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Abstract: The study introduced an algorithm for generating optimal
split-plot designs. The designs were considered as optimal because they
were capable and efficient in estimating the fixed effects of the statistical
model that is appropriate given the split-plot design structure. Here, we
introduced I-optimal design of split-plot experiments. The algorithm used
in this research does not require the prior specification of a candidate
set. Therefore, making the design of split-plot experiments computationally
feasible in situations where the candidate set is too large to be tractable.
Flexible choice of the sample size, inclusion of both continuous and categorical
factors were allowed by this method. We show through an example the
substantial benefits of this method.
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1. INTRODUCTION

Due to cost constraints and logistic problems, complete randomization of designs
for industrial experiments may be difficult. A reasonable alternative to complete
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randomization is the split-spot design, which involves a restricted randomization.
The presence of factors whose level are hard-to-change, in addition to factors whose
level are easy to change is the main reason why a lot of experiments avoid complete
randomization.

In the past few years, increasing attention has been given to the prediction-
oriented optimal design criterion. That is, the I-optimality criterion (also known
as V-optimality), IV-optimality or Q-optimality due to its usefulness.

Goos and Vandebroek (2001) developed a design construction algorithm that
computes the optimal number of whole plots and the whole plot sizes with respect
to D-optimality criterion. A candidate set-free algorithm for generating D-optimal
split-plot designs was developed by Goos and Jones (2007).

In Haines (1987), Meyer and Nachtsheim (1988, 1995) and Hardin and Sloane
(1993) the generation of I-optimal completely randomized designs (which minimizes
the average prediction variance) is discussed. Hardin and Sloane (1993) demon-
strated that D-optimal response surface designs perform poorly in terms of the
I-optimality criterion while I-optimal designs perform reasonably well with respect
to theD-optimality criterion, when the experimental region in cuboidal. Completely
randomized response surface experiment involving three-level categorical factors,
where the performance of the I-optimal design in terms of the D-optimality
criterion is much better than the performance of the D-optimal design in terms
of the I-optimality criterion was reported in Goos and Jones (2011). The reasons
stated above is responsible for why we prefer to minimize the average variance
of prediction and focus on I-optimal split-spot designs. The model used for data
from split-spot experiments is described in this work. The model estimation is
discussed. The D-optimality criterion and the I-optimality criterion are defined.
We therefore indicate how to qualify the relative performance of two designs using
D- or I-efficiency.

2. STATISTICAL MODEL AND ANALYSIS

To analyze data from a split-spot experiment with b whole plots of k runs the model
used is:

Yij = f ′(xij)β + γi + εij (2.1)

Where Yij represent the response measured at the jth run in the ith whole plot,
xij is a vector that contains the levels of all the experimental factors at the jth run
in the ith whole plot, f ′(xij) is its model expansion, and β contains the intercept
and all the factor effects that are in the model. γi represents the random effect of
the ith whole plot and εij is the error associated with the jth run in the whole plot
ith. The dimension of f ′(xij) and β is denoted by p.

In a split-spot experiment two factors are involved and we denote the Nw hard-
to-change factors with the symbol w1, ..., wnw or w, while the Ns easy-to-change
factors are represented by the symbol S1, ..., Sns or S.

This gives the split-spot model as

Yij = f ′(wi, sij)β + γi + εij (2.2)

Such that Wi represents the settings of the hard-to-change factors in the ith
whole plot and Sij shows the setting of the easy-to-change factors at the jth run
within the whole plot.
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In matrix notation a split-plot experiment with sample size of n and b whole
plots, the model is:

Y = Xβ + zγ + ε, (2.3)

Where Y is the vector of responses, X represents the n × p model matrix
containing the setting of both the whole-plot factors w and the sub-plot factors
and their model expansions, β is the P -dimensional vector containing the P fixed
effects in the model, Z is an n× b matrix of zeroes and ones assigning the n runs to
the b whole plots. The term γ is the b-dimensional vector containing the random
effects of the b whole plots and ε is the n-dimensional vector containing the random
errors.

It is assumed that

E(ε) = On and cov(ε) = σ2
εIn, (2.4)

E(γ) = Ob and cov(γ) = σ2
γIb, (2.5)

Cov(γ, ε) = Obxn (2.6)

Using these assumptions, the covariance matrix of the responses, V ar(γ), is

V = σ2
εIn + σ2

γZZ
′, (2.7)

If the entries of γ are arranged per whole plot, then

V = diag(V ∗, . . . . . . , V ∗), (2.8)

V ∗ = σ2
εIk + σ2

γ lkl
′
k,= σ2

ε(Ik + η′lkl
′
k), (2.9)

k is the number of runs in each whole plot and the variance ratio η = σ2
r/σ

2
ε is

a measure for the extent to which response from runs within the same whole plot
are correlated. The larger η, the more the responses within one whole plot are
correlated.

