Studies in Mathematical Sciences
Vol. 5, No. 2, 2012, pp. [55-65]
DOI: 10.3968/j.sms.1923845220120502.1016

Characterizations of Mappings Via Z-Open Sets

Ahmad I. EL-Maghrabi ${ }^{[2], *}$ and Ali M. Mubarki ${ }^{[a]}$
${ }^{[a]}$ Department of Mathematics, Faculty of Science, Taibah University, AL-Madinah AL-Munawarah, K.S.A.
* Corresponding author.
Address: Department of Mathematics, Faculty of Science, Taibah University, PO Box 344, AL-Madinah AL-Munawarah, K.S.A.; E-Mail: amaghrabi@taibahu.edu. sa

Received: June 11, 2012/ Accepted: September 3, 2012/ Published: November 30, 2012

Abstract

The aim of this paper we introduce Z-irresolute, Z-open, Zclosed, pre-Z-open and pre-Z-closed mappings and investigate properties and characterizations of these new types of mappings.

Key words: Z-irresolute mapping; Z-open; Z-closed mapping; Pre-Z-open;
Pre-Z-closed mappings

EL-Maghrabi, A. I., \& Mubarki, A. M. (2012). Characterizations of Mappings Via ZOpen Sets. Studies in Mathematical Sciences, 5(2), 55-65. Available from http://www. cscanada.net/index.php/sms/article/view/j.sms. 1923845220120502.1016 DOI: 10.3968/j. sms. 1923845220120502.1016

1. INTRODUCTIONS AND PRELIMINARIES

The concept of Z-open sets in topological spaces was introduced by EL-Magharabi and Mubarki $[1,2]$. We continue to explore further properties and characterizations of Z-irresolute and Z-open mappings. We also introduce and study properties and characterizations of Z-closed, pre-Z-open and pre-Z-closed mappings.

A subset A of a topological space (X, τ) is called regular open (resp. regular closed) [3] if

$$
\mathrm{A}=\operatorname{int}(\mathrm{cl}(\mathrm{~A}))(\operatorname{resp} . \mathrm{A}=\operatorname{cl}(\operatorname{int}(\mathrm{A}))) .
$$

The delta interior [4] of a subset A of X is the union of all regular open sets of X contained in A is denoted by δ - $\operatorname{int}(A)$. A subset A of a space X is called δ-open if it
is the union of regular open sets. The complement of δ-open set is called δ-closed. Alternatively, a set A of (X, τ) is called δ-closed [4] if $\mathrm{A}=\delta$ - $\mathrm{cl}(\mathrm{A})$, where

$$
\delta-\operatorname{cl}(\mathrm{A})=\{x \in X: A \cap \operatorname{int}(\operatorname{cl}(\mathrm{U})) \neq \emptyset, \quad U \in \tau \text { and } x \in U\} .
$$

Throughout this paper (X, τ) and (Y, σ) (simply X and Y) represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) $, \operatorname{cl}(\mathrm{A}), \operatorname{int}(\mathrm{A})$ and $\mathrm{X} \backslash \mathrm{A}$ denote the closure of A, the interior of A and the complement of A respectively. A subset A of a space X is called δ-semiopen [2] (resp. Z-open [1]) if

$$
A \subseteq \operatorname{cl}(\delta-\operatorname{int}(A))(\operatorname{resp} . A \subseteq \operatorname{cl}(\delta-\operatorname{int}(A)) \cup \operatorname{int}(c l(A)))
$$

The complement of a Z-open set is called Z-closed. The intersection of all Zclosed sets containing A is called the Z-closure of A and is denoted by $\mathrm{Z}-\mathrm{cl}(\mathrm{A})$. The union of all Z-open sets contained in A is called the Z-interior of A and is denoted by Z-int(A). The Z-boundary [1] of A (briefly, Z-b(A)) is defined by

$$
\mathrm{Z}-\mathrm{b}(\mathrm{~A})=\mathrm{Z}-\operatorname{cl}(\mathrm{A}) \cap \mathrm{Z}-\operatorname{cl}(\mathrm{X} \backslash \mathrm{~A})
$$

$\mathrm{Z}-\mathrm{Bd}(\mathrm{A})=\mathrm{A} \backslash \mathrm{Z}-\operatorname{int}(\mathrm{A})$ is said to be Z-border of A. A point $p \in X$ is called a Z-limit point of a set $\mathrm{A} \subseteq \mathrm{X}$ [1] if every Z-open set $\mathrm{G} \subseteq \mathrm{X}$ containing p contains a point of A other than p. The set of all Z-limit points of A is called a Z-derived set of A and is denoted by Z-d(A). The family of all Z-open (resp. Z-closed) is denoted by $\mathrm{ZO}(\mathrm{X})(\mathrm{ZC}(\mathrm{X}))$.

2. Z-IRRESOLUTE MAPPING

Definition 2.1. A mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called Z-irresolute if

$$
f^{-1}(\mathrm{U}) \in \mathrm{ZO}(\mathrm{X})
$$

for each $U \in \mathrm{ZO}(\mathrm{X})$.
Theorem 2.1. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a mapping, then the followings are equivalent:
(1) f is Z-irresolute,
(2) The inverse image of each Z-closed in (Y, σ) is Z-closed in (X, τ),
(3) $\mathrm{Z}-\mathrm{cl}\left(f^{-1}(\mathrm{~B})\right) \subseteq f^{-1}(\mathrm{Z}-\mathrm{cl}(\mathrm{B})) \subseteq f^{-1}(\mathrm{cl}(\mathrm{B}))$, for each $\mathrm{B} \subseteq \mathrm{Y}$,
(4) $f(\mathrm{Z}-\mathrm{cl}(\mathrm{A})) \subseteq \mathrm{Z}-\mathrm{cl}(f(\mathrm{~A})) \subseteq \operatorname{cl}(f(\mathrm{~A}))$, for each $\mathrm{A} \subseteq \mathrm{X}$,
(5) $f^{-1}(\mathrm{Z}-\operatorname{int}(\mathrm{B})) \subseteq \mathrm{Z}-\operatorname{int}\left(f^{-1}(\mathrm{~B})\right)$, for each $\mathrm{B} \subseteq \mathrm{Y}$,
(6) $\mathrm{Z}-\mathrm{Bd}\left(f^{-1}(\mathrm{~B})\right) \subseteq f^{-1}(\mathrm{Z}-\mathrm{Bd}(\mathrm{B}))$, for each $\mathrm{B} \subseteq \mathrm{Y}$,
(7) $\mathrm{Z}-\mathrm{b}\left(f^{-1}(\mathrm{~B})\right) \subseteq f^{-1}(\mathrm{Z}-\mathrm{b}(\mathrm{B}))$, for each $\mathrm{B} \subseteq \mathrm{Y}$,
(8) $f(\mathrm{Z}-\mathrm{b}(\mathrm{A})) \subseteq \mathrm{Z}-\mathrm{b}(f(\mathrm{~A}))$, for each $\mathrm{A} \subseteq \mathrm{X}$,
(9) $f(\mathrm{Z}-\mathrm{d}(\mathrm{A})) \subseteq \mathrm{Z}-\mathrm{cl}(f(\mathrm{~A}))$, for each $\mathrm{A} \subseteq \mathrm{X}$.

