oscillatory)
if each component (resp. at least one component) has arbitrarily large zeros.

A solution of (1) is said to be nonoscillatory (resp. weakly nonoscillatory) if each
component (resp. at least one component) is eventually of constant sign.

Lemma 1. Let (y1(n), y2(n)) be a weakly nonoscillatory of (1). Then it is
nonoscillatory and there exist constants N > n0, k1 > 0, k2 > 0 such that

y1(n)y2(n) > 0 for n ≥ N,

k1P (n)y2(n) ≤ |y1(n)| ≤ k2P (n).

2. MAIN RESULTS

Theorem 1. Assume that f be either superlinear or sublinear, and

∞∑
n=n0

| f(n, kP (g(n))) |<∞

for some k 6= 0, then (1) has a nonoscillatory solution (y1(n), y2(n)) with the prop-
erties.

lim
n→∞

y1(n)

P (n)
= k, lim

n→∞
y2(n) = k.

Proof. We give a proof for the case where f is sublinear and k > 0. The remaining
cases can treated similarly.

Take n1 > n0 so large that

∞∑
n1

f(n, kP (g(n))) ≤
k

2

and
n∗ = inf

n≥n1

g(n) > n0

Let Cp denote the linear space of all continuous vector functions

ζ(n) = (y1(n), y2(n))

on [n∗,∞). Such that

‖ζ‖ = max{ sup
n≥n∗

P−2(n) | y1(n) |, sup
n≥n∗

| y2(n) |} <∞ (7)

It is dear that Cp becomes a Banach space under the norm defined by (7). Define
a set F by

F ={(y1, y2) ∈ Cp : kP (n) ≤ y1(n)

≤2kP (n), k ≤ y2(n) ≤ 2k, n ≥ n∗}

Obviously, F is a bounded, convex, and closed subset of Cp.
Let Φ designate the operator which assigns to every element ζ = (y1, y2) of F a

vector function Φζ = (Φy1,Φy2) defined by

(Φy1)(n) = y2(n0)

n1−1∑
s=n∗

p(s) +

n−1∑
s=n1

p(s)y2(s)s ≥ n∗
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(Φy2)(n) =


k +

∞∑
s=n

f(s, y1(g(s))), s ≥ n1;

k +
∞∑

s=n1

f(s, y1(g(s))), n∗ ≤ s ≤ n1.

(i) Φ maps F into F .
The following inequalities are obvious:

kP (n) ≤(Φy1)(n) ≤ 2kP (n)

(Φy2)(n) ≥ k

Using the sublinearity of f , we see that

(Φy2)(n) ≤ k +

∞∑
n1

y1(g(n))f(n, y1g(n))

y1g(n)

≤ k +

∞∑
n1

2kP (n)
f(n, kP (n))

kP (n)

≤ k + 2

∞∑
n1

f(n, kP (n))

≤ 2k, n ≥ n∗.

(ii) Φ is continuous.
Let ζn = (y1n, y2n) be a sequence of elements of F converging to an element

ζ = (y1, y2) of F . lim
n→∞

‖ζn − ζ‖ = 0. It is easy to verify that for n ≥ n∗,

P−2(n) | (Φy1n)(n)− (Φy1)(n) | ≤ P−1(n0) sup
s≥n∗

| y2n(s)− y2(s) | (8)

| (Φy2n)(n)− (Φy2)(n) |≤
∞∑
n∗

Fn(s) (9)

where
Fn(s) =| f(s, y1n(g(s))− f(s, y1(g(s)) | .

Evidently, the right-hand side of (3) tends to zero as n → ∞. Since Fn(s) ≤
4f(s, kP (g(s))), Fn(s) → 0 as n → ∞ for s ≥ n∗, the Lebesgue dominated
convergence theorem implies that the right side of (4) tends to zero as n→∞ and
it follows that lim

n→∞
‖Φζn − Φζ‖ = 0.

(iii) ΦF is precompact.
By a theorem of Levitan, it’s sufficient to show that when (y1, y2) ranges over F ,

the family of functions {P−2Φy1} and {Φy2} are uniformly bound and equicauchy
on [n∗,∞), since the uniform boundedness is clear, we need only to demonstrate
the equicauchy. This will be done if it is shown that, for any given ε > 0. Let
(y1, y2) ∈ F , then, we have for n2 > n1 ≥ n∗.

| (P−2Φy1)(n2)− (P−2Φy1)(n1) |

≤ P−2(n2)

n2∑
n

P (s)y2(s) + P−2(n1)

n1∑
n

P (s)y2(s)
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≤ 4kP−1(n1)

| (Φy2)(n2)− (Φy2)(n1) | ≤
n1∑
n2

f(s, y1(g(s)))

≤ 2

∞∑
n1

f(s, kp(g(s))).

Therefore, for any given ε > 0, there exists n2 > n1 ≥ n∗, such that

| (P−2Φy1)(n2)− (P−2Φy1)(n1) |< ε

| (Φy2)(n2)− (Φy2)(n1) |< ε (10)

The above inequalities ensure that there exists a δ = δ(ε) > 0, such that (10)
holds for any n1, n2 ∈ [n∗,∞] with 0 < n2 − n1 < δ.

We now apply the Schaulder fixed point theorem to the operator Φ has a fixed
point ζ = (y1, y2) ∈ F . It is easily checked that this fixed point provides a solution
of the system (1) with the asymptotic property (2).

Theorem 2. Assume that f be either superlinear or sublinear, and

∞∑
n=n0

P (n) | f(n, k) |<∞

for some k 6= 0. Then (1) has a nonoscillatory solution (y1(n), y2(n)) with the
properties.

lim
n→∞

y1(n) = k lim
n→∞

y2(n) = 0

Proof. The proof is similar to the proof of Theorem 1, as long as an operator Φ is
defined which assigns to every ξ(n) = (y1(n), y2(n)) ∈ F and F = {(y1, y2) ∈ Cp :

k ≤ y1(n) ≤ 2k, 0 ≤ y2(n) ≤
k

P (n)
, n ≥ n1} a vector function Φξ = (Φy1,Φy2)

given by

(Φy1)(n) =


k +

∞∑
n
p(s)y2(s) n ≥ n1

k +
∞∑

s=n∗
p(s)y2(s) n∗ ≤ n ≤ n1

(Φy2)(n) =


∞∑
n
f(s, y1(g(s))) n ≥ n∗

∞∑
s=n∗

f(s, y1(g(s))) n∗ ≤ n ≤ n1

Then there exists a fixed point ζ = (y1, y2) ∈ F , which is a solution of (1). This
completes the proof.
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