Studies in Mathematical Sciences
Vol. 5, No. 2, 2012, pp. [55–65]
DOI: 10.3968/j.sms.1923845220120502.1016

Characterizations of Mappings Via Z-Open Sets

Ahmad I. EL-Maghrabi^{[a],*} and Ali M. Mubarki^[a]

^[a] Department of Mathematics, Faculty of Science, Taibah University, AL-Madinah AL-Munawarah, K.S.A.

* Corresponding author.

Address: Department of Mathematics, Faculty of Science, Taibah University, PO Box 344, AL-Madinah AL-Munawarah, K.S.A.; E-Mail: amaghrabi@taibahu.edu. sa

Received: June 11, 2012/ Accepted: September 3, 2012/ Published: November 30, 2012

Abstract: The aim of this paper we introduce Z-irresolute, Z-open, Z-closed, pre-Z-open and pre-Z-closed mappings and investigate properties and characterizations of these new types of mappings.

Key words: Z-irresolute mapping; Z-open; Z-closed mapping; Pre-Z-open; Pre-Z-closed mappings

EL-Maghrabi, A. I., & Mubarki, A. M. (2012). Characterizations of Mappings Via Z-Open Sets. *Studies in Mathematical Sciences*, 5(2), 55–65. Available from http://www.cscanada.net/index.php/sms/article/view/j.sms.1923845220120502.1016 DOI: 10.3968/j. sms.1923845220120502.1016

1. INTRODUCTIONS AND PRELIMINARIES

The concept of Z-open sets in topological spaces was introduced by EL-Magharabi and Mubarki [1,2]. We continue to explore further properties and characterizations of Z-irresolute and Z-open mappings. We also introduce and study properties and characterizations of Z-closed, pre-Z-open and pre-Z-closed mappings.

A subset A of a topological space (X, τ) is called regular open (resp. regular closed) [3] if

A = int(cl(A))(resp.A = cl(int(A))).

The delta interior [4] of a subset A of X is the union of all regular open sets of X contained in A is denoted by δ -int(A). A subset A of a space X is called δ -open if it

is the union of regular open sets. The complement of δ -open set is called δ -closed. Alternatively, a set A of (X,τ) is called δ -closed [4] if $A = \delta$ -cl(A), where

$$\delta - \operatorname{cl}(\mathbf{A}) = \{ x \in X : A \cap \operatorname{int}(\operatorname{cl}(\mathbf{U})) \neq \emptyset, \ U \in \tau \text{ and } x \in U \}.$$

Throughout this paper (X, τ) and (Y, σ) (simply X and Y) represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A) and X\A denote the closure of A, the interior of A and the complement of A respectively. A subset A of a space X is called δ -semiopen [2] (resp. Z-open [1]) if

$$A \subseteq cl(\delta - int(A)) \text{ (resp.} A \subseteq cl(\delta - int(A)) \cup int(cl(A))).$$

The complement of a Z-open set is called Z-closed. The intersection of all Zclosed sets containing A is called the Z-closure of A and is denoted by Z-cl(A). The union of all Z-open sets contained in A is called the Z-interior of A and is denoted by Z-int(A). The Z-boundary [1] of A (briefly, Z-b(A)) is defined by

$$Z - b(A) = Z - cl(A) \cap Z - cl(X \setminus A).$$

 $Z-Bd(A) = A \setminus Z-int(A)$ is said to be Z-border of A. A point $p \in X$ is called a Z-limit point of a set $A \subseteq X$ [1] if every Z-open set $G \subseteq X$ containing p contains a point of A other than p. The set of all Z-limit points of A is called a Z-derived set of A and is denoted by Z-d(A). The family of all Z-open (resp. Z-closed) is denoted by ZO(X) (ZC(X)).

2. Z-IRRESOLUTE MAPPING

Definition 2.1. A mapping $f : (X, \tau) \to (Y, \sigma)$ is called Z-irresolute if

$$f^{-1}(\mathbf{U}) \in \mathrm{ZO}(\mathbf{X}),$$

for each $U \in ZO(X)$.

Theorem 2.1. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping, then the followings are equivalent:

(1) f is Z-irresolute,

(2) The inverse image of each Z-closed in (Y, σ) is Z-closed in (X, τ) ,

(3) $\operatorname{Z-cl}(f^{-1}(B)) \subseteq f^{-1}(\operatorname{Z-cl}(B)) \subseteq f^{-1}(\operatorname{cl}(B))$, for each $B \subseteq Y$,

(4) $f(Z-cl(A)) \subseteq Z-cl(f(A)) \subseteq cl(f(A))$, for each $A \subseteq X$,

(5) $f^{-1}(\operatorname{Z-int}(B)) \subseteq \operatorname{Z-int}(f^{-1}(B))$, for each $B \subseteq Y$,

(6) Z-Bd $(f^{-1}(B)) \subseteq f^{-1}(Z$ -Bd(B)), for each $B \subseteq Y$,

(7) $\operatorname{Z-b}(f^{-1}(B)) \subseteq f^{-1}(\operatorname{Z-b}(B))$, for each $B \subseteq Y$,

(8) $f(\mathbf{Z}\text{-b}(\mathbf{A})) \subseteq \mathbf{Z}\text{-b}(f(\mathbf{A}))$, for each $\mathbf{A} \subseteq \mathbf{X}$,

(9) $f(Z-d(A)) \subseteq Z-cl(f(A))$, for each $A \subseteq X$.

Proof. $(1) \rightarrow (2)$. Obvious.