When the random error terms as well as the whole-plot effects are normally
distributed, the maximum likelihood estimate of the unknown model parameter
vector β is generalized least square estimator

β = (x′v−1x)−1x′v−1Y, (2.10)

With covariance matrix

V ar(β) = (x′V −1X)−1 (2.11)

The information matrix for the parameter vector β is given by

M = x′v−1x (2.12)

3. OPTIMALITY CRITERIA

3.1. D-Optimality Criterion

The D-optimality criterion is the most popularly used criterion to select experimen-
tal designs. It maximizes the determinant of the information matrix,

|M | = |X ′V −1X| (3.0)
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D-efficiency is used in comparing the quality of two designs with information
matrices M1 and M2. The D-efficiency of any given design with M1 as information
matrix relative to a design with information matrix M2 is:

D − efficiency =

(
|M1|
|M2|

)1/p

(3.1)

When the value of D-efficiency is larger than 1, it indicates that design 1 is
better than design 2 in terms of the D-optimality criterion. Split-plot designs were
constructed using D-optimality criterion by Goos and Vandebroek (2001, 2003,
2004), Jones and Goos (2007), Macharia and Goos (2010) and Schoen, Jones and
Goos (2011).

Generally, the D-optimality design depends on the variance ratio η through the
covariance matrix V of the responses, as does the D-efficiency of one design relative
to another.

3.2. I-Optimality Criterion

The I-optimality split-plot design minimizes the average prediction variance.

Average variance =

∫
χ

f ′(x)(X ′V −1X)−1f(x)dx (3.2)

Over the design region χ. The above expression for an arbitrary model is
not difficult to calculate. For N quantitative experimental variables, while the
experiment region is [−1,+1]

n
, the volume of the experimental design in the

denominator is 2N . f ′(x)(X ′V −1X)−1f(x), the variance of prediction is a scalar,
such that

f ′(x)(X ′V −1X)−1f(x) = tr
[
f ′(x)(X ′V −1X)−1f(x)

]
(3.2.1)

When evaluating the trace of a matrix product, we can cyclically permit the
matrices. Hence,

tr
[
f ′(x)(X ′V −1X)−1f(x)

]
= tr

[
(X ′V −1X)−1f(x)f ′(x)

]
(3.2.2)∫

χ

tr
[
f ′(x)(X ′V −1X)−1f(x)

]
dx = tr

[∫
χ

(X ′V −1X)−1f(x)f ′(x)dx

]
(3.2.3)

It should be noted that since the factor level setting are fixed, the matrix X,
and hence (x′v−1x)−1, is constant as far as this integration is concerned. Hence,∫

χ

f ′(x)(X ′V −1X)−1f(x)dx = tr

[
(X ′V −1X)−1

∫
χ

f(x)f ′(x)dx

]
(3.4)

Therefore the average prediction variance can be rewritten as:

Average variance = 2−N tr

[
(X ′V −1X)−1

∫
χ

f(x)f ′(x)dx

]
(3.5)

Therefore the average prediction variance can be rewritten as:

Average variance = 2−N tr

[
(X ′V −1X)−1

∫
χ

f(x)f ′(x)dx

]
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The integral in Equation 3.2 is applied to a matrix of one-term monomials. This
notation is to be interpreted as the matrix of integrals of these monomials.

If χ = [−1,+1]N is the experimental region, then the integral becomes quite
easy to manipulate. If

B =

∫
χ=[−1,+1]N

f(x)f ′(x)dx (3.5.1)

Then,
Average variance = 2−N tr

[
(X ′V −1X)−1B

]
(3.5.2)

B is called the moment’s matrix. B has a very specific structure for full quadric
model as pointed out by Hardin and Sloane (1991). That is:

B = 2N


1 O′N O′N∗ 1

31′N
ON

1
31N ON×N∗ ON×N

ON∗ ON∗×N
1
91N∗ ON∗×N

1
31N ON×N ON×N∗

1
45 (4IN + 5JN )

 (3.5.3)

Such that N = Nw +Ns is the number of factors and N∗ = N(N − 1)/2 is the
number of two factor interaction effects. Given that P1 is the average variance of
prediction of one design and P2 is the average variance of prediction of a second
design, the I-efficiency of the former design compared to the latter is

I − efficiency = P2/P1

Note that, I-efficiency larger than 1 indicates that design 1 is better than design
2 in terms of the average prediction variance. I-optimal design and the I-efficiency
of one design relative to another depend on the variance ration η through the
covariance matrix V .