Proof. (1) \rightarrow (2). Obvious.
$(2) \rightarrow(3)$. Let $\mathrm{B} \subseteq \mathrm{Y}$ and $\mathrm{B} \subseteq \mathrm{Z}-\mathrm{cl}(\mathrm{B}) \subseteq \mathrm{cl}(\mathrm{B})$. Then by (2)

$$
\mathrm{Z}-\operatorname{cl}\left(f^{-1}(\mathrm{~B})\right) \subseteq \mathrm{Z}-\operatorname{cl}\left(f^{-1}(\mathrm{Z}-\operatorname{cl}(\mathrm{B}))\right)=f^{-1}(\mathrm{Z}-\operatorname{cl}(\mathrm{B})) \subseteq f^{-1}(\operatorname{cl}(\mathrm{~B}))
$$

$(3) \rightarrow(4)$. Immediately by replacing B by $f(\mathrm{~A})$ in (3),
(4) $\rightarrow(1)$. Let $\mathrm{W} \in \mathrm{ZO}(\mathrm{Y})$ and $\mathrm{F}=\mathrm{Y} \backslash \mathrm{W} \in \mathrm{ZC}(\mathrm{Y})$. Then by (4),

$$
f\left(\mathrm{Z}-\operatorname{cl}\left(f^{-1}(\mathrm{~F})\right)\right) \subseteq \mathrm{Z}-\operatorname{cl}\left(f\left(f^{-1}(\mathrm{~F})\right) \subseteq \mathrm{Z}-\operatorname{cl}(\mathrm{F})=\mathrm{F}\right.
$$

So $\mathrm{Z}-\mathrm{cl}\left(f^{-1}(\mathrm{~F})\right) \subseteq f^{-1}(\mathrm{~F})$ and hence, $f^{-1}(\mathrm{~F})=\mathrm{X} \backslash f^{-1}(\mathrm{~W}) \in \mathrm{ZC}(\mathrm{X})$, thus $f^{-1}(\mathrm{~W}) \in \mathrm{ZO}(\mathrm{X})$. Therefore f is Z-irresolute,
$(1) \rightarrow(5)$. Let $\mathrm{B} \subseteq \mathrm{Y}$. Then Z - $\operatorname{int}(\mathrm{B})$ is Z -open in Y . By (1), $f^{-1}(\mathrm{Z}$ - $\operatorname{int}(\mathrm{B}))$ is Z -open in X. Hence $f^{-1}(\mathrm{Z}-\operatorname{int}(\mathrm{B}))=\mathrm{Z}$-int $\left(f^{-1}(\mathrm{Z}-\operatorname{int}(\mathrm{B}))\right) \subseteq \mathrm{Z}$-int $\left(f^{-1}(\mathrm{~B})\right)$,
$(5) \rightarrow(6)$. Let $\mathrm{B} \subseteq \mathrm{Y}$. Then by (5), $f^{-1}(\mathrm{Z}-\operatorname{int}(\mathrm{B})) \subseteq \mathrm{Z}-\operatorname{int}\left(f^{-1}(\mathrm{~B})\right)$ we have $f^{-1}(\mathrm{~B}) \backslash \mathrm{Z}-\operatorname{int}\left(f^{-1}(\mathrm{~B})\right) \subseteq f^{-1}(\mathrm{~B}) \backslash f^{-1}(\mathrm{Z}-\operatorname{int}(\mathrm{B}))$. Therefore, $\mathrm{Z}-\mathrm{Bd}\left(f^{-1}(\mathrm{~B})\right) \subseteq f^{-1}(\mathrm{Z}-$ $\mathrm{Bd}(\mathrm{B})$),
$(6) \rightarrow(5)$. Let $\mathrm{B} \subseteq \mathrm{Y}$. Then by $(6), \mathrm{Z}-\mathrm{Bd}\left(f^{-1}(\mathrm{~B})\right)=f^{-1}(\mathrm{~B}) \backslash \mathrm{Z}-\operatorname{int}\left(f^{-1}(\mathrm{~B})\right)$ $\subseteq f^{-1}(\mathrm{Z}-\mathrm{Bd}(\mathrm{B}))=f^{-1}(\mathrm{~B} \backslash \mathrm{Z}-\operatorname{int}(\mathrm{B}))=f^{-1}(\mathrm{~B}) \backslash f^{-1}(\operatorname{int}(\mathrm{~B}))$ this implies $f^{-1}(\mathrm{Z}-$ $\operatorname{int}(\mathrm{B})) \subseteq \mathrm{Z}-\operatorname{int}\left(f^{-1}(\mathrm{~B})\right)$,
$(5) \rightarrow(1)$. Let $\mathrm{B} \subseteq \mathrm{Y}$ be Z-open. Then $\mathrm{B}=\mathrm{Z}-\mathrm{int}(\mathrm{B})$. Hence by (5) we have $f^{-1}(\mathrm{~B})=f^{-1}(\mathrm{Z}-\operatorname{int}(\mathrm{B})) \subseteq \mathrm{Z}-\operatorname{int}\left(f^{-1}(\mathrm{~B})\right)$. Thus $f^{-1}(\mathrm{~B})$ is Z -open in X . So, f is Z-irresolute,
$(1) \rightarrow(7)$. Let $\mathrm{B} \subseteq \mathrm{Y}$, by (3), we have $\mathrm{Z}-\mathrm{b}\left(f^{-1}(\mathrm{~B})\right)=\mathrm{Z}-\mathrm{cl}\left(f^{-1}(\mathrm{~B})\right) \backslash \mathrm{Z}-\operatorname{int}\left(f^{-1}(\mathrm{~B})\right)$ $\subseteq f^{-1}(\mathrm{Z}-\mathrm{cl}(\mathrm{B})) \backslash \mathrm{Z}-\operatorname{int}\left(f^{-1}(\mathrm{~B})\right) \subseteq f^{-1}[\mathrm{Z}-\mathrm{b}(\mathrm{B}) \cup \mathrm{Z}-\operatorname{int}(\mathrm{B})] \backslash \mathrm{Z}-\operatorname{int}\left(f^{-1}(\mathrm{~B})\right) \subseteq f^{-1}[\mathrm{Z}-$ $\mathrm{b}(\mathrm{B}) \cup \mathrm{Z}-\operatorname{int}(\mathrm{B})] \backslash \mathrm{Z}-\operatorname{int}\left(f^{-1}(\mathrm{Z}-\mathrm{int}(\mathrm{B}))\right)$. By (1) we have $\mathrm{Z}-\mathrm{b}\left(f^{-1}(\mathrm{~B})\right) \subseteq\left(f^{-1}(\mathrm{Z}-\mathrm{b}(\mathrm{B}))\right.$ $\left.\cup f^{-1}(\mathrm{Z}-\operatorname{int}(\mathrm{B}))\right) \backslash f^{-1}(\mathrm{Z}-\operatorname{int}(\mathrm{B}))=f^{-1}(\mathrm{Z}-\mathrm{b}(\mathrm{B}))$,
$(7) \rightarrow(1)$. Let $\mathrm{B} \in \mathrm{ZC}(\mathrm{Y})$ and $\mathrm{Z}-\mathrm{b}\left(f^{-1}(\mathrm{~B})\right) \subseteq f^{-1}(\mathrm{Z}-\mathrm{b}(\mathrm{B}))$. Then, $\mathrm{Z}-\mathrm{b}\left(f^{-1}(\mathrm{~B})\right)$ $\subseteq f^{-1}(\mathrm{Z}-\mathrm{cl}(\mathrm{B}) \backslash \mathrm{Z}-\operatorname{int}(\mathrm{B}))=f^{-1}(\mathrm{~B} \backslash \mathrm{Z}-\operatorname{int}(\mathrm{B}))=f^{-1}(\mathrm{Z}-\mathrm{Bd}(\mathrm{B})) \subseteq f^{-1}(\mathrm{~B})$ by Theorem 4.2 [1], we have, $f^{-1}(\mathrm{~B}) \in \mathrm{ZC}(\mathrm{X})$. Therefore f is Z-irresolute,
$(7) \rightarrow(8)$. Follows by replacing $f(\mathrm{~A})$ instead of B in (7),
$(8) \rightarrow(7)$. Let $\mathrm{B} \subseteq \mathrm{Y}$, by (8), we have $f\left(\mathrm{Z}-\mathrm{b}\left(f^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{Z}-\mathrm{b}\left(f\left(f^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{Z}-\mathrm{b}(\mathrm{B})$ and therefore $\mathrm{Z}-\mathrm{b}\left(f^{-1}(\mathrm{~B})\right) \subseteq f^{-1}(\mathrm{Z}-\mathrm{b}(\mathrm{B}))$,
$(1) \rightarrow(9)$. Let $\mathrm{A} \subseteq \mathrm{X}$. Then by $(4), f(\mathrm{Z}-\mathrm{d}(\mathrm{A})) \subseteq f(\mathrm{Z}-\mathrm{cl}(\mathrm{A})) \subseteq \mathrm{Z}-\mathrm{cl}(f(\mathrm{~A}))$,
$(9) \rightarrow(1)$. Let F be a $\mathrm{Z}-\mathrm{closed}$ set in Y , by $(7), f\left(\mathrm{Z}-\mathrm{d}\left(f^{-1}(\mathrm{~F})\right) \subseteq \mathrm{Z}-\mathrm{cl}\left(f\left(f^{-1}(\mathrm{~F})\right)\right)\right.$ $\subseteq \mathrm{Z}-\mathrm{cl}(\mathrm{F})=\mathrm{F}$, then $\mathrm{Z}-\mathrm{d}\left(f^{-1}(\mathrm{~F})\right) \subseteq f^{-1}(\mathrm{~F})$ by Theorem $4.4[1]$, we have, $f^{-1}(\mathrm{~F}) \in$ $\mathrm{ZC}(\mathrm{X})$. Therefore f is Z-irresolute.