 $(2) \rightarrow (3)$. Let $B \subseteq Y$ and $B \subseteq Z$ -cl $(B) \subseteq$ cl(B). Then by (2)

$$\mathbf{Z} - \mathrm{cl}(f^{-1}(\mathbf{B})) \subseteq \mathbf{Z} - \mathrm{cl}(f^{-1}(\mathbf{Z} - \mathrm{cl}(\mathbf{B}))) = f^{-1}(\mathbf{Z} - \mathrm{cl}(\mathbf{B})) \subseteq f^{-1}(\mathrm{cl}(\mathbf{B})),$$

 $(3) \rightarrow (4)$. Immediately by replacing B by f(A) in (3),

 $(4) \rightarrow (1)$. Let $W \in ZO(Y)$ and $F = Y \setminus W \in ZC(Y)$. Then by (4),

$$f(\mathbf{Z} - \mathrm{cl}(f^{-1}(\mathbf{F}))) \subseteq \mathbf{Z} - \mathrm{cl}(f(f^{-1}(\mathbf{F})) \subseteq \mathbf{Z} - \mathrm{cl}(\mathbf{F}) = \mathbf{F}.$$

So Z-cl($f^{-1}(F)$) $\subseteq f^{-1}(F)$ and hence, $f^{-1}(F) = X \setminus f^{-1}(W) \in ZC(X)$, thus $f^{-1}(W) \in ZO(X)$. Therefore f is Z-irresolute,

 $(1) \rightarrow (5)$. Let $B \subseteq Y$. Then Z-int(B) is Z-open in Y. By (1), $f^{-1}(Z$ -int(B)) is Z-open in X. Hence $f^{-1}(Z$ -int(B)) = Z-int($f^{-1}(Z$ -int(B))) \subseteq Z-int($f^{-1}(B)$),

 $(5) \rightarrow (6)$. Let $B \subseteq Y$. Then by (5), $f^{-1}(Z-int(B)) \subseteq Z-int(f^{-1}(B))$ we have $f^{-1}(B) \setminus Z-int(f^{-1}(B)) \subseteq f^{-1}(B) \setminus f^{-1}(Z-int(B))$. Therefore, $Z-Bd(f^{-1}(B)) \subseteq f^{-1}(Z-Bd(B))$,

(6)→(5). Let B ⊆ Y. Then by (6), Z-Bd($f^{-1}(B)$) = $f^{-1}(B)$ \Z-int($f^{-1}(B)$) ⊆ $f^{-1}(Z-Bd(B)) = f^{-1}(B)$ \Z-int(B)) = $f^{-1}(B)$ \ $f^{-1}(int(B))$ this implies $f^{-1}(Z-int(B))$ ⊆ Z-int($f^{-1}(B)$),

 $(5) \rightarrow (1)$. Let $B \subseteq Y$ be Z-open. Then B = Z-int(B). Hence by (5) we have $f^{-1}(B) = f^{-1}(Z$ -int(B)) $\subseteq Z$ -int($f^{-1}(B)$). Thus $f^{-1}(B)$ is Z-open in X. So, f is Z-irresolute,

 $\begin{array}{l} (1) \rightarrow (7). \text{ Let } \mathbf{B} \subseteq \mathbf{Y}, \text{ by } (3), \text{ we have } \mathbf{Z}\text{-b}(f^{-1}(\mathbf{B})) = \mathbf{Z}\text{-cl}(f^{-1}(\mathbf{B})) \backslash \mathbf{Z}\text{-int}(f^{-1}(\mathbf{B})) \\ \subseteq f^{-1}(\mathbf{Z}\text{-cl}(\mathbf{B})) \backslash \mathbf{Z}\text{-int}(f^{-1}(\mathbf{B})) \subseteq f^{-1}[\mathbf{Z}\text{-b}(\mathbf{B}) \cup \mathbf{Z}\text{-int}(\mathbf{B})] \backslash \mathbf{Z}\text{-int}(f^{-1}(\mathbf{B})) \subseteq f^{-1}[\mathbf{Z}\text{-b}(\mathbf{B}) \cup \mathbf{Z}\text{-int}(\mathbf{B})] \backslash \mathbf{Z}\text{-int}(f^{-1}(\mathbf{Z}\text{-int}(\mathbf{B}))). \text{ By } (1) \text{ we have } \mathbf{Z}\text{-b}(f^{-1}(\mathbf{B})) \subseteq (f^{-1}(\mathbf{Z}\text{-b}(\mathbf{B})) \cup f^{-1}(\mathbf{Z}\text{-int}(\mathbf{B}))) \backslash f^{-1}(\mathbf{Z}\text{-int}(\mathbf{B})) = f^{-1}(\mathbf{Z}\text{-b}(\mathbf{B})), \end{array}$

(7)→(1). Let B ∈ ZC(Y) and Z-b($f^{-1}(B)$) ⊆ $f^{-1}(Z$ -b(B)). Then, Z-b ($f^{-1}(B)$) ⊆ $f^{-1}(Z$ -cl(B)\Z-int(B)) = $f^{-1}(B$ \Z-int(B)) = $f^{-1}(Z$ -Bd(B)) ⊆ $f^{-1}(B)$ by Theorem 4.2 [1], we have, $f^{-1}(B)$ ∈ZC(X). Therefore f is Z-irresolute,

 $(7) \rightarrow (8)$. Follows by replacing f(A) instead of B in (7),

 $(8) \rightarrow (7)$. Let $B \subseteq Y$, by(8), we have $f(Z-b(f^{-1}(B))) \subseteq Z-b(f(f^{-1}(B))) \subseteq Z-b(B)$ and therefore $Z-b(f^{-1}(B)) \subseteq f^{-1}(Z-b(B))$,

 $(1) \rightarrow (9)$. Let $A \subseteq X$. Then by (4), $f(Z-d(A)) \subseteq f(Z-cl(A)) \subseteq Z-cl(f(A))$,

(9)→(1). Let F be a Z-closed set in Y, by (7), $f(Z-d(f^{-1}(F)) \subseteq Z-cl(f(f^{-1}(F))) \subseteq Z-cl(F) = F$, then Z-d($f^{-1}(F)$) $\subseteq f^{-1}(F)$ by Theorem 4.4 [1], we have, $f^{-1}(F) \in ZC(X)$. Therefore f is Z-irresolute.

