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Abstract
In this paper, an iterative sequence for strong relatively nonexpansive multi-valued mapping by modifying
Halpern’s iterations is introduced, and then some strong convergence theorems are proved. At the end of
the paper some applications are given also.
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1. INTRODUCTION

Throughout this paper, we denote by N and R the sets of positive integers and real numbers, respectively.
Let D be a nonempty closed subset of a real Banach space E. A single-valued mapping T : D→ D is called
nonexpansive if ‖T x − Ty‖ ≤ ‖x − y‖ for all x, y ∈ D. Let N(D) and CB(D) denote the family of nonempty
subsets and nonempty closed bounded subsets of D, respectively. The Hausdorff metric on CB(D) is defined
by

H(A1, A2) = max{sup
x∈A1

d(x, A2), sup
y∈A2

d(y, A1)}, (1.1)

for A1, A2 ∈ CB(D), where d(x, A1) = in f {‖x − y‖, y ∈ A1}. The multi-valued mapping T : D → CB(D) is
called nonexpansive if H(T (x),T (y)) ≤ ‖x − y‖ for all x, y ∈ D. An element p ∈ D is called a fixed point of
T : D→ N(D) if p ∈ T (p). The set of fixed points of T is represented by F(T ).

Let E be a real Banach space with dual E∗. We denote by J the normalized duality mapping from E to
2E∗ defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, x ∈ E. (1.2)

where 〈·, ·〉 denotes the generalized duality pairing.
A Banach space E is said to be strictly convex if ‖x+y‖

2 < 1 for all x, y ∈ U = {z ∈ E : ‖z‖ = 1} with
x , y. E is said to be uniformly convex if, for each ε ∈ (0, 2], there exists δ > 0 such that ‖x+y‖

2 < 1 − δ for
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all x, y ∈ U with ‖x − y‖ ≥ ε. E is said to be smooth if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(1.3)

exists for all x, y ∈ U. E is said to be uniformly smooth if the above limit exists uniformly in x, y ∈ U.
Remark 1.1 The following basic properties for Banach space E and for the normalized duality mapping
J can be found in Cioranescu [1].

(i) If E is an arbitrary Banach space, then J is monotone and bounded;
(ii) If E is a strictly convex Banach space, then J is strictly monotone;
(iii) If E is a a smooth Banach space, then J is single-valued, and hemi-continuous, i.e., J is continuous

from the strong topology of E to the weak star topology of E;
(iv) If E is a uniformly smooth Banach space, then J is uniformly continuous on each bounded subset

of E;
(v) If E is a reflexive and strictly convex Banach space with a strictly convex dual E∗ and J∗ : E∗ → E

is the normalized duality mapping in E∗, then J−1 = J∗, JJ∗ = I∗E and J∗J = IE ;
(vi) If E is a smooth, strictly convex and reflexive Banach space, then the normalized duality mapping

J is single-valued, one-to-one and onto;
(vii) A Banach space E is uniformly smooth if and only if E∗ is uniformly convex. If E is uniformly

smooth, then it is smooth and reflexive.
Let E be a smooth Banach space. In the sequel, we always use φ : E × E → R+ to denote the Lyapunov

functional defined by
φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2, ∀x, y ∈ E. (1.4)

It is obvious from the definition of φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2, ∀x, y ∈ E. (1.5)

In addition, the function φ has the following property:

φ(y, x) = φ(z, x) + φ(y, z) + 2〈z − y, Jx − Jz〉, ∀x, y, z ∈ E (1.6)

and
φ(x, J−1(λJy + (1 − λ)Jz) ≤ λφ(x, y) + (1 − λ)φ(x, z), (1.7)

for all λ ∈ [0, 1] and x, y, z ∈ E.
Let C is a nonempty closed convex subset of a reflexive, strictly convex and smooth Banach space E.

Following Alber [2], the generalized projection ΠC : E → C is defined by

ΠC(x) = arg inf
y∈C

φ(y, x), ∀x ∈ E.

Let D be a nonempty subset of a smooth Banach space. A mapping T : D → E is relatively nonexpan-
sive [3−5], if the following properties are satisfied:

(R1) F(T ) , Ø;
(R2) φ(p,T x) ≤ φ(p, x) for all p ∈ F(T ) and x ∈ D;
(R3) I − T is demi-closed at zero, that is, whenever a sequence {xn} in D converges weakly to p and

{xn − T xn} converges strongly to 0, it follows that p ∈ F(T ).
If T satisfies (R1) and (R2), then T is called quasi-φ-nonexpansive[6].
Recently, Weerayuth Nilsrakoo[7] introduced the following iterative sequence for finding a fixed point

of strongly relatively nonexpansive mapping T : D→ E. Given x1 ∈ D,

xn+1 = ΠDJ−1(αnJu + (1 − αn)JT xn)

where D is nonempty closed convex subset of a uniformly convex and uniformly smooth Banach space E,
ΠD is the generalized projection of E onto D and {αn} is a sequences in (0,1).
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Iterative methods for approximating fixed points of multi-valued mappings in Banach spaces have been
studied by some authors, see for instance [8−12].