Theorem 2.2. A mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is Z-irresolute if and only if for each x in X, the inverse image of every Z-neighbourhood of $f(x)$ is a Zneighbourhood of x.

Proof. Necessity. Let $x \in \mathrm{X}$ and let B be Z-neighbourhood of $f(x)$. Then there exists $\mathrm{U} \in \mathrm{ZO}(\mathrm{Y})$ such that $f(x) \in \mathrm{U} \subseteq \mathrm{B}$. This implies that $x \in f^{-1}(\mathrm{U}) \subseteq f^{-1}(\mathrm{~B})$. Since f is Z-irresolute, so $f^{-1}(\mathrm{U}) \in \mathrm{ZO}(\mathrm{X})$. Hence $f^{-1}(\mathrm{~B})$ is a Z-neighbourhood of x.

Sufficiency. Let $\mathrm{B} \in \mathrm{ZO}(\mathrm{Y})$. Put $\mathrm{A}=f^{-1}(\mathrm{~B})$. Let $\mathrm{x} \in \mathrm{A}$. Then $f(x) \in \mathrm{B}$. But B being Z-open set is a Z-neighbourhood of $f(x)$. So by hypothesis, $\mathrm{A}=f^{-1}(\mathrm{~B})$ is a Z-neighbourhood of x. Hence there exists $\mathrm{A}_{x} \in \mathrm{ZO}(\mathrm{X})$ such that $x \in \mathrm{~A}_{x} \subseteq \mathrm{~A}$. Thus $\mathrm{A}=\cup\left\{\mathrm{A}_{x}: x \in \mathrm{~A}\right\}$. Therefore f is Z-irresolute.

Theorem 2.3. A function $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is Z-irresolute if and only if $f(\mathrm{Z}-\mathrm{d}(\mathrm{A})) \subseteq f(\mathrm{~A}) \cup \mathrm{Z}-\mathrm{d}(f(\mathrm{~A}))$, for each $\mathrm{A} \subseteq \mathrm{X}$.
Proof. Necessity. Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be Z-irresolute. Let $\mathrm{A} \subseteq \mathrm{X}$ and $\mathrm{a}_{0} \in \mathrm{Z}-\mathrm{d}(\mathrm{A})$. Assume that $f\left(\mathrm{a}_{0}\right) \notin f(\mathrm{~A})$ and let V denote a Z-neighbourhood of $f\left(\mathrm{a}_{0}\right)$. Since f is Z-irresolute, so by Theorem 2.2, there exists a Z-neighbourhood U of a_{0} such that
$f(\mathrm{U}) \subseteq \mathrm{V}$. From $\mathrm{a}_{0} \in \mathrm{Z}-\mathrm{d}(\mathrm{A})$, it follows that $\mathrm{U} \cap \mathrm{A} \neq \varphi$, therefore, at least one element $\mathrm{a} \in \mathrm{U} \cap \mathrm{A}$ such that $f(\mathrm{a}) \in f(\mathrm{~A})$ and $f(\mathrm{a}) \in \mathrm{V}$. Since $f\left(\mathrm{a}_{0}\right) \notin f(\mathrm{~A})$, we have $f(\mathrm{a}) \neq f\left(\mathrm{a}_{0}\right)$. Thus every Z-neighbourhood of $f\left(\mathrm{a}_{0}\right)$ contains an element of $f(\mathrm{~A})$ different from $f\left(\mathrm{a}_{0}\right)$, consequently, $f\left(\mathrm{a}_{0}\right) \in \mathrm{Z}-\mathrm{d}(f(\mathrm{~A}))$. This proves necessity of the condition.

Sufficiency. Assume that f is not Z-irresolute. Then by Theorem 2.2, there exists $\mathrm{a}_{0} \in \mathrm{X}$ and a Z-neighbourhood V of $f\left(\mathrm{a}_{0}\right)$ such that every Z-neighbourhood U of a_{0} contains at least one element $\mathrm{a} \in \mathrm{U}$ for which $f(\mathrm{a}) \notin \mathrm{V}$. Put $\mathrm{A}=\{\mathrm{a} \in \mathrm{X}$: $f(\mathrm{a}) \notin \mathrm{V}\}$. Then $\mathrm{a}_{0} \notin \mathrm{~A}$ since $f\left(\mathrm{a}_{0}\right) \in \mathrm{V}$, and therefore $f\left(\mathrm{a}_{0}\right) \notin f(\mathrm{~A}) ;$ also $f\left(\mathrm{a}_{0}\right) \notin$ $\mathrm{Z}-\mathrm{d}(f(\mathrm{~A}))$, since $f(\mathrm{~A}) \cap\left(\mathrm{V} \backslash\left\{f\left(\mathrm{a}_{0}\right)\right\}\right)=\varphi$. It follows that $f\left(\mathrm{a}_{0}\right) \in f(\mathrm{Z}-\mathrm{d}(\mathrm{A})) \backslash(f(\mathrm{~A})$ $\cup \mathrm{Z}-\mathrm{d}(f(\mathrm{~A}))) \neq \varphi$, which is a contradiction to the given condition.

Theorem 2.4. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a 1-1 mapping. Then f is Z -irresolute if and only if $f(\mathrm{Z}-\mathrm{d}(\mathrm{A})) \subseteq \mathrm{Z}-\mathrm{d}(f(\mathrm{~A}))$, for each $\mathrm{A} \subseteq \mathrm{X}$.

Proof. Necessity. Let f be Z-irresolute. Let $\mathrm{A} \subseteq \mathrm{X}, \mathrm{a}_{0} \in \mathrm{Z}-\mathrm{d}(\mathrm{A})$ and V be a Zneighbourhood of $f\left(\mathrm{a}_{0}\right)$. Since f is Z-irresolute, so by Theorem 2.2 , there exists a Z-neighbourhood U of a_{0} such that $f(\mathrm{U}) \subseteq \mathrm{V}$. But $\mathrm{a}_{0} \in \mathrm{Z}-\mathrm{d}(\mathrm{A})$, hence there exists an element $\mathrm{a} \in \mathrm{U} \cap \mathrm{A}$ such that $\mathrm{a} \neq \mathrm{a}_{0}$, then $f(\mathrm{a}) \in f(\mathrm{~A})$ and, since f is 1 $1, f(\mathrm{a}) \neq f\left(\mathrm{a}_{0}\right)$. Thus every Z-neighbourhood V of $f\left(\mathrm{a}_{0}\right)$ contains an element of $f(\mathrm{~A})$ different from $f\left(\mathrm{a}_{0}\right)$, consequently $f\left(\mathrm{a}_{0}\right) \in \mathrm{Z}-\mathrm{d}(f(\mathrm{~A}))$. We have $f(\mathrm{Z}-\mathrm{d}(\mathrm{A})) \subseteq$ Z-d $(f(\mathrm{~A}))$.

Sufficiency. It follows from Theorem 2.3.
Definition 2.2. [1] A mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called Z-continuous if the inverse image of each open set of (Y, σ) is Z-open in (X, τ).

Theorem 2.5. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}$, sigma) be a mapping, then the following statements holds:
(1) $g \circ f$ is Z-irresolute if both f and g are Z-irresolute.
(2) $g \circ f$ is Z-continuous if f is Z-irresolute and g is Z-continuous.

Definition 2.3. A space (X, τ) is called:
(1) Z - T_{1} - Space if for any pair of distinct points x , y of X , there is a Z-open set $\mathrm{U} \subseteq \mathrm{X}$ such that $\mathrm{x} \in \mathrm{U}$ and $\mathrm{y} \notin \mathrm{U}$ and there is a Z-open set $\mathrm{V} \subseteq \mathrm{X}$ such that $\mathrm{y} \in$ V and $\mathrm{x} \notin \mathrm{V}$.
(2) $\mathrm{Z}-\mathrm{T}_{2}$ - Space if for each two distinct points $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, there exists two disjoint Z-open sets U, V with $\mathrm{x} \in \mathrm{U}, \mathrm{y} \in \mathrm{V}$.