Theorem 2.2. A mapping $f : (X, \tau) \to (Y, \sigma)$ is Z-irresolute if and only if for each x in X, the inverse image of every Z-neighbourhood of f(x) is a Z-neighbourhood of x.

Proof. Necessity. Let $x \in X$ and let B be Z-neighbourhood of f(x). Then there exists $U \in ZO(Y)$ such that $f(x) \in U \subseteq B$. This implies that $x \in f^{-1}(U) \subseteq f^{-1}(B)$. Since f is Z-irresolute, so $f^{-1}(U) \in ZO(X)$. Hence $f^{-1}(B)$ is a Z-neighbourhood of x.

Sufficiency. Let $B \in ZO(Y)$. Put $A = f^{-1}(B)$. Let $x \in A$. Then $f(x) \in B$. But B being Z-open set is a Z-neighbourhood of f(x). So by hypothesis, $A = f^{-1}(B)$ is a Z-neighbourhood of x. Hence there exists $A_x \in ZO(X)$ such that $x \in A_x \subseteq A$. Thus $A = \bigcup \{A_x : x \in A\}$. Therefore f is Z-irresolute.

Theorem 2.3. A function $f : (X, \tau) \to (Y, \sigma)$ is Z-irresolute if and only if $f(Z-d(A)) \subseteq f(A) \cup Z-d(f(A))$, for each $A \subseteq X$.

Proof. Necessity. Let $f: X \to Y$ be Z-irresolute. Let $A \subseteq X$ and $a_0 \in Z$ -d(A). Assume that $f(a_0) \notin f(A)$ and let V denote a Z-neighbourhood of $f(a_0)$. Since f is Z-irresolute, so by Theorem 2.2, there exists a Z-neighbourhood U of a_0 such that

 $f(U) \subseteq V$. From $a_0 \in Z$ -d(A), it follows that $U \cap A \neq \varphi$, therefore, at least one element $a \in U \cap A$ such that $f(a) \in f(A)$ and $f(a) \in V$. Since $f(a_0) \notin f(A)$, we have $f(a) \neq f(a_0)$. Thus every Z-neighbourhood of $f(a_0)$ contains an element of f(A) different from $f(a_0)$, consequently, $f(a_0) \in \mathbb{Z}$ -d(f(A)). This proves necessity of the condition.

Sufficiency. Assume that f is not Z-irresolute. Then by Theorem 2.2, there exists $a_0 \in X$ and a Z-neighbourhood V of $f(a_0)$ such that every Z-neighbourhood U of a_0 contains at least one element $a \in U$ for which $f(a) \notin V$. Put $A = \{a \in X :$ $f(a) \notin V$. Then $a_0 \notin A$ since $f(a_0) \in V$, and therefore $f(a_0) \notin f(A)$; also $f(a_0) \notin f(A)$. Z-d(f(A)), since $f(A) \cap (V \setminus \{f(a_0)\}) = \varphi$. It follows that $f(a_0) \in f(Z-d(A)) \setminus (f(A))$ \cup Z-d(f(A))) $\neq \varphi$, which is a contradiction to the given condition.

Theorem 2.4. Let $f: (X, \tau) \to (Y, \sigma)$ be a 1 - 1 mapping. Then f is Z-irresolute if and only if $f(Z-d(A)) \subseteq Z-d(f(A))$, for each $A \subseteq X$.

Proof. Necessity. Let f be Z-irresolute. Let $A \subseteq X$, $a_0 \in Z$ -d(A) and V be a Zneighbourhood of $f(a_0)$. Since f is Z-irresolute, so by Theorem 2.2, there exists a Z-neighbourhood U of a_0 such that $f(U) \subseteq V$. But $a_0 \in Z$ -d(A), hence there exists an element $a \in U \cap A$ such that $a \neq a_0$, then $f(a) \in f(A)$ and, since f is 1 -1, $f(a) \neq f(a_0)$. Thus every Z-neighbourhood V of $f(a_0)$ contains an element of f(A) different from $f(a_0)$, consequently $f(a_0) \in Z - d(f(A))$. We have $f(Z - d(A)) \subseteq$ Z-d(f(A)).

Sufficiency. It follows from Theorem 2.3.

Definition 2.2. [1] A mapping $f: (X, \tau) \to (Y, \sigma)$ is called Z-continuous if the inverse image of each open set of (Y, σ) is Z-open in (X, τ) .

Theorem 2.5. Let $f: (X, \tau) \to (Y, sigma)$ be a mapping, then the following statements holds:

(1) $g \circ f$ is Z-irresolute if both f and g are Z-irresolute.

(2) $g \circ f$ is Z-continuous if f is Z-irresolute and g is Z-continuous.

Definition 2.3. A space (X, τ) is called:

(1) Z-T₁- Space if for any pair of distinct points x, y of X, there is a Z-open set $U \subseteq X$ such that $x \in U$ and $y \notin U$ and there is a Z-open set $V \subseteq X$ such that $y \in U$ V and $x \notin V$.

(2) Z-T₂- Space if for each two distinct points $x, y \in X$, there exists two disjoint Z-open sets U, V with $x \in U, y \in V$.

Theorem 2.6. Let $f: (X, \tau) \to (Y, \sigma)$ be injective and Z-irresolute mapping. Then the followings are hold:

(1) If Y is Z-T₁-Space, then X is Z-T₁-Space,

(2) If Y is $Z-T_2$ -Space, then X is $Z-T_2$ -Space.