4. THE VARIANCE COMPONENTS

The shortcoming with determining the D- or I-optimal split-plot design is that the
matrix V and the D- and I-optimality criteria depends on the unknown variances
σ2
y and σ2

ε .
An educated guess of the variance ratio is good enough in order to generate an

optimal design, since a design that is optimal for one variance ratio is also optimal
for a broad range of variance ratios around the specified one.

At times, different variance ratios lead to different designs, however the quality
of these designs in almost the same. Goos (2002) recommended a variance ratio of
one for finding optimal split-plot designs in the absence of detailed prior information
about the design is at available.

5. ALGORITHM

This algorithm avoids the need for the explicit construction of a candidate set.
A rough general description of our candidate-set-free algorithm for generating I-
optimal split-plot designs is presented here. This work is actually an extension
of the candidate-set-free algorithm for generating D-optimal designs by Goos and
Jones (2007). The pseudo code of the algorithm is provided below.

The algorithm requires the prior specification of the following:
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i. For each factor whether it is continuous, categorical or a mixture ingredient
ii. Designation of the factors that are hard to change
iii. Any additional constraints on factor combinations
iv. The number b and size of the whole plots (which yields the sample size)
v. The ratio n of the whole plot to the error variance
vi. The a priori model and
vii. The number of starting designs or tries t to be considered.
With the above information in place, the algorithm is in two parts. Part

1 of the algorithm deals with the creation of a starting design. Part 11 deals
with the iterative improvement of this design until no further improvement are
possible. Improvement is determine by the decrease in the objective function
2−N tr[(X ′V −1X)−1B]. These two parts of the algorithm are performed t times.

The value of Ic that is computed in the current iterate is compared with the
minimum value of Ic from all the previous iterates. If the current value of I is
lower, then it becomes the new minimum and the current design is stored.

We form the starting design column by column. We choose randomly the values
for each row for the subplot factor columns. The b random numbers are chose for
the whole-plot factor columns. All the rows in a given whole plot have the same
value. The desired split-plot structure for the starting design is obtained through
this procedure. The starting design can be improved upon by considering changes
in the design element by element. This depends on whether that element is in a
subplot factor column or a whole-plot factor column.

Where, an element is in a subplot factor column, the objective function is
evaluated over a discrete number of values spanning the range of that factor. If the
minimal value of the objective function is smaller than the current minimum, then
the current minimum is replace and the current element in the design is replaced
by the factor setting corresponding to the minimal value.

For an element in a whole-plot factor column the procedure is more involved. If
this element changes then, all the elements in the same whole plot for that column
must also change. Here, we consider a discrete number of values for that whole-plot
value taken. Also, if the minimal value of the objective function is smaller than the
current minimum, then the current minimum is replaced and all the rows in that
whole plot are replaced by the factor setting corresponding to the minimal value.

We continue this element-by-element procedure until a complete cycle through
the entire design has been completed. Then, another complete cycle through the
design is performed noting whether any element changes in the current pass. This
continues until no changes are made in a whole pass or until a specified maximum
number of passes have been executed.

5.1. Algorithm: Pseudo Code (I-Optimality Criterion)

It is assumed that all whole-plot sizes in the design are equal to k and that all
factors are continuous. It is also assumed that the values of mw whole-plot factors
have been arranged in the first mw columns of the design matrix and the ms subplot
factors have been arranged in the columns from mw + 1 to mw +ms.

The current best I-criterion value found by the algorithm is denoted by Iopt. The
current I-criterion value during a try denoted by Ic. We assume that an appropriate
discretization of the range for each continuous factor has been generated. The
number of values for the discretized factor i is denoted by Li and the set of values
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by Fi = {
∫
ij
, ...,