Theorem 2.6. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be injective and Z-irresolute mapping. Then the followings are hold:
(1) If Y is $\mathrm{Z}-\mathrm{T}_{1}$-Space, then X is $\mathrm{Z}-\mathrm{T}_{1}$-Space,
(2) If Y is $\mathrm{Z}-\mathrm{T}_{2}$-Space, then X is $\mathrm{Z}-\mathrm{T}_{2}$-Space.

Proof. (1) Let x, y be any distinct points in X. Since f is injective and Y is a $\mathrm{Z}-\mathrm{T}_{1}$ Space, there exists two Z-open sets U and V in Y such that $f(x) \in \mathrm{U}, f(y) \notin \mathrm{U}$ or $f(y) \in \mathrm{V}, f(x) \notin \mathrm{V}$ with $f(x) \neq f(y)$. By using Z-irresoluteness of f, then $f^{-1}(\mathrm{U})$ and $f^{-1}(\mathrm{~V})$ are Z-open sets in X such that $x \subseteq f^{-1}(\mathrm{U}), y \notin f^{-1}(\mathrm{U})$ or $x \notin f^{-1}(\mathrm{~V})$, $y \in f^{-1}(\mathrm{~V})$. Therefore, X is a $\mathrm{Z}-\mathrm{T}_{1}$ - Space.
(2) similar to (1).

Definition 2.4. A space (X, τ) is said to be Z-compact (resp. Z-Lindelöf) if every Z-open cover of X has a finite (resp. countable) subcover.

Theorem 2.7. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be surjection and Z-irresolute mapping. Then the followings are hold:
(1) If X is Z -compact, then Y is Z -compact.
(2) If X is Z-Lindelöf, then Y is Z-Lindelöf.

Proof. (1) Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be surjection and Z-irresolute mapping and let $\mathrm{U}=\left\{\mathrm{U}_{i}: \mathrm{i} \in \mathrm{I}\right\}$ be a cover of Y by $\mathrm{U}_{i} \in \mathrm{ZO}(\mathrm{Y}, \sigma)$, for each $\mathrm{i} \in \mathrm{I}$. Then $\mathrm{O}=\left\{f^{-1}\right.$ $\left.\left(\mathrm{U}_{i}\right): \mathrm{i} \in \mathrm{I}\right\}$ is a cover of X . Since f is Z-irresolute, then O is a Z-open cover of X which is Z -compact. Hence, there exists a finite subset I_{o} of I such that $\mathrm{X}=\mathrm{U}_{i}$ $\left\{f^{-1}\left(\mathrm{U}_{i}\right): \mathrm{i} \in \mathrm{I}_{o}\right\}$ which implies $\mathrm{X}=f^{-1}\left(\underset{i}{ } \mathrm{U}_{i}\right)$ and therefore $\mathrm{Y}=\cup\left\{\mathrm{U}_{i}: \mathrm{i} \in \mathrm{I}_{o}\right\}$. This shows that Y is Z-compact.
(2) similar to (1).

Definition 2.5. A space (X, τ) is said to be Z-connected if it cannot be written as a union of two non-empty disjoint Z-open sets.

Theorem 2.8. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be Z-irresolute and X is Z-connected. Then Y is Z-connected.

Proof. Suppose that Y is not connected. Then there exist two non-empty disjoint Z-open sets U and V in X such that $\mathrm{Y}=\mathrm{U} \cup \mathrm{V}$. Then $f^{-1}(\mathrm{U})$ and $f^{-1}(\mathrm{~V})$ are non-empty disjoint Z-open sets in X with $\mathrm{X}=f^{-1}(\mathrm{U}) \cup f^{-1}(\mathrm{~V})$ which contradicts the fact that X is Z -connected.

3. Z-OPEN AND Z-CLOSED MAPPINGS

Definition 3.1. A mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is said to be:
(1) Z-open if the image of each open set in (X, τ) is Z-open sets in (Y, σ).
(2) Z-closed if the image of each closed set in (X, τ) is Z-closed sets in (Y, σ).

Theorem 3.1. For a Z-open (resp. Z-closed) mapping. If $\mathrm{W} \subseteq \mathrm{Y}$ and $\mathrm{F} \subseteq$ X is a closed (resp. open) set containing $f^{-1}(\mathrm{~W})$, then there exists Z-closed (resp. Z-open) set $\mathrm{H} \subseteq \mathrm{Y}$ containing W such that $f^{-1}(\mathrm{H}) \subseteq \mathrm{F}$.

Proof. Let $\mathrm{H}=\mathrm{Y} \backslash f(\mathrm{X} \backslash \mathrm{F})$. Since $f^{-1}(\mathrm{~W}) \subseteq \mathrm{F}$ which is a closed set and $\mathrm{W} \subseteq \mathrm{H}, \mathrm{X} \backslash \mathrm{F}$ is an open set. Since f is Z-open mapping, then $f(\mathrm{X} \backslash \mathrm{F})$ is Z-open set. Therefore H is Z-closed and $f^{-1}(\mathrm{H})=\mathrm{X} \backslash f^{-1} f(\mathrm{X} \backslash \mathrm{F}) \subseteq \mathrm{F}$.

While the second side of the theorem can be proved in the same manner.
Theorem 3.2. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be Z-open and let $\mathrm{B} \subseteq \mathrm{Y}$. Then $f^{-1}(\mathrm{Z}-\mathrm{cl}(\mathrm{Z}-\operatorname{int}(\mathrm{Z}-\mathrm{cl}(\mathrm{B})))) \subseteq \operatorname{cl}\left(f^{-1}(\mathrm{~B})\right)$.

Proof. Since $\mathrm{cl}\left(f^{-1}(\mathrm{~B})\right)$ is closed in X containing $f^{-1}(\mathrm{~B})$, then by Theorem 3.1, there exists a Z-closed set $\mathrm{B} \subseteq \mathrm{H} \subseteq \mathrm{Y}$, such that $f^{-1}(\mathrm{H}) \subseteq \operatorname{cl}\left(f^{-1}(\mathrm{~B})\right)$. Thus, $f^{-1}\left(\mathrm{Z}-\mathrm{cl}(\mathrm{Z}-\operatorname{int}(\mathrm{Z}-\mathrm{cl}(\mathrm{B}))) \subseteq f^{-1}(\mathrm{Z}-\mathrm{cl}(\mathrm{Z}-\operatorname{int}(\mathrm{Z}-\mathrm{cl}(\mathrm{H})))) \subseteq f^{-1}(\mathrm{H}) \subseteq \operatorname{cl}\left(f^{-1}(\mathrm{~B})\right)\right.$.

Theorem 3.3. For a mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ the following statements are equivalent:
(1) f is Z-open,
(2) For each $x \in \mathrm{X}$ and each nbd U of X , there exists $\mathrm{W} \in \mathrm{ZO}(\mathrm{X})$ containing $f(x)$ such that $\mathrm{W} \subseteq f(\mathrm{U})$,
(3) $f^{-1}(\operatorname{int}(\delta-\mathrm{cl}(\mathrm{B}))) \cap f^{-1}(\operatorname{cl}(\operatorname{int}(\mathrm{~B}))) \subseteq \operatorname{cl}\left(f^{-1}(\mathrm{~B})\right)$, for each $\mathrm{B} \subseteq \mathrm{Y}$,
(4) If f is bijective, then $\operatorname{int}(\delta-\operatorname{cl}(f(\mathrm{~A}))) \cap \operatorname{cl}(\operatorname{int}(f(\mathrm{~A}))) \subseteq f(\operatorname{cl}(\mathrm{~A}))$, for each A $\subseteq \mathrm{X}$.