Proof. (1) Let x, y be any distinct points in X. Since f is injective and Y is a Z-T₁-Space, there exists two Z-open sets U and V in Y such that $f(x) \in U, f(y) \notin U$ or $f(y) \in V, f(x) \notin V$ with $f(x) \neq f(y)$. By using Z-irresoluteness of f, then $f^{-1}(U)$ and $f^{-1}(V)$ are Z-open sets in X such that $x \subseteq f^{-1}(U), y \notin f^{-1}(U)$ or $x \notin f^{-1}(V)$, $y \in f^{-1}(V)$. Therefore, X is a Z-T₁- Space.

(2) similar to (1).

Definition 2.4. A space (X, τ) is said to be Z-compact (resp. Z-Lindelöf) if every Z-open cover of X has a finite (resp. countable) subcover.

Theorem 2.7. Let $f : (X, \tau) \to (Y, \sigma)$ be surjection and Z-irresolute mapping. Then the followings are hold:

(1) If X is Z-compact, then Y is Z-compact.

(2) If X is Z-Lindelöf, then Y is Z-Lindelöf.

Proof. (1) Let $f : (X, \tau) \to (Y, \sigma)$ be surjection and Z-irresolute mapping and let U = {U_i: i ∈ I} be a cover of Y by U_i ∈ ZO(Y, σ), for each i ∈ I. Then O = { f^{-1} (U_i): i ∈ I} is a cover of X. Since f is Z-irresolute, then O is a Z-open cover of X which is Z-compact. Hence, there exists a finite subset I_o of I such that X = \bigcup_{i} { f^{-1} (U_i): i ∈ I_o} which implies X = $f^{-1}(\bigcup_{i} U_i)$ and therefore Y = \bigcup_{i} {U_i : i ∈ I_o}. This shows that Y is Z-compact.

(2) similar to (1).

Definition 2.5. A space (X, τ) is said to be Z-connected if it cannot be written as a union of two non-empty disjoint Z-open sets.

Theorem 2.8. Let $f : (X, \tau) \to (Y, \sigma)$ be Z-irresolute and X is Z-connected. Then Y is Z-connected.

Proof. Suppose that Y is not connected. Then there exist two non-empty disjoint Z-open sets U and V in X such that $Y = U \cup V$. Then $f^{-1}(U)$ and $f^{-1}(V)$ are non-empty disjoint Z-open sets in X with $X = f^{-1}(U) \cup f^{-1}(V)$ which contradicts the fact that X is Z-connected.

3. Z-OPEN AND Z-CLOSED MAPPINGS

Definition 3.1. A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be:

- (1) Z-open if the image of each open set in (X, τ) is Z-open sets in (Y, σ) .
- (2) Z-closed if the image of each closed set in (X, τ) is Z-closed sets in (Y, σ) .

Theorem 3.1. For a Z-open (resp. Z-closed) mapping. If $W \subseteq Y$ and $F \subseteq X$ is a closed (resp. open) set containing $f^{-1}(W)$, then there exists Z-closed (resp. Z-open) set $H \subseteq Y$ containing W such that $f^{-1}(H) \subseteq F$.

Proof. Let $H = Y \setminus f(X \setminus F)$. Since $f^{-1}(W) \subseteq F$ which is a closed set and $W \subseteq H, X \setminus F$ is an open set. Since f is Z-open mapping, then $f(X \setminus F)$ is Z-open set. Therefore H is Z-closed and $f^{-1}(H) = X \setminus f^{-1}f(X \setminus F) \subseteq F$.

While the second side of the theorem can be proved in the same manner. \Box

Theorem 3.2. Let $f : (X, \tau) \to (Y, \sigma)$ be Z-open and let $B \subseteq Y$. Then $f^{-1}(Z\text{-}cl(Z\text{-}int(Z\text{-}cl(B)))) \subseteq cl(f^{-1}(B))$.

Proof. Since $cl(f^{-1}(B))$ is closed in X containing $f^{-1}(B)$, then by Theorem 3.1, there exists a Z-closed set $B \subseteq H \subseteq Y$, such that $f^{-1}(H) \subseteq cl(f^{-1}(B))$. Thus, $f^{-1}(Z-cl(Z-int(Z-cl(B))) \subseteq f^{-1}(Z-cl(Z-int(Z-cl(H)))) \subseteq f^{-1}(H) \subseteq cl(f^{-1}(B))$. \Box

Theorem 3.3. For a mapping $f : (X, \tau) \to (Y, \sigma)$ the following statements are equivalent:

(1) f is Z-open,

(2) For each $x \in X$ and each nbd U of X, there exists $W \in ZO(X)$ containing f(x) such that $W \subseteq f(U)$,

(3) $f^{-1}(\operatorname{int}(\delta\operatorname{-cl}(\mathbf{B}))) \cap f^{-1}(\operatorname{cl}(\operatorname{int}(\mathbf{B}))) \subseteq \operatorname{cl}(f^{-1}(\mathbf{B}))$, for each $\mathbf{B} \subseteq \mathbf{Y}$,

(4) If f is bijective, then $int(\delta-cl(f(A))) \cap cl(int(f(A))) \subseteq f(cl(A))$, for each A $\subseteq X$.