Let D be a nonempty closed convex subset of a smooth Banach space E. A mapping T : D → N(D) is
relatively nonexpansive multi-valued mapping [12], if the following properties are satisfied:

(S1) F(T ) , Ø;
(S2) φ(p, z) ≤ φ(p, x),∀x ∈ D, z ∈ T (x), p ∈ F(T );
(S3) I − T is demi-closed at zero, that is, whenever a sequence {xn} in D which weakly to p and

lim
n→∞

d(xn,T (xn)) = 0, it follows that p ∈ F(T ).
Let D be a nonempty closed convex subset of a smooth Banach space E. We define a strongly relatively

nonexpansive multi-valued mapping as follows.
Defnition 1.2 A multi-valued mapping T : D → N(D) is called strongly relatively nonexpansive, if T
satisfies (S1), (S2), (S3)and

(S4) If whenever {xn} is a bounded sequence in D such that φ(p, xn) − φ(p, zn) → 0, for some p ∈
F(T ), zn ∈ T (xn), it follows that φ(zn, xn)→ 0.

In this article, inspired by Weerayuth Nilsrakoo [7], we introduce the following iterative sequence for
finding a fixed point of strongly reatively nonexpansive multi-valued mapping T : D → N(D). Given
u ∈ E, x1 ∈ D,

xn+1 = ΠDJ−1(αnJu + (1 − αn)Jwn) (1.8)

where wn ∈ T xn for all n ∈ N, D is a nonempty closed convex subset of a uniformly convex and uniformly
smooth Banach space E, ΠD is the generalized projection of E onto D and {αn} is sequences in (0,1). We
proved the strong convergence theorems in uniformly convex and uniformly smooth Banach space E.

2. PRELIMINARIES

In the sequel, we denote the strong convergence and weak convergence of the sequence {xn} by xn → x and
xn ⇀ x, respectively.

First, we recall some conclusions.
Lemma 2.1 (Cf. [13, Proposition 2]). Let E be a uniformly convex and smooth Banach space and let {xn}
and {yn} be two sequences of E such that {xn} or {yn} is bounded. If φ(xn, yn)→ 0, then xn − yn → 0.
Remark 2.2 For any bounded sequences {xn} and {yn} in a uniformly convex and uniformly smooth Ba-
nach space E, we have

φ(xn, yn)→ 0⇐⇒ xn − yn → 0⇐⇒ Jxn − Jyn → 0.

Lemma 2.3 (Cf. [13, Propositions 4 and 5]). Let E be a smooth, strictly convex and reflexive Banach
space and C be a nonempty closed convex subset of E. Then the following conclusions hold:

(a) φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y) for all x ∈ C and y ∈ E;
(b) If x ∈ E and z ∈ C, then z = ΠC x⇐⇒ 〈z − y, Jx − Jz〉 ≥ 0,∀y ∈ C;
(c) For x, y ∈ E, φ(x, y) = 0 if and only x = y.

Remark 2.4. The generalized projection mapping ΠC above is relatively nonexpansive and F(ΠC) = C.
Let E be a reflexive, strictly convex and smooth Banach space. The duality mapping J∗ from E∗ onto

E∗∗ = E coincides with the inverse of the duality mapping J from E onto E∗, that is, J∗ = J−1. We will use
the following mapping V : E × E∗ → R studied in [2]:

V(x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2 (2.3)

for all x ∈ E and x∗ ∈ E∗. Obviously, V(x, x∗) = φ(x, J−1(x∗)) for all x ∈ E and x∗ ∈ E∗.
Lemma 2.5 (Cf. [2] and [14, Lemma 3.2]). Let E be a reflexive, strictly convex and smooth Banach
space. Then

V(x, x∗) + 2〈J−1(x∗) − x, y∗〉 ≤ V(x, x∗ + y∗)
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for all x ∈ E and x∗, y∗ ∈ E∗.
Lemma 2.6 (Cf. [15, Lemma 2.1]). Let {an} be a sequence of nonnegative real numbers. Suppose that

an+1 ≤ (1 − γn)an + γnδn

for all n ∈ N, where the sequences {γn} in (0,1) and {δn} in R satisfy the following conditions: lim
n→∞

γn =

0,
∞∑

n=1
γn = ∞ and lim sup

n→∞
δn ≤ 0. Then lim

n→∞
an = 0.