Proof. (1) $\leftrightarrow(2)$. is immediately,
$(1) \rightarrow(3)$. Let $\mathrm{B} \subseteq \mathrm{Y}$ and f is Z -open mapping. Then by Theorem 3.1, there exists Z -closed set $\mathrm{V} \subseteq \mathrm{Y}$ containing B such that $\operatorname{cl}\left(f^{-1}(\mathrm{~B})\right) \supseteq f^{-1}(\mathrm{~B})$ $\supseteq f^{-1}(\operatorname{int}(\delta-\mathrm{cl}(\mathrm{V}))) \cap f^{-1}(\operatorname{cl}(\operatorname{int}(\mathrm{~V}))) \supseteq f^{-1}(\operatorname{int}(\delta-\mathrm{cl}(\mathrm{B}))) \cap f^{-1}(\operatorname{cl}(\operatorname{int}(\mathrm{~B})))$ and therefore $f^{-1}(\operatorname{int}(\delta-\operatorname{cl}(\mathrm{B}))) \cap f^{-1}(\operatorname{cl}(\operatorname{int}(\mathrm{~B}))) \subseteq \operatorname{cl}\left(f^{-1}(\mathrm{~B})\right)$,
$(3) \rightarrow(4)$. Let f be a bijective mapping and $f(\mathrm{~A}) \subseteq \mathrm{Y}$ by $(3) f^{-1}(\operatorname{int}(\delta-$ $\operatorname{cl}(f(\mathrm{~A})))) \cap f^{-1}(\operatorname{cl}(\operatorname{int}(f(\mathrm{~A})))) \subseteq \operatorname{cl}\left(f^{-1}(f(\mathrm{~A}))\right)=\operatorname{cl}(\mathrm{A})$. Hence $\operatorname{int}(\delta-\mathrm{cl}(f(\mathrm{~A}))) \operatorname{cap}$ $\operatorname{cl}(\operatorname{int}(f(\mathrm{~A}))) \subseteq f(\operatorname{cl}(\mathrm{~A}))$,
(4) \rightarrow (1). Let $\mathrm{V} \in \tau$, by (4), $f(\operatorname{cl}(\mathrm{X} \backslash \mathrm{V}))=f(\mathrm{X} \backslash \mathrm{V}) \supseteq \operatorname{int}(\delta-\operatorname{cl}(f(\mathrm{X} \backslash \mathrm{V}))) \cap$ $\operatorname{cl}(\operatorname{int}(f(\mathrm{X} \backslash \mathrm{V})))$. By bijection f, we have $f(\mathrm{~V}) \subseteq \operatorname{cl}(\delta-\operatorname{int}(f(\mathrm{~V}))) \cup \operatorname{int}(\operatorname{cl}(f(\mathrm{~V})))$ and so f is Z -open.

Remark 3.1. The bijection condition in Theorem 3.3 (4) is necessary as shown by the following example.

Example 3.1. Let Y be the usual space of real numbers and $\mathrm{X}=(0,1)$ be an open sub space of Y . The mapping $f: \mathrm{X} \rightarrow \mathrm{Y}$ defined by $f(x)=x$, for every $x \in \mathrm{X}$. Put $\mathrm{M}=\mathrm{X}$, then $\operatorname{cl}(\delta-\operatorname{int}(f(\mathrm{M})))=[0,1]$ and $f(\operatorname{cl}(\mathrm{M}))=\mathrm{X}$. Therefore $\operatorname{cl}(\delta-\operatorname{int}(f(\mathrm{M}))) \cap \operatorname{int}(\operatorname{cl}(f(\mathrm{M}))) \subseteq \operatorname{cl}(\delta-\operatorname{int}(f(\mathrm{M}))) \nsubseteq f(\mathrm{cl}(\mathrm{M}))$.

Theorem 3.4. A mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is Z-open if and only if $f(\operatorname{int}(\mathrm{~A}))$ $\subseteq \mathrm{Z}-\operatorname{int}(f(\mathrm{~A}))$, for each $\mathrm{A} \subseteq \mathrm{X}$.

Proof. (1) Let f be a Z-open mapping and $\mathrm{A} \subseteq \mathrm{X}$, then $\mathrm{Z}-\operatorname{int}(f(\operatorname{int}(\mathrm{~A})))=f(\operatorname{int}(\mathrm{~A}))$ $\in \mathrm{ZO}(\mathrm{Y})$. Therefore $\mathrm{Z}-\operatorname{int}(f(\operatorname{int}(\mathrm{~A})))=f 44(\operatorname{int}(\mathrm{~A})) \subseteq \mathrm{Z}-\operatorname{int}(f(\mathrm{~A}))$.

Conversely. Let $\mathrm{U} \in \tau$, and $f(\mathrm{U})=f(\operatorname{int}(\mathrm{U})) \subseteq \mathrm{Z}-\operatorname{int}(f(\mathrm{U}))$. Then $f(\mathrm{U})=$ Z-int $(f(\mathrm{U}))$. Thus, $f(\mathrm{U})$ is Z-open in Y. Therefore, f is Z-open.

We remark that the equality does not hold in the preceding theorem as the following example.

Example 3.2. Let $\mathrm{X}=\mathrm{Y}=\{1,2\}$. Suppose is the indiscrete topology on X and is the discrete topology on Y. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ the identity mappings and $\mathrm{A}=\{1\}$. Then $\varphi=f(\operatorname{int}(\mathrm{~A})) \subseteq \operatorname{Z-int}(f(\mathrm{~A}))=\{1\}$.

Theorem 3.5. A mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is Z-open if and only if $\operatorname{int}\left(f^{-1}(\mathrm{~B})\right) \subseteq f^{-1}(\mathrm{Z}-\operatorname{int}(\mathrm{B}))$, for each $\mathrm{B} \subseteq \mathrm{Y}$.

Proof. Necessity. Let $\mathrm{B} \subseteq$ Y. Since $\operatorname{int}\left(f^{-1}(\mathrm{~B})\right.$ is open in X and f is Z-open, then $f\left(\operatorname{int}\left(f^{-1}(\mathrm{~B})\right)\right)$ is Z-open in Y. Also, we have $f\left(\operatorname{int}\left(f^{-1}(\mathrm{~B})\right)\right) \subseteq f\left(f^{-1}(\mathrm{~B})\right) \subseteq \mathrm{B}$. Hence, $f\left(\operatorname{int}\left(f^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{Z}-\operatorname{int}(\mathrm{B})$. Therefore, $\operatorname{int}\left(f^{-1}(\mathrm{~B})\right) \subseteq f^{-1}(\mathrm{Z}-\operatorname{int}(\mathrm{B}))$.

Sufficiency. Let $\mathrm{A} \subseteq \mathrm{X}$. Then $f(\mathrm{~A}) \subseteq \mathrm{Y}$. Hence by hypotheses, we obtain int (A) $\subseteq \operatorname{int}\left(f^{-1}(f(\mathrm{~A}))\right) \subseteq f^{-1}(\mathrm{Z}-\operatorname{int}(f(\mathrm{~A})))$. Thus $f(\operatorname{int}(\mathrm{~A})) \subseteq \mathrm{Z}-\operatorname{int}(f(\mathrm{~A}))$, for each $\mathrm{A} \subseteq$ X . Hence by Theorem 3.4, we have f is Z -open.

Theorem 3.6. A mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is Z-open if and only if ${ }^{-1}(\mathrm{Z}-$ $\operatorname{Bd}(\mathrm{A})) \subseteq \operatorname{Bd}\left(f^{-1}(\mathrm{~A})\right)$, for each $\mathrm{A} \subseteq \mathrm{X}$.

Proof. It follows from Theorem 3.5.

Theorem 3.7. A mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is Z-open if and only if

$$
f^{-1}(\mathrm{Z}-\operatorname{cl}(\mathrm{B})) \subseteq \operatorname{cl}\left(f^{-1}(\mathrm{~B})\right)
$$

for each $\mathrm{B} \subseteq \mathrm{Y}$.
Proof. Necessity. Let $\mathrm{B} \subseteq \mathrm{Y}$ and let f be Z-open. Let $x \in f^{-1}$ (Z-cl(B)). Then $f(x) \in \mathrm{Z}-\mathrm{cl}(\mathrm{B})$. Assume that $\mathrm{U} \in \tau$ such that $x \in \mathrm{U}$. Since f is Z-open, then $f(\mathrm{U})$ is a Z-open set in Y. Hence, $\mathrm{B} \cap f(\mathrm{U}) \neq \varphi$. Thus $\mathrm{U} \cap f^{-1}(\mathrm{~B}) \neq \varphi$. Therefore $x \in$ $\operatorname{cl}\left(f^{-1}(\mathrm{~B})\right) . f^{-1}(\mathrm{Z}-\mathrm{cl}(\mathrm{B})) \subseteq \operatorname{cl}\left(f^{-1}(\mathrm{~B})\right)$.