Proof. $(1) \leftrightarrow (2)$. is immediately,

 $(1) \to (3)$. Let $B \subseteq Y$ and f is Z-open mapping. Then by Theorem 3.1, there exists Z-closed set $V \subseteq Y$ containing B such that $cl(f^{-1}(B)) \supseteq f^{-1}(B)$ $\supseteq f^{-1}(int(\delta-cl(V))) \cap f^{-1}(cl(int(V))) \supseteq f^{-1}(int(\delta-cl(B))) \cap f^{-1}(cl(int(B)))$ and therefore $f^{-1}(int(\delta-cl(B))) \cap f^{-1}(cl(int(B))) \subseteq cl(f^{-1}(B))$,

 $(3) \rightarrow (4)$. Let f be a bijective mapping and $f(A) \subseteq Y$ by $(3) f^{-1}(\operatorname{int}(\delta \operatorname{cl}(f(A)))) \cap f^{-1}(\operatorname{cl}(\operatorname{int}(f(A)))) \subseteq \operatorname{cl}(f^{-1}(f(A))) = \operatorname{cl}(A)$. Hence $\operatorname{int}(\delta \operatorname{cl}(f(A)))$ cap $\operatorname{cl}(\operatorname{int}(f(A))) \subseteq f(\operatorname{cl}(A))$,

 $(4) \to (1)$. Let $V \in \tau$, by (4), $f(cl(X \setminus V)) = f(X \setminus V) \supseteq int(\delta - cl(f(X \setminus V))) \cap cl(int(f(X \setminus V)))$. By bijection f, we have $f(V) \subseteq cl(\delta - int(f(V))) \cup int(cl(f(V)))$ and so f is Z-open.

Remark 3.1. The bijection condition in Theorem 3.3 (4) is necessary as shown by the following example.

Example 3.1. Let Y be the usual space of real numbers and X = (0,1) be an open sub space of Y. The mapping $f : X \to Y$ defined by f(x) = x, for every $x \in X$. Put M = X, then $cl(\delta - int(f(M))) = [0,1]$ and f(cl(M)) = X. Therefore $cl(\delta - int(f(M))) \cap int(cl(f(M))) \subseteq cl(\delta - int(f(M))) \not\subseteq f(cl(M))$.

Theorem 3.4. A mapping $f : (X, \tau) \to (Y, \sigma)$ is Z-open if and only if $f(int(A)) \subseteq Z-int(f(A))$, for each $A \subseteq X$.

Proof. (1) Let f be a Z-open mapping and $A \subseteq X$, then Z-int $(f(int(A))) = f(int(A)) \in ZO(Y)$. Therefore Z-int $(f(int(A))) = f44(int(A)) \subseteq Z-int(f(A))$.

Conversely. Let $U \in \tau$, and $f(U) = f(int(U)) \subseteq Z-int(f(U))$. Then f(U) = Z-int(f(U)). Thus, f(U) is Z-open in Y. Therefore, f is Z-open.

We remark that the equality does not hold in the preceding theorem as the following example. $\hfill \Box$

Example 3.2. Let $X = Y = \{1, 2\}$. Suppose is the indiscrete topology on X and is the discrete topology on Y. Let $f : (X, \tau) \to (Y, \sigma)$ the identity mappings and $A = \{1\}$. Then $\varphi = f(int(A)) \subseteq Z$ -int $(f(A)) = \{1\}$.

Theorem 3.5. A mapping $f : (X, \tau) \to (Y, \sigma)$ is Z-open if and only if $int(f^{-1}(B)) \subseteq f^{-1}(Z-int(B))$, for each $B \subseteq Y$.

Proof. Necessity. Let $B \subseteq Y$. Since $\operatorname{int}(f^{-1}(B)$ is open in X and f is Z-open, then $f(\operatorname{int}(f^{-1}(B)))$ is Z-open in Y. Also, we have $f(\operatorname{int}(f^{-1}(B))) \subseteq f(f^{-1}(B)) \subseteq B$. Hence, $f(\operatorname{int}(f^{-1}(B))) \subseteq \operatorname{Z-int}(B)$. Therefore, $\operatorname{int}(f^{-1}(B)) \subseteq f^{-1}(\operatorname{Z-int}(B))$.

Sufficiency. Let $A \subseteq X$. Then $f(A) \subseteq Y$. Hence by hypotheses, we obtain $int(A) \subseteq int(f^{-1}(f(A))) \subseteq f^{-1}(Z\text{-}int(f(A)))$. Thus $f(int(A)) \subseteq Z\text{-}int(f(A))$, for each $A \subseteq X$. Hence by Theorem 3.4, we have f is Z-open.

Theorem 3.6. A mapping $f : (X, \tau) \to (Y, \sigma)$ is Z-open if and only if ${}^{-1}(Z-Bd(A)) \subseteq Bd(f^{-1}(A))$, for each $A \subseteq X$.

Proof. It follows from Theorem 3.5.

Theorem 3.7. A mapping $f: (X, \tau) \to (Y, \sigma)$ is Z-open if and only if

 $f^{-1}(\mathbf{Z} - \mathrm{cl}(\mathbf{B})) \subseteq \mathrm{cl}(f^{-1}(\mathbf{B})),$

for each $B \subseteq Y$.

Proof. Necessity. Let $B \subseteq Y$ and let f be Z-open. Let $x \in f^{-1}(Z\text{-}cl(B))$. Then $f(x) \in Z\text{-}cl(B)$. Assume that $U \in \tau$ such that $x \in U$. Since f is Z-open, then f(U) is a Z-open set in Y. Hence, $B \cap f(U) \neq \varphi$. Thus $U \cap f^{-1}(B) \neq \varphi$. Therefore $x \in cl(f^{-1}(B))$. $f^{-1}(Z\text{-}cl(B)) \subseteq cl(f^{-1}(B))$.

