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Abstract: In this paper, we will study a symmetric competitive three-
dimensional system of difference equations in the form:

xn+1 =
xn
znyn

& yn+1 =
yn
xnzn

& zn+1 =
zn
ynxn

(1)

where the initial values x0, y0, and z0 are nonzero real numbers. Moreover,
we have studied periodicity of solutions for this system. Finally we will give
some numerical examples as applications.
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1. INTRODUCTION

Recently, there has been great interest in studying systems of difference equations.
One of the reasons for this is a necessity for some techniques which can be
used in investigating equations arising in mathematical models [11] describing real
life situations in population biology [7], economic, probability theory, genetics,
psychology, etc.
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The study of properties of rational difference equations and systems of rational
difference equations has been an area of interest in recent years, see book [10] and
the references therein [6].

A first order system of difference equations

xn+1 = f(xn, yn) & yn+1 = g(xn, yn) (2)

where n = 0, 1, ..., (x0, y0) ∈ R,R ⊂ R, (f, g) : R→ R.
f, g are continuous function is competitive, if f(x, y) is non-decreasing in x and

non-increasing in y; and g(x, y) is non-increasing in x and non-decreasing in y.
System (2) where the functions f and g have monotonic character opposite of the
monotonic character in competitive system will be called anti-competitive.

It is well known that the dynamical properties of competitive populations have
received great attention from both theoretical and mathematical biologists [16]
due to its universal prevalence and importance. Competitive and anti-competitive
systems were studied by many authors [1–4,7,8,14–16].

In a modeling setting, the two-dimensional competitive system of nonlinear
rational difference equations

xn+1 =
xn

a+ yn
& yn+1 =

yn

b+ xn

where the parameters a, b and c are positive, represents the rule by which two
discrete, competitive populations reproduce from one generation to the next. The
phase variables xn and yn denote population sizes during the n-th generation
and sequence or orbit {(xn, yn) : n = 0, 1, ...} describes how the populations
evolve over time. Competitive between the populations is reflected by the fact
that the transition function for each population is a decreasing function of the
other population size. For instance, Hassell and Comins [11] studied a discrete
(difference) single age-class model for two-species competition and its stability
properties discussed.

There are many papers in which systems of difference equations have studied.
For some other recent papers on systems of difference equations, see [5,9,12] and
the related references therein.

Our goal, in this paper, is studying a symmetric competitive three-dimensional
system of difference equations in the form:

xn+1 =
xn
znyn

& yn+1 =
yn
xnzn

& zn+1 =
zn
ynxn

where the initial values x0, y0 and z0 are nonzero real numbers. Moreover, we have
studied the periodicity of solutions for this system of nonlinear rational difference
equations in (1). Finally we will give some numerical examples as applications.

2. CLOSED FORM SOLUTION FOR THE THREE-
DIMENSIONAL SYSTEM (1)

In this section, we try to deduce the closed form solution for the three-dimensional
system of nonlinear rational difference equations (1) by two methods:

The first method depends on the following suggested notations:
Suppose that x0 = a, y0 = b, z0 = c. Let A1 = bc, B1 = ac, and C1 = ab.
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Also consider the following notations: A2 = bc, B2 = ac, and C2 = ab.
Moreover, we can consider

A3 = A3
1, B3 = B3

1 , C3 = C3
1 , A4 = A5

1, B4 = B5
1 , C4 = C5

1 .

In general, we have

Ap = bc

p−2∏
i=1

A2
i , Bp = ac

p−2∏
i=1

B2
i

Cp = ab

p−2∏
i=1

C2
i , where p ≥ 3. (2.1)

Theorem 2.1 Suppose that {xn, yn, zn} are solutions of system (1). The
solutions of the system (1), with the above notations (2.1), are given by:

x1 = a/A1, y1 = b/B1, z1 = c/C1 (2.2)

where n ≥ 2 and a, b, c are non-zero real numbers .