Sufficiency. Let $\mathrm{B} \subseteq \mathrm{Y}$. Then $\mathrm{Y} \backslash \mathrm{B} \subseteq \mathrm{Y}$. By hypotheses, $f^{-1}(\mathrm{Z}-\mathrm{cl}(\mathrm{Y} \backslash \mathrm{B})) \subseteq$ $\operatorname{cl}\left(f^{-1}(\mathrm{Y} \backslash \mathrm{B})\right)$ and hence $\mathrm{X} \backslash \operatorname{cl}\left(\mathrm{X} \backslash f^{-1}(\mathrm{~B})\right) \subseteq \mathrm{X} \backslash f^{-1}(\mathrm{Z}-\mathrm{cl}(\mathrm{Y} \backslash \mathrm{B}))=f^{-1}(\mathrm{Y} \backslash(\mathrm{Z}-\mathrm{cl}(\mathrm{Y} \backslash \mathrm{B})))$ we obtain $\operatorname{int}\left(f^{-1}(\mathrm{~B})\right) \subseteq f^{-1}(\mathrm{Z}-\operatorname{int}(\mathrm{B}))$. By Theorem 3.5, we have f is Z-open.

Theorem 3.8. A mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is Z-closed if and only if

$$
\mathrm{Z}-\operatorname{cl}(f(\mathrm{~A})) \subseteq f(\mathrm{cl}(\mathrm{~A}))
$$

for each $\mathrm{A} \subseteq \mathrm{X}$.
Proof. Necessity. Let f be Z-closed mapping and $\mathrm{A} \subseteq \mathrm{X}$. Then $f(\mathrm{~A}) \subseteq f(\mathrm{cl}(\mathrm{A}))$. But $f(\mathrm{cl}(\mathrm{A}))$ is a Z-closed in Y. Therefore, $\mathrm{Z}-\mathrm{cl}(f(\mathrm{~A})) \subseteq f(\mathrm{cl}(\mathrm{A}))$.

Conversely, suppose that $\mathrm{Z}-\mathrm{cl}(f(\mathrm{~A})) \subseteq f(\mathrm{cl}(\mathrm{A}))$, for each $\mathrm{A} \subseteq \mathrm{X}$. Let $\mathrm{A} \subseteq \mathrm{X}$ be a closed. Then $\mathrm{Z}-\mathrm{cl}(f(\mathrm{~A})) \subseteq f(\mathrm{cl}(\mathrm{A}))=f(\mathrm{~A})$. Hence $f(\mathrm{~A})$ is Z-closed in Y. Therefore, f is Z-closed.

Theorem 3.9. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be Z-closed. Then

$$
\mathrm{Z}-\operatorname{int}(\mathrm{Z}-\operatorname{cl}(f(\mathrm{~A}))) \subseteq f(\mathrm{cl}(\mathrm{~A}))
$$

for each $\mathrm{A} \subseteq \mathrm{X}$.
Proof. Suppose f is a Z-closed mappings and $\mathrm{A} \subseteq \mathrm{X}$. Then $f(\mathrm{cl}(\mathrm{A}))$ is Z-closed in Y. Then $\mathrm{Z}-\operatorname{int}(\mathrm{Z}-\mathrm{cl}(\operatorname{cl}(f(\mathrm{~A})))) \subseteq f(\operatorname{cl}(\mathrm{~A}))$. But $\mathrm{Z}-\operatorname{int}(\mathrm{Z}-\mathrm{cl}(f(\mathrm{~A}))) \subseteq \mathrm{Z}-\operatorname{int}(\mathrm{Z}-$ $\operatorname{cl}(\operatorname{cl}(f(\mathrm{~A}))))$. Therefore, $\mathrm{Z}-\operatorname{int}(\mathrm{Z}-\mathrm{cl}(f(\mathrm{~A}))) \subseteq f(\operatorname{cl}(\mathrm{~A}))$.

Theorem 3.10. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be Z-closed and $\mathrm{B}, \mathrm{C} \subseteq \mathrm{Y}$.
(1) If U is an open neighbourhood of $f^{-1}(\mathrm{~B})$, then there exists a Z-open neighbourhood V of B such that $f^{-1}(\mathrm{~B}) \subseteq f^{-1}(\mathrm{~V}) \subseteq \mathrm{U}$.
(2) If f is onto, then if $f^{-1}(\mathrm{~B})$ and $f^{-1}(\mathrm{C})$ have disjoint open neighbourhood so have B and C .

Proof. (1) Let $\mathrm{V}=\mathrm{Y} \backslash f(\mathrm{X} \backslash \mathrm{U})$. Then $\mathrm{V}^{c}=\mathrm{Y} \backslash \mathrm{V}=f\left(\mathrm{U}^{c}\right)$. Since f is Z-closed, so V is a Z-open set. Since $f^{-1}(\mathrm{~B}) \subseteq \mathrm{U}$, we have $\mathrm{V}^{c}=f\left(\mathrm{U}^{c}\right) \subseteq f\left(f^{-1}\left(\mathrm{~B}^{c}\right)\right) \subseteq \mathrm{B}^{c}$. Hence, $\mathrm{B} \subseteq \mathrm{V}$ and thus V is a Z-open neighbourhood of B. Further $\mathrm{U}^{c} \subseteq f^{-1}\left(f\left(\mathrm{U}^{c}\right)\right)=$ $f^{-1}\left(\mathrm{~V}^{c}\right)=\left(f^{-1}(\mathrm{~V})\right)^{c}$. Therefore, $f^{-1}(\mathrm{~V}) \subseteq \mathrm{U}$.
(2) If $f^{-1}(\mathrm{~B})$ and $f^{-1}(\mathrm{C})$ have disjoint open neighbourhood M and N , then by (1), we have Z-open neighbourhoods U and V of B and C respectively such that $f^{-1}(\mathrm{~B}) \subseteq f^{-1}(\mathrm{U}) \subseteq \mathrm{Z}-\operatorname{int}(\mathrm{M})$ and $f^{-1}(\mathrm{C}) \subseteq f^{-1}(\mathrm{~V}) \subseteq \mathrm{Z}-\mathrm{int}(\mathrm{N})$. Since M and N are disjoint, so are Z -int (M) and $\mathrm{Z}-\mathrm{int}(\mathrm{N})$ and hence so $f^{-1}(\mathrm{U})$ and $f^{-1}(\mathrm{~V})$ are disjoint as well. It follows that U and V are disjoint too as f is onto.

Theorem 3.11. For a bijective mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ the following are equivalent:
(1) f^{-1} is Z-continuous,
(2) f is Z-open,
(3) f is Z-closed.

Proof. (1) \rightarrow (2). Let $\mathrm{V} \in \tau$ and f^{-1} be Z-continuous, by bijective of f. Then $\left(f^{-1}\right)^{-1}(\mathrm{~V})=f(\mathrm{~V}) \in \mathrm{ZO}(\mathrm{Y})$ and therefore f is Z-open mapping,
$(2) \rightarrow(3)$. Let V be closed in X . Then $\mathrm{X} \backslash \mathrm{U}$ is open in X , by $(2), f(\mathrm{X} \backslash \mathrm{U})$ is Z-open in Y. But $f(\mathrm{X} \backslash \mathrm{U})=f(\mathrm{X}) \backslash f(\mathrm{U})=\mathrm{Y} \backslash f(\mathrm{U})$. Thus $f(\mathrm{U})$ is Z-closed in Y. Therefore f is Z-closed.
(3) \rightarrow (1). Let $\mathrm{V} \in \tau$, by (3), we have $f(\mathrm{X} \backslash \mathrm{V})$ is Z-closed in Y and hence, $f(\mathrm{~V})$ $=\left(f^{-1}\right)^{-1}(\mathrm{~V}) \in \mathrm{ZO}(\mathrm{Y})$. Therefore, f^{-1} is Z-continuous.

Remark 3.2. The composition of two Z-open (resp. Z-closed) mapping may not be Z-open (resp. Z-closed). The following example shows this fact.

Example 3.3. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{h}\}$ and $\mathrm{Y}=\mathrm{Z}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ with topology $\tau_{x}=\{\varphi,\{\mathrm{a}, \mathrm{e}\}, \mathrm{X}\}$, an indiscrete topology (Y, \Im) and $\tau_{z}=\{\varphi,\{\mathrm{a}, \mathrm{b}\}$, $\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{Z}\}$. A mapping $f:\left(\mathrm{X}, \tau_{x}\right) \rightarrow(\mathrm{Y}, \Im)$ defined as $f(\mathrm{a})=\mathrm{a}, f(\mathrm{~b})$ $=\mathrm{b}, f(\mathrm{c})=\mathrm{c}, f(\mathrm{~d})=f(\mathrm{~h})=\mathrm{d}, f(\mathrm{e})=\mathrm{e}$ and the identity mapping $g:(\mathrm{Y}, \Im) \rightarrow$ (Z, τ_{z}). It is clear of f and g is Z-open but $g \circ f$ is not Z-open.