Sufficiency. Let $B \subseteq Y$. Then $Y \setminus B \subseteq Y$. By hypotheses, $f^{-1}(Z-cl(Y \setminus B)) \subseteq cl(f^{-1}(Y \setminus B))$ and hence $X \setminus cl(X \setminus f^{-1}(B)) \subseteq X \setminus f^{-1}(Z-cl(Y \setminus B)) = f^{-1}(Y \setminus (Z-cl(Y \setminus B)))$ we obtain $int(f^{-1}(B)) \subseteq f^{-1}(Z-int(B))$. By Theorem 3.5, we have f is Z-open. \Box

Theorem 3.8. A mapping $f: (X, \tau) \to (Y, \sigma)$ is Z-closed if and only if

$$\mathbf{Z} - \mathrm{cl}(f(\mathbf{A})) \subseteq f(\mathrm{cl}(\mathbf{A})),$$

for each $A \subseteq X$.

Proof. Necessity. Let f be Z-closed mapping and $A \subseteq X$. Then $f(A) \subseteq f(cl(A))$. But f(cl(A)) is a Z-closed in Y. Therefore, $Z-cl(f(A)) \subseteq f(cl(A))$.

Conversely, suppose that $\operatorname{Z-cl}(f(A)) \subseteq f(\operatorname{cl}(A))$, for each $A \subseteq X$. Let $A \subseteq X$ be a closed. Then $\operatorname{Z-cl}(f(A)) \subseteq f(\operatorname{cl}(A)) = f(A)$. Hence f(A) is Z-closed in Y. Therefore, f is Z-closed.

Theorem 3.9. Let $f : (X, \tau) \to (Y, \sigma)$ be Z-closed. Then

$$Z - int(Z - cl(f(A))) \subseteq f(cl(A)),$$

for each $A \subseteq X$.

Proof. Suppose f is a Z-closed mappings and $A \subseteq X$. Then f(cl(A)) is Z-closed in Y. Then Z-int(Z-cl(cl(f(A)))) $\subseteq f(cl(A))$. But Z-int(Z-cl(f(A))) \subseteq Z-int(Z-cl(cl(f(A)))). Therefore, Z-int(Z-cl(f(A))) $\subseteq f(cl(A))$.

Theorem 3.10. Let $f : (X, \tau) \to (Y, \sigma)$ be Z-closed and B, C \subseteq Y.

(1) If U is an open neighbourhood of $f^{-1}(B)$, then there exists a Z-open neighbourhood V of B such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$.

(2) If f is onto, then if $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint open neighbourhood so have B and C.

Proof. (1) Let $V = Y \setminus f(X \setminus U)$. Then $V^c = Y \setminus V = f(U^c)$. Since f is Z-closed, so V is a Z-open set. Since $f^{-1}(B) \subseteq U$, we have $V^c = f(U^c) \subseteq f(f^{-1}(B^c)) \subseteq B^c$. Hence, $B \subseteq V$ and thus V is a Z-open neighbourhood of B. Further $U^c \subseteq f^{-1}(f(U^c)) = f^{-1}(V^c) = (f^{-1}(V))^c$. Therefore, $f^{-1}(V) \subseteq U$.

(2) If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint open neighbourhood M and N, then by (1), we have Z-open neighbourhoods U and V of B and C respectively such that $f^{-1}(B) \subseteq f^{-1}(U) \subseteq Z$ -int(M) and $f^{-1}(C) \subseteq f^{-1}(V) \subseteq Z$ -int(N). Since M and N are disjoint, so are Z-int(M) and Z-int(N) and hence so $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint as well. It follows that U and V are disjoint too as f is onto.

Theorem 3.11. For a bijective mapping $f : (X, \tau) \to (Y, \sigma)$ the following are equivalent:

(1) f^{-1} is Z-continuous,

(2) f is Z-open,

(3) f is Z-closed.

Proof. (1) \rightarrow (2). Let V $\in \tau$ and f^{-1} be Z-continuous, by bijective of f. Then $(f^{-1})^{-1}(V) = f(V) \in ZO(Y)$ and therefore f is Z-open mapping,

 $(2) \rightarrow (3)$. Let V be closed in X. Then X\U is open in X, by (2), $f(X\setminus U)$ is Z-open in Y. But $f(X\setminus U) = f(X)\setminus f(U) = Y\setminus f(U)$. Thus f(U) is Z-closed in Y. Therefore f is Z-closed.

(3) → (1). Let V ∈ τ , by (3), we have $f(X \setminus V)$ is Z-closed in Y and hence, $f(V) = (f^{-1})^{-1}(V) \in ZO(Y)$. Therefore, f^{-1} is Z-continuous.

Remark 3.2. The composition of two Z-open (resp. Z-closed) mapping may not be Z-open (resp. Z-closed). The following example shows this fact.

Example 3.3. Let X = {a, b, c, d, e, h} and Y = Z = {a, b, c, d, e} with topology $\tau_x = \{\varphi, \{a, e\}, X\}$, an indiscrete topology (Y, \Im) and $\tau_z = \{\varphi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, Z\}$. A mapping $f : (X, \tau_x) \to (Y, \Im)$ defined as f(a) = a, f(b) = b, f(c) = c, f(d) = f(h) = d, f(e) = e and the identity mapping $g : (Y, \Im) \to (Z, \tau_z)$. It is clear of f and g is Z-open but $g \circ f$ is not Z-open.

Theorem 3.12. Let $f : (X, \tau_X) \to (Y, \tau_Y)$ and $g : (Y, \tau_Y) \to (Z, \tau_Z)$ be two mappings. Then the following statements hold:

(1) If f is surjective open (resp. closed) and g is Z-open, then $g \circ f$ is Z-open (resp. Z-closed),

(2) If $g \circ f$ is Z-open (resp. Z-closed) and f is surjective continuous, then g is Z-open (resp. Z-closed),

(3) If $g \circ f$ is open (resp. closed) and g is injective Z-continuous, then f is Z-open (resp. Z-closed).