Proof. Firstly, x1 =
x0

y0z0
=

a

A1
. Similarly, y1 = B/b1 and z1 = C/c1.

Now, by mathematical induction, we will prove that equations (II) are true for
n ≥ 2. In the beginning we try to prove that equations (2.2) are true for n = 2.

x2 =
x1

y1z1
=

a/A1

(b/B1)(c/C1)
=
aB1C1

A1(bc)
=
aB1C1

A1A2
= a

2−1∏
i=1

BiCi

2∏
j=1

Aj

Similarly y2 = b

2−1∏
i=1

AiCi

2∏
j=1

Bj

and z2 = c

2−1∏
i=1

AiBi

2∏
j=1

Cj

.

Now suppose that the equations (2.2) is true for n = r. This means that

xr = a

r−1∏
i=1

BiCi

r∏
j=1

Aj

& yr = b

r−1∏
i=1

AiCi

r∏
j=1

Bj

& zr = c

r−1∏
i=1

AiBi

r∏
j=1

Cj
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Finally we prove that the equations (2.2) is true for n = r + 1.

xr+1 =
xr

yrzr
=

a

r−1∏
i=1

BiCi

r∏
j=1

Ajb
r−1∏
i=1

AiCi

r∏
j=1

Bj


c

r−1∏
i=1

AiBi

r∏
j=1

Cj



=

a
r−1∏
i=1

BiCi

r∏
j=1

Ai

bc
r−1∏
i=1

A2
iBiCi

r∏
j=1

BiCi


=

a

(
r−1∏
i=1

BiCi

)
BrCr(

r∏
j=1

Aj

)
Ar+1

= a

r∏
i=1

BiCi

r+1∏
j=1

Aj

Similarly yr+1 = b

r∏
i=1

AiCi

r+1∏
j=1

Bj

and zr+1 = c

r∏
i=1

AiBi

r+1∏
j=1

Cj

, which complete the proof.

Remarks 2.2 We have the following properties:

i) xnyn =
ab

AnBn

(
n−1∏
k=1

C2
k

)
ii) ynzn =

bc

BnCn

(
n−1∏
k=1

A2
k

)
iii) xnzn =

ac

AnCn

(
n−1∏
k=1

B2
k

)
As a direct result, we have the following property
Corollary 2.3

xnynzn =
abc

AnBnCn

(
n−1∏
k=1

AkBkCk

)
Now we will give the solution by other method in the following theorem:
Theorem 2.4 Suppose that {xn, yn, zn} are solutions of system (1). Then, the

solutions of the system (1) are given by:

x2n−1 =
(x0)

αn−1

(y0z0)
βn−1

& x2n =
(x0)

βn

(y0z0)
αn−1

y2n−1 =
(y0)

αn−1

(x0z0)
βn−1

& y2n =
(y0)

βn

(x0z0)
αn−1

z2n−1 =
(z0)

αn−1

(x0y0)
βn−1

& z2n =
(z0)

βn

(x0y0)
αn−1
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where

αm+1 = 4αm + 1, α0 = 1, and m ≥ 0

βm+1 = 4βm − 1, β0 = 1, and m ≥ 0 (3)

where the initial values x0, y0 and z0 are non-zero real numbers and n ≥ 1.
Remark 2.5 In fact (3) represent first order linear difference equations. It is

easy to see that the solutions of linear difference equations (3) are given by:

αm = (1/3)(4m+1 − 1)

βm = (1/3)(2× 4m+1 + 1)

So the solution of system (1) can be rewritten in the following theorem:
Theorem 2.6 Suppose that {xn, yn, zn} are solutions of system (1). Then, the

solutions of the system (1) are given by:

x2n−1 =
(x0)

(1/3)(4n−1)

(y0z0)
(1/3)(2×4n−1+1)

& x2n =
(x0)

(1/3)(2×4n+1)

(y0z0)
(1/3)(4n−1)

y2n−1 =
(y0)