Theorem 3.12. Let $f:\left(\mathrm{X}, \tau_{X}\right) \rightarrow\left(\mathrm{Y}, \tau_{Y}\right)$ and $g:\left(\mathrm{Y}, \tau_{Y}\right) \rightarrow\left(\mathrm{Z}, \tau_{Z}\right)$ be two mappings. Then the following statements hold:
(1) If f is surjective open (resp. closed) and g is Z-open, then $g \circ f$ is Z-open (resp. Z-closed),
(2) If $g \circ f$ is Z-open (resp. Z-closed) and f is surjective continuous, then g is Z-open (resp. Z-closed),
(3) If $g \circ f$ is open (resp. closed) and g is injective Z-continuous, then f is Z-open (resp. Z-closed).

Theorem 3.13. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a Z-open bijection. Then the following are hold
(1) If X is $\mathrm{Z}-\mathrm{T}_{1}$-Space, then Y is $\mathrm{Z}-\mathrm{T}_{1}$-Space,
(2) If X is $\mathrm{Z}-\mathrm{T}_{2}$-Space, then Y is $\mathrm{Z}-\mathrm{T}_{2}$-Space.

Theorem 3.14. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a Z-open bijection. Then the following are hold
(1) If Y is Z-compact, then X is Z-compact.
(2) If Y is Z-Lindelöf, then X is Z-Lindelöf.

Theorem 3.15. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a Z -open surjection and Y is Z-connected. Then X is Z-connected.

4. PRE-Z-OPEN AND PRE-Z-CLOSED MAPPING

Definition 4.1. A mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is said to be pre-Z-open (resp. pre-Z-closed) if $f(\mathrm{~V}) \in \mathrm{ZO}(\mathrm{Y}, \sigma)$ (resp. $\mathrm{ZC}(\mathrm{Y}, \sigma)$), for each $\mathrm{V} \in \mathrm{ZO}(\mathrm{X}, \tau)$ (resp. $\mathrm{ZC}(\mathrm{X}, \tau))$.

Theorem 4.1. A mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is pre-Z-closed if and only if for each $\mathrm{S} \subseteq \mathrm{Y}$ and each $\mathrm{U} \subseteq \mathrm{ZO}(\mathrm{X}, \tau)$ containing $f^{-1}(\mathrm{~S})$, there exists $\mathrm{V} \in \mathrm{ZO}(\mathrm{Y}, \sigma)$ containing S such that $f^{-1}(\mathrm{~V}) \subseteq \mathrm{U}$.

Proof. Let $\mathrm{S} \subseteq \mathrm{Y}$ and $f^{-1}(\mathrm{~S}) \subseteq \mathrm{U}$. Put $\mathrm{V}=\mathrm{Y} \backslash f(\mathrm{X} \backslash \mathrm{U})$, then $\mathrm{V} \in \mathrm{ZO}(\mathrm{Y}, \sigma)$. Since $f^{-1}(\mathrm{~S}) \subseteq \mathrm{U}$, then $f(\mathrm{X} \backslash \mathrm{U}) \subseteq f f^{-1}(\mathrm{Y} \backslash \mathrm{S}) \subseteq \mathrm{Y} \backslash \mathrm{S}$ and therefore $f^{-1}(\mathrm{~V}) \subseteq \mathrm{U}$. Conversely, let F be a Z-closed in (X, τ). For any $\mathrm{y} \in \mathrm{Y} \backslash f(\mathrm{~F})$, then $f^{-1}(\mathrm{y}) \in \mathrm{X} \backslash \mathrm{F}$ $\in \mathrm{ZO}(\mathrm{X}, \tau)$. Hence there exists $\mathrm{V}_{y} \in \mathrm{ZO}(\mathrm{Y}, \sigma)$ containing y such that $f^{-1}\left(\mathrm{~V}_{y}\right)$ $\subseteq \mathrm{X} \backslash \mathrm{F}$, which implies $\mathrm{y} \in \mathrm{V}_{y} \subseteq \mathrm{Y} \backslash f(\mathrm{~F})$. So $\mathrm{Y} \backslash f(\mathrm{~F})=\cup\left\{\mathrm{V}_{y}: \mathrm{y} \in \mathrm{Y} \backslash f(\mathrm{~F})\right\}$ and therefore $f(\mathrm{~F}), \mathrm{F}$ is Z-closed in (Y, σ).

Theorem 4.2. A mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is pre-Z-open if and only if $f(\mathrm{Z}-\operatorname{int}(\mathrm{A})) \subseteq \mathrm{Z}-\operatorname{int}(f(\mathrm{~A}))$, for each $\mathrm{A} \subseteq \mathrm{X}$.

Proof. The proof is similar as Theorem 3.4.
We remark that the equality does not hold in Theorem 4.3, as the following example shows.

Example 4.1. Let $\mathrm{X}=\{1,2\}$. suppose that $\left(\mathrm{X}, \tau_{1}\right)$ is the indiscrete space and $\left(\mathrm{X}, \tau_{2}\right)$ is the discrete space. Let $f=\mathrm{Id}:\left(\mathrm{X}, \tau_{1}\right) \rightarrow\left(\mathrm{X}, \tau_{1}\right)$. Let $\mathrm{A}=\{1\}$. Then \emptyset $=f(\mathrm{Z}-\operatorname{int}(\mathrm{A})) \neq \mathrm{Z}-\operatorname{int}(f(\mathrm{~A}))=\{1\}$.

Theorem 4.3. A mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is pre-Z-open if and only if $\mathrm{Z}-\operatorname{int}\left(f^{-1}(\mathrm{~B})\right) \subseteq f^{-1}(\mathrm{Z}-\operatorname{int}(\mathrm{B}))$, for all $\mathrm{B} \subseteq \mathrm{Y}$.

Proof. The proof is similar as Theorem 3.5.
Theorem 4.4. A mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is pre-Z-open if and only if $f^{-1}(\mathrm{Z}-\mathrm{Bd}(\mathrm{B})) \subseteq \mathrm{Z}-\mathrm{Bd}\left(f^{-1}(\mathrm{~B})\right)$, for all $\mathrm{B} \subseteq \mathrm{Y}$.

Proof. It follows from Theorem 4.3.
Theorem 4.5. A mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is pre-Z-open if and only if $f^{-1}(\mathrm{Z}-\mathrm{cl}(\mathrm{B})) \subseteq \mathrm{Z}-\mathrm{cl}\left(f^{-1}(\mathrm{~B})\right)$, for all $\mathrm{B} \subseteq \mathrm{Y}$.

Proof. The proof similar as Theorem 3.7.
Theorem 4.6. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a mapping such that $f(\mathrm{Z}-\operatorname{int}(\mathrm{A})) \subseteq$ $\operatorname{cl}(\delta-\operatorname{int}(f(\mathrm{~A})))$, for every subset A of X . Then f is pre-Z-open.

Proof. Suppose A is an Z-open set in X. Then by hypothesis, we have

$$
f(\mathrm{~A})=f(\mathrm{Z}-\operatorname{int}(\mathrm{A})) \subseteq \operatorname{cl}(\delta-\operatorname{int}(f(\mathrm{~A})))
$$

Take $\mathrm{B}=\delta$-int $(f(\mathrm{~A}))$. Then B is δ-open in Y. Also it implies that $\mathrm{B} \subseteq f(\mathrm{~A}) \subseteq$ $\mathrm{cl}(\mathrm{B})$. Hence $f(\mathrm{~A})$ is δ-semiopen in Y. Since $\delta \mathrm{SO}(\mathrm{Y}) \subseteq \mathrm{ZO}(\mathrm{Y})$. Thus $f(\mathrm{~A})$ is Z-open in Y. This implies that f is pre-Z-open.

Theorem 4.7. A mapping $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is pre-Z-closed if and only if $\mathrm{Z}-\mathrm{cl}(f(\mathrm{~A})) \subseteq f(\mathrm{Z}-\mathrm{cl}(\mathrm{A}))$, for all $\mathrm{A} \subseteq \mathrm{X}$.