Theorem 3.13. Let $f : (X, \tau) \to (Y, \sigma)$ be a Z-open bijection. Then the following are hold

(1) If X is Z-T₁-Space, then Y is Z-T₁-Space,

(2) If X is Z-T₂-Space, then Y is Z-T₂-Space.

Theorem 3.14. Let $f : (X, \tau) \to (Y, \sigma)$ be a Z-open bijection. Then the following are hold

(1) If Y is Z-compact, then X is Z-compact.

(2) If Y is Z-Lindelöf, then X is Z-Lindelöf.

Theorem 3.15. Let $f : (X, \tau) \to (Y, \sigma)$ be a Z-open surjection and Y is Z-connected. Then X is Z-connected.

4. PRE-Z-OPEN AND PRE-Z-CLOSED MAPPING

Definition 4.1. A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be pre-Z-open (resp. pre-Z-closed) if $f(V) \in ZO(Y, \sigma)$ (resp. $ZC(Y, \sigma)$), for each $V \in ZO(X, \tau)$ (resp. $ZC(X, \tau)$).

Theorem 4.1. A mapping $f : (X, \tau) \to (Y, \sigma)$ is pre-Z-closed if and only if for each $S \subseteq Y$ and each $U \subseteq ZO(X, \tau)$ containing $f^{-1}(S)$, there exists $V \in ZO(Y, \sigma)$ containing S such that $f^{-1}(V) \subseteq U$. Proof. Let $S \subseteq Y$ and $f^{-1}(S) \subseteq U$. Put $V = Y \setminus f(X \setminus U)$, then $V \in ZO(Y, \sigma)$. Since $f^{-1}(S) \subseteq U$, then $f(X \setminus U) \subseteq ff^{-1}(Y \setminus S) \subseteq Y \setminus S$ and therefore $f^{-1}(V) \subseteq U$. Conversely, let F be a Z-closed in (X, τ) . For any $y \in Y \setminus f(F)$, then $f^{-1}(y) \in X \setminus F \in ZO(X, \tau)$. Hence there exists $V_y \in ZO(Y, \sigma)$ containing y such that $f^{-1}(V_y) \subseteq X \setminus F$, which implies $y \in V_y \subseteq Y \setminus f(F)$. So $Y \setminus f(F) = \bigcup \{V_y \colon y \in Y \setminus f(F)\}$ and therefore f(F), F is Z-closed in (Y, σ) .

Theorem 4.2. A mapping $f : (X, \tau) \to (Y, \sigma)$ is pre-Z-open if and only if $f(Z-int(A)) \subseteq Z-int(f(A))$, for each $A \subseteq X$.

Proof. The proof is similar as Theorem 3.4.

We remark that the equality does not hold in Theorem 4.3, as the following example shows.

Example 4.1. Let $X = \{1, 2\}$. suppose that (X, τ_1) is the indiscrete space and (X, τ_2) is the discrete space. Let $f = Id : (X, \tau_1) \to (X, \tau_1)$. Let $A = \{1\}$. Then $\emptyset = f(Z\operatorname{-int}(A)) \neq Z\operatorname{-int}(f(A)) = \{1\}$.

Theorem 4.3. A mapping $f : (X, \tau) \to (Y, \sigma)$ is pre-Z-open if and only if $Z\operatorname{-int}(f^{-1}(B)) \subseteq f^{-1}(Z\operatorname{-int}(B))$, for all $B \subseteq Y$.

Proof. The proof is similar as Theorem 3.5.

Theorem 4.4. A mapping $f : (X, \tau) \to (Y, \sigma)$ is pre-Z-open if and only if $f^{-1}(Z-Bd(B)) \subseteq Z-Bd(f^{-1}(B))$, for all $B \subseteq Y$.

Proof. It follows from Theorem 4.3.

Theorem 4.5. A mapping $f : (X, \tau) \to (Y, \sigma)$ is pre-Z-open if and only if $f^{-1}(Z\text{-}cl(B)) \subseteq Z\text{-}cl(f^{-1}(B))$, for all $B \subseteq Y$.

Proof. The proof similar as Theorem 3.7.

Theorem 4.6. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping such that $f(Z-int(A)) \subseteq cl(\delta-int(f(A)))$, for every subset A of X. Then f is pre-Z-open.

Proof. Suppose A is an Z-open set in X. Then by hypothesis, we have

$$f(\mathbf{A}) = f(\mathbf{Z} - int(\mathbf{A})) \subseteq cl(\delta - int(f(\mathbf{A}))).$$

Take $B = \delta$ -int(f(A)). Then B is δ -open in Y. Also it implies that $B \subseteq f(A) \subseteq$ cl(B). Hence f(A) is δ -semiopen in Y. Since δ SO(Y) \subseteq ZO(Y). Thus f(A) is Z-open in Y. This implies that f is pre-Z-open.

Theorem 4.7. A mapping $f : (X, \tau) \to (Y, \sigma)$ is pre-Z-closed if and only if Z-cl $(f(A)) \subseteq f(Z-cl(A))$, for all $A \subseteq X$.

Proof. Necessity. Suppose f is a pre-Z-closed mapping and A is an arbitrary subset of X. Then f(Z-cl(A)) is Z-closed in Y. Since $f(A) \subseteq f((Z-cl(A)))$, we obtain

$$Z - cl(f(A)) \subseteq f(Z - cl(A)).$$

Sufficiency. Suppose F is an arbitrary Z-closed set in X. By hypothesis, we obtain $f(F) \subseteq Z\text{-}cl(f(F)) \subseteq f(Z\text{-}cl(F)) = f(F)$. Hence f(F) = Z-cl(f(F)). Thus f(F) is Z-closed in Y. It follows that f is pre-Z-closed.