(1/3)(4n−1)

(x0z0)
(1/3)(2×4n−1+1)

& y2n =
(y0)

(1/3)(2×4n+1)

(x0z0)
(1/3)(4n−1)

z2n−1 =
(z0)

(1/3)(4n−1)

(y0x0)
(1/3)(2×4n−1+1)

& z2n =
(z0)

(1/3)(2×4n+1)

(y0x0)
(1/3)(4n−1)

where the initial values x0, y0 and z0 are non-zero real numbers and n ≥ 1.
Corollary 2.7 If x0 = y0 = z0 = a, a ∈ R, such that a 6= 0, 1,−1, the solutions

for the system (1) take the form:

xn =

{
1

a
, a,

1

a
, a,

1

a
, a, .............

}

yn =

{
1

a
, a,

1

a
, a,

1

a
, a, .............

}

zn =

{
1

a
, a,

1

a
, a,

1

a
, a, .............

}

Remark 2.8 If a = ±1, then xn = yn = zn = ±1.
Corollary 2.9 We have the following properties between the solutions of system

(1):

i) x2n−1x2n =
(x0)

4n

(y0z0)
4n

2

ii) y2n−1y2n =
(y0)

4n

(x0z0)
4n

2

iii) z2n−1z2n =
(z0)

4n

(x0y0)
4n

2

Remark 2.10 If x0 = y0 = z0 = a, a ∈ R, then x2n−1x2n = y2n−1y2n =
z2n−1z2n = 1.
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3. PERIODICITY OF SOLUTIONS FOR SYSTEMS

In this section, we will determine the conditions for periodicity of system (1).
(see [10,16]).

Definition 3.1 (Periodicity) A sequence {xn}∞n=−k is said to be periodic with
period p if xn+p = xn for all n ≥ −k.

Theorem 3.2 The solution {xn, yn, zn} for system (1) is periodic of period k
solution if the following conditions satisfy:

i)
n+k−1∏
j=n+1

BjCj

Aj
=
An+k

BnCn

ii)
n+k−1∏
j=n+1

BjAj

Cj
=

Cn+k

BnAn

iii)
n+k−1∏
j=n+1

AjCj

Bj
=
Bn+k

AnCn
Corollary 3.3 If the solution {xn, yn, zn} for system (1) is periodic solution of

period k, then
n+k−1∏
j=n+1

AjBjCj =
An+kBn+kCn+k

(AnBnCn)
2

where Aj , Bj and Cj are defined in Section 2.

4. NUMERICAL RESULTS

In this section, we deal with some numerical examples.

Example 4.1 When the initial conditions are x0 = y0 = z0 6= ±1, then the
system is periodic of period 2 (see Figure 1 and Corollary 2.7).

Figure 1
The Periodicity of System (1) with Period 2 in Case
x0 = y0 = z0

54



Ibrahim, T.F./Studies in Mathematical Sciences, 5 (1), 2012

Example 4.2 When the initial conditions are x0 = y0 = z0 = −1, then the
system (1) converge to −1 (see Figure 2, Corollary 2.7 and Remark 2.8).

Figure 2
The Convergence of System (1) in Case x0 = y0 = z0 = −1

Example 4.3 When the initial conditions are x0 = y0 = z0 = 1, then the system
(1) converge to 1 (see Figure 3, Corollary 2.7 and Remark 2.8).

Figure 3
The Convergence of System (1) in Case x0 = y0 = z0 = 1

5. CONCLUSION

In this paper, we introduce a new technique or method which can be used it to find
the solutions for some ordinary difference equations and some systems of ordinary
difference equations We have already used this technique to give the solutions for
a competitive system of nonlinear rational difference equations of three-dimension.
We expect that this technique can be used to deduce the solutions for some partial
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difference equations and some systems of partial difference equations. We suggest
to do algorithms for the solutions solved by this technique. We look forward to
widely use this method in many difference equations.
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