Proof. Necessity. Suppose f is a pre-Z-closed mapping and A is an arbitrary subset of X. Then $f(\mathrm{Z}-\mathrm{cl}(\mathrm{A}))$ is Z-closed in Y. Since $f(\mathrm{~A}) \subseteq f((\mathrm{Z}-\mathrm{cl}(\mathrm{A}))$, we obtain

$$
\mathrm{Z}-\operatorname{cl}(f(\mathrm{~A})) \subseteq f(\mathrm{Z}-\operatorname{cl}(\mathrm{A})) .
$$

Sufficiency. Suppose F is an arbitrary Z-closed set in X. By hypothesis, we obtain $f(\mathrm{~F}) \subseteq \mathrm{Z}-\mathrm{cl}(f(\mathrm{~F})) \subseteq f(\mathrm{Z}-\mathrm{cl}(\mathrm{F}))=f(\mathrm{~F})$. Hence $f(\mathrm{~F})=\mathrm{Z}-\mathrm{cl}(f(\mathrm{~F}))$. Thus $f(\mathrm{~F})$ is Z-closed in Y. It follows that f is pre-Z-closed.

Theorem 4.8. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a pre-Z-closed function, and $\mathrm{B}, \mathrm{C} \subseteq$ Y.
(1) If U is a Z -open neighbourhood of $f^{-1}(\mathrm{~B})$, then there exists a Z-open neighbourhood V of B such that $f^{-1}(\mathrm{~B}) \subseteq f^{-1}(\mathrm{~V}) \subseteq \mathrm{U}$.
(2) If f is also onto, then if $f^{-1}(\mathrm{~B})$ and $f^{-1}(\mathrm{C})$ have disjoint neighborurhoods, so have B and C .

Proof. The proof is similar as Theorem 3.9.
Theorem 4.9. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a bijection. Then the following are equivalent:
(1) f is pre-Z-closed,
(2) f is pre-Z-open,
(3) f^{-1} is Z-irresolute.

Proof. (1) \rightarrow (2) Let $\mathrm{U} \in \mathrm{ZO}(\mathrm{X}, \tau)$. Then $\mathrm{X} \backslash \mathrm{U}$ is Z-closed in X . By $(1), f(\mathrm{X} \backslash \mathrm{U})$ is Z-closed in Y. But $f(\mathrm{X} \backslash \mathrm{U})=f(\mathrm{X}) \backslash f(\mathrm{U})=\mathrm{Y} \backslash f(\mathrm{U})$. Thus $f(\mathrm{U})$ is Z-open in Y.
$(2) \rightarrow(3)$ Let A \subseteq X. Since f is pre-Z-open, so by Theorem $4.2, f^{-1}(\mathrm{Z}-\mathrm{cl}(f(\mathrm{~A})))$ $\subseteq \mathrm{Z}-\mathrm{cl}\left(f^{-1}(f(\mathrm{~A}))\right)$. It implies that $\mathrm{Z}-\mathrm{cl}(f(\mathrm{~A})) \subseteq f(\mathrm{Z}-\mathrm{cl}(\mathrm{A}))$. Thus $\mathrm{Z}-\mathrm{cl}\left(\left(f^{-1}\right)^{-1}(\mathrm{~A})\right)$ $\subseteq\left(f^{-1}\right)^{-1}(\mathrm{Z}-\mathrm{cl}(\mathrm{A}))$, for all $\mathrm{A} \subseteq \mathrm{X}$. Then by Theorem 4.2, it follows that f^{-1} is Z-irresolute.
$(3) \rightarrow(1)$ Let A be an arbitrary Z-closed set in X . Then $\mathrm{X} \backslash \mathrm{A}$ is Z-open in X . Since f^{-1} is Z-irresolute, $\left(f^{-1}\right)^{-1}(\mathrm{X} \backslash \mathrm{A})$ is Z-open in Y. But $\left(f^{-1}\right)^{-1}(\mathrm{X} \backslash \mathrm{A})=$ $f(\mathrm{X} \backslash \mathrm{A})=\mathrm{Y} \backslash f(\mathrm{~A})$. Thus $f(\mathrm{~A})$ is Z-closed in Y .

Theorem 4.10. Let $f:\left(\mathrm{X}, \tau_{X}\right) \rightarrow\left(\mathrm{Y}, \tau_{Y}\right)$ and $g:\left(\mathrm{Y}, \tau_{Y}\right) \rightarrow\left(\mathrm{Z}, \tau_{Z}\right)$ be two mappings such that $g \circ f:\left(\mathrm{X}, \tau_{X}\right) \rightarrow\left(\mathrm{Z}, \tau_{Z}\right)$ is Z-irresolute. Then:
(1) If g is a pre-Z-open injection, then f is Z-irresolute.
(2) If f is a pre-Z-open surjection, then g is Z-irresolute.

Proof. (1) Let $\mathrm{U} \in \mathrm{ZO}\left(\mathrm{Y}, \tau_{Y}\right)$. Then $g(\mathrm{U}) \in \mathrm{ZO}\left(\mathrm{Z}, \tau_{Z}\right)$, since g is pre-Z-open. Also $g \circ f$ is Z-irresolute. Therefore, $(g \circ f)^{-1}(g(\mathrm{U})) \in \mathrm{ZO}\left(\mathrm{X}, \tau_{X}\right)$. Since g is an injection, so we have $(g \circ f)^{-1}(g(\mathrm{U}))=\left(f^{-1} \circ g^{-1}\right)(g(\mathrm{U}))=f^{-1}\left(g^{-1}(g(\mathrm{U}))\right)=$ $f^{-1}(\mathrm{U})$. Consequently $f^{-1}(\mathrm{U})$ is Z-open in X. This proves that f is Z-irresolute.
(2) Let $\mathrm{V} \in \mathrm{ZO}\left(\mathrm{Z}, \tau_{Z}\right)$. Then $(g \circ f)^{-1}(\mathrm{~V}) \in \mathrm{ZO}\left(\mathrm{X}, \tau_{X}\right)$, since $g \circ f$ is Z-irresolute. Also f is pre-Z-open, $f\left((g \circ f)^{-1}(\mathrm{~V})\right)$ is Z-open in Y. Since f is surjective, we note that $f\left((g \circ f)^{-1}(\mathrm{~V})\right)=\left(f \circ(g \circ f)^{-1}\right)(\mathrm{V})=\left(f \circ\left(f^{-1} \circ g^{-1}\right)\right)(\mathrm{V})=\left(\left(f \circ f^{-1}\right) \circ g^{-1}\right)(\mathrm{V})$ $=g^{-1}(\mathrm{~V})$. Hence g is Z-irresolute.

Theorem 4.11. For a mappings $f:\left(\mathrm{X}, \tau_{X}\right) \rightarrow\left(\mathrm{Y}, \tau_{Y}\right)$ and $g:\left(\mathrm{Y}, \tau_{Y}\right) \rightarrow(\mathrm{Z}$, τ_{Z}), then
(1) $g \circ f$ is pre-Z-open (resp. pre-Z-closed) if both f and g are pre-Z-open (resp. pre-Z-closed).
(2) $g \circ f$ is Z-open (resp. Z-closed) if f is Z-open (resp. Z-closed) and g are pre-Z-open (resp. pre-Z-closed).
(3) If f is Z-continuous surjection and $g \circ f$ is pre-Z-open (resp. pre-Z-closed), then g is Z-open (resp. Z-closed).

Proof. It is clear.

Theorem 4.12. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a pre-Z-open bijection. Then the following are hold
(1) If X is $\mathrm{Z}-\mathrm{T}_{1}$-Space, then Y is $\mathrm{Z}-\mathrm{T}_{1}$-Space,
(2) If X is $\mathrm{Z}-\mathrm{T}_{2}$-Space, then Y is $\mathrm{Z}-\mathrm{T}_{2}$-Space.

Theorem 4.13. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a pre-Z-open bijection. Then the following are hold
(1) If Y is Z-compact, then X is Z-compact.
(2) If Y is Z-Lindelöf, then X is Z-Lindelöf.

Theorem 4.15. Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be be a pre-Z-open bijection and Y is Z -connected. Then X is Z -connected.

REFERENCES

[1] EL-Magharabi, A. I., \& Mubarki, A. M. (2011). Z-open sets and Z-continuity in topological spaces. International Journal of Mathematical Archive (IJMA), 2(10), 1819-1827.
[2] Park, J. H., Lee, B. Y., \& Son, M. J. (1997). On δ-semiopen sets in topological spaces. J. Indian Acad. Math., 19(1), 59-67.
[3] Stone, N. V. (1937). Application of the theory of Boolean rings to general topology. TAMS, 41, 375-381.
[4] Velicko, N. V. (1968). H-closed topological spaces. Amer. Math. Soc. Transl., 78, 103-118.