∫
iLi
}. Conclusively, we represent the number of tries by t and the

number of current try by tc.
Step 1: set Iopt = 0 and tc = 1.
Step 2: generate the starting design.
a) Randomly generate values for the mw whole-plot factor.
i. Set i = 1.
ii. Set j = 1.
iii. Randomly generate a value for whole-plot factor j in whole plot i.
iv. Assign that value to rows k(i− 1) + 1 to ki of column j of the factor settings

matrix.
v. If j < mw, then set j = j + 1 and go back to step 2, part (a) (iii).
vi. If i < b, then set i = i+ 1 and go back to step 2, (a) (ii).
b) Randomly generate levels for the ms subplot factors.
i. Set i = 1.
ii. Set j = 1.
iii. Randomly generate a value for subplot factor j in run i.
iv. Assign that value to cell (i,mw + j) of the design matrix.
v. If j < m, then set j = j + 1 and go back to step 2, part (b) (iii).
vi. If i < n, then set i = i+ 1 and go back to step 2, part (b) (ii).
Step 3: compute the I-criterion value I of the starting design.
Step 4: improve the current design.
a) Set k = 0.
b) Set i = 1.
c) Improve whole-plot factor levels in whole plot i.
i. Set j = 1.
ii. Set δ = 0.
iii. ∀fij ∈ Fi:
A. Replace the value of whole-plot factor j with fjι in rows k(i− 1) + 1 to ki of

the factor setting matrix;
B. Compute the I-criterion value Iι of the modified design;
C. If I1 > I, then set k = 1, δ = 1, I = Iι and ιmax = ι.
iv. If δ = 1, then replace the value of whole-plot factor j with the ιmaxth element

of F1 in rows k(i− 1) + 1 to ki of the factor settings matrix.
v. If j < mw then set j = j + 1 and go back to step 4, part (c) (ii).
d) Improve subplot factor level for all k runs in whole plot i.
i. Set r = 1.
ii. Set j = 1.
iii. Set δ = 0.
iv. ∀fmw+j,ι ∈ Fm+j .
A. Replace the value of subplot factor j with ∀fm+j,ι, in cell (k(i−1)+r,mw+j)

of the factor settings matrix;
B. Compute the D-criterion value Dι of the modified design;
C. If Iι > I, then set k = 1, δ = 1, I = Iι and ιmw = ι.
v. If δ = 1, then replace the value of subplot factor j with fm+j,ιmax

in cell
(k(i− 1) + r,mw + j) of the factor settings matrix.

vi. If j < ms, then set j = j + 1 and go back to step 4, part (d)(iii).
vii. If r < k, then set r + 1 and go back to step 4, part (d)(ii).
Step 5: if ι < b, then set i = i+ 1 and go back to step 4, part (c).
Step 6: if k = 1, then go back to step 4, part (a).
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Step 7: if I > Iopt, then set Iopt = I and store the current design.

Step 8: if tc < t, then tc = tc + 1 and go to step 2: otherwise stop.

5.2. Implementation of I-Optimal Criterion for Split-Plot Designs

There is presently expanding literature on the design of split-plot experiments, after
many years of comparative neglect. Goos (2002) published a book on the treatment
of blocked and split-plot experiments. Goos and Vandebroek (2004) allow for the
different costs of changing the levels of two kinds of factor. Jones and Nachtsheim
(2009) discussed split-plot: what, why and how.

If logistic reasons make changing the level of the first factor very difficult so that
it is necessary to divide the 20 runs in a given experiment into four whole plots
of five runs such that within each group of runs, the first factor level remains the
same, this leads to a split-plot structure for the design.

Table 1
I-Optimal 20-Runs Split-Plot Designs in Four Whole Plots
of Size Five for Estimating a Full Quadratic Model in One
Whole Plot Factor W and One Sub-Plot Factor S

I - optimal

Whole plot w s

1 -1 -1

1 -1 -1

1 -1 0

1 -1 1

1 -1 1

2 0 -1

2 0 0

2 0 0

2 0 0

2 0 1

3 0 -1

3 0 0

3 0 0

3 0 0

3 0 1

4 1 -1

4 1 -1

4 1 0

4 1 1

4 1 1
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Table 2
Relative Variances of Factor-Effect Estimates Obtained
from I-Optimal Split-Plot Designs in Table 1

η = 0.1 η = 1 η = 10

Effect I-opt I-opt I-opt

Intercept 0.190 0.640 5.140

w 0.150 0.600 5.100

s 0.083 0.083 0.083

ws 0.125 0.125 0.125

w2 0.340 1.240 10.240

s2 0.250 0.250 0.250

Average (incl. intercept) 0.190 0.490 3.490

Average (excl. intercept) 0.190 0.460 3.160

6. CONCLUSION

In this work, the model used for data is obtained from split-plot experiments.
The model estimation was described. The D-optimality criterion as well as the
I-optimality criterion was defined and evaluated. A new algorithm for generating
I-optimal split-plot designs was developed. A theoretical example was used in
testing the feasibility of this algorithm.
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