Theorem 4.8. Let $f : (X, \tau) \to (Y, \sigma)$ be a pre-Z-closed function, and B, C \subseteq Y.

(1) If U is a Z-open neighbourhood of $f^{-1}(B)$, then there exists a Z-open neighbourhood V of B such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$.

(2) If f is also onto, then if $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint neighborurhoods, so have B and C.

Proof. The proof is similar as Theorem 3.9.

Theorem 4.9. Let $f : (X, \tau) \to (Y, \sigma)$ be a bijection. Then the following are equivalent:

(1) f is pre-Z-closed,

(2) f is pre-Z-open,

(3) f^{-1} is Z-irresolute.

Proof. (1) → (2) Let U ∈ ZO(X, τ). Then X\U is Z-closed in X. By (1), $f(X\setminus U)$ is Z-closed in Y. But $f(X\setminus U) = f(X)\setminus f(U) = Y\setminus f(U)$. Thus f(U) is Z-open in Y.

 $(2) \rightarrow (3)$ Let $A \subseteq X$. Since f is pre-Z-open, so by Theorem 4.2, $f^{-1}(Z\text{-cl}(f(A))) \subseteq Z\text{-cl}(f^{-1}(f(A)))$. It implies that $Z\text{-cl}(f(A)) \subseteq f(Z\text{-cl}(A))$. Thus $Z\text{-cl}((f^{-1})^{-1}(A)) \subseteq (f^{-1})^{-1}(Z\text{-cl}(A))$, for all $A \subseteq X$. Then by Theorem 4.2, it follows that f^{-1} is Z-irresolute.

(3) → (1) Let A be an arbitrary Z-closed set in X. Then X\A is Z-open in X. Since f^{-1} is Z-irresolute, $(f^{-1})^{-1}(X \setminus A)$ is Z-open in Y. But $(f^{-1})^{-1}(X \setminus A) = f(X \setminus A) = Y \setminus f(A)$. Thus f(A) is Z-closed in Y. \Box

Theorem 4.10. Let $f : (X, \tau_X) \to (Y, \tau_Y)$ and $g : (Y, \tau_Y) \to (Z, \tau_Z)$ be two mappings such that $g \circ f : (X, \tau_X) \to (Z, \tau_Z)$ is Z-irresolute. Then:

(1) If g is a pre-Z-open injection, then f is Z-irresolute.

(2) If f is a pre-Z-open surjection, then g is Z-irresolute.

Proof. (1) Let $U \in ZO(Y, \tau_Y)$. Then $g(U) \in ZO(Z, \tau_Z)$, since g is pre-Z-open. Also $g \circ f$ is Z-irresolute. Therefore, $(g \circ f)^{-1}(g(U)) \in ZO(X, \tau_X)$. Since g is an injection, so we have $(g \circ f)^{-1}(g(U)) = (f^{-1} \circ g^{-1})(g(U)) = f^{-1}(g^{-1}(g(U))) = f^{-1}(U)$. Consequently $f^{-1}(U)$ is Z-open in X. This proves that f is Z-irresolute.

(2) Let $V \in ZO(Z, \tau_Z)$. Then $(g \circ f)^{-1}(V) \in ZO(X, \tau_X)$, since $g \circ f$ is Z-irresolute. Also f is pre-Z-open, $f((g \circ f)^{-1}(V))$ is Z-open in Y. Since f is surjective, we note that $f((g \circ f)^{-1}(V)) = (f \circ (g \circ f)^{-1})(V) = (f \circ (f^{-1} \circ g^{-1}))(V) = ((f \circ f^{-1}) \circ g^{-1})(V) = g^{-1}(V)$. Hence g is Z-irresolute.

Theorem 4.11. For a mappings $f : (X, \tau_X) \to (Y, \tau_Y)$ and $g : (Y, \tau_Y) \to (Z, \tau_Z)$, then

(1) $g \circ f$ is pre-Z-open (resp. pre-Z-closed) if both f and g are pre-Z-open (resp. pre-Z-closed).

(2) $g \circ f$ is Z-open (resp. Z-closed) if f is Z-open (resp. Z-closed) and g are pre-Z-open (resp. pre-Z-closed).

(3) If f is Z-continuous surjection and $g \circ f$ is pre-Z-open (resp. pre-Z-closed), then g is Z-open (resp. Z-closed).

Proof. It is clear.

Theorem 4.12. Let $f : (X, \tau) \to (Y, \sigma)$ be a pre-Z-open bijection. Then the following are hold

(1) If X is $Z-T_1$ -Space, then Y is $Z-T_1$ -Space,

(2) If X is Z-T₂-Space, then Y is Z-T₂-Space.

Theorem 4.13. Let $f : (X, \tau) \to (Y, \sigma)$ be a pre-Z-open bijection. Then the following are hold

(1) If Y is Z-compact, then X is Z-compact.

(2) If Y is Z-Lindelöf, then X is Z-Lindelöf.

Theorem 4.15. Let $f : (X, \tau) \to (Y, \sigma)$ be be a pre-Z-open bijection and Y is Z-connected. Then X is Z-connected.

REFERENCES

- EL-Magharabi, A. I., & Mubarki, A. M. (2011). Z-open sets and Z-continuity in topological spaces. *International Journal of Mathematical Archive (IJMA)*, 2(10), 1819-1827.
- [2] Park, J. H., Lee, B. Y., & Son, M. J. (1997). On δ-semiopen sets in topological spaces. J. Indian Acad. Math., 19(1), 59-67.
- [3] Stone, N. V. (1937). Application of the theory of Boolean rings to general topology. TAMS, 41, 375-381.
- [4] Velicko, N. V. (1968). H-closed topological spaces. Amer. Math. Soc. Transl., 78, 103-118.