Lemma 2.7 (Cf. [16, Lemma 3.1]). Let {an} be a sequence of real numbers such that there exists a
subsequence {ni} of {n} such that ani < ani+1 for all i ∈ N. Then there exists a nondecreasing sequence
{mk} ∈ N such that mk → ∞ and the following properties are satisfied by all (sufficiently large) numbers
k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1 .

Infact, mk = max{ j ≤ k : a j < a j+1}.
Lemma 2.8 (Cf. [12, Proposition 2.1]). Let E be a strictly convex and smooth Banach space, and D a
nonempty closed convex subset of E. Suppose T : D → N(D) is a relatively nonexpansive multi-valued
mapping. Then, F(T ) is closed and convex.

3. MAIN RESULTS

In this section, we use Halpern’s idea [17] for finding fixed point of strongly relatively nonexpansive multi-
valued mappings in a uniformly convex and smooth Banach space. In the sequel, we shall need the following
lemma.
Lemma 3.1 Let D be a nonempty closed convex subset of a uniformly convex and smooth Banach space
E, T : D → N(D) be a relatively nonexpansive multi-valued mapping, x ∈ E and x∗ = ΠF(T )x. Suppose
that {xn} and {yn} are bounded sequences such that φ(zn, xn)→ 0 and φ(zn, yn)→ 0, zn ∈ T xn. Then

lim sup
n→∞

〈yn − x∗, Jx − Jx∗〉 ≤ 0.

Proof. From the uniform convexity of E and Lemma 2.1,

zn − xn → 0 and yn − xn → 0.

From property (R3) of the mapping T , we choose a subsequence {xni } of {xn} such that xni ⇀ y ∈ F(T )
and

lim sup
n→∞

〈yn − x∗, Jx − Jx∗〉 = lim sup
n→∞

〈xn − x∗, Jx − Jx∗〉

= lim sup
i→∞

〈xni − x∗, Jx − Jx∗〉

From Lemma 2.3(b), we immediately obtain that

lim sup
n→∞

〈yn − x∗, Jx − Jx∗〉 = 〈y − x∗, Jx − Jx∗〉 ≤ 0

Theorem 3.2 Let D be a nonempty, closed and convex subset of a uniformly convex and smooth Banach
space E and let T : D→ N(D) be a strongly relatively nonexpansive multi-valued mapping. Let {xn} be the
iterative sequence defined by (1.8), {αn} is sequence in (0,1) satisfying

(C1) lim
n→∞

αn = 0;

(C2)
∞∑

n=1
αn = ∞

Then {xn} converges strongly to ΠF(T )u.

43



ZHAO Fuhai; YANG Li/Studies in Mathematical Sciences Vol.4 No.2, 2012

Proof. Let yn ≡ J−1(αnJu + (1 − αn)Jwn). Then xn+1 ≡ ΠDyn. By Lemma 2.8, F(T ) is nonempty, closed
and convex, so, we can define the generalized projection ΠF(T ) onto F(T ). Putting u∗ = ΠF(T )u, we first
show that {xn} is bounded. From Remark 2.4 and (1.7), we have

φ(u∗, xn+1) ≤ φ(u∗, yn) = φ(u∗, J−1(αnJu + (1 − αn)Jwn))
≤ αnφ(u∗, u) + (1 − αn)φ(u∗,wn)
≤ αnφ(u∗, u) + (1 − αn)φ(u∗, xn)
≤ max{φ(u∗, u), φ(u∗, xn)}.

By induction, we have
φ(u∗, xn+1) ≤ max{φ(u∗, u), φ(u∗, x1)},

for all n ∈ N. This implies that {xn} is bounded and so is the sequence {T xn}. From Condition (C1) and
(1.7), we obtain

φ(wn, yn) = φ(wn, J−1(αnJu + (1 − αn)Jwn))
≤ αnφ(wn, u) + (1 − αn)φ(wn,wn)
= αnφ(wn, u)→ 0, (n→ ∞).

(3.1)

From Remark 2.4, Lemma 2.5 and (1.7), we have

φ(u∗, xn+1) ≤ φ(u∗, yn) = v(u∗, Jyn)
≤ v(u∗, Jyn − αn(Ju − Ju∗)) − 2〈yn − u∗,−αn(Ju − Ju∗)〉
= v(u∗, αnJu∗ + (1 − αn)Jwn) + 2αn〈yn − u∗, Ju − Ju∗〉
= φ(u∗, J−1(αnJu∗ + (1 − αn)Jwn)) + 2αn〈yn − u∗, Ju − Ju∗〉
≤ αnφ(u∗, u∗) + (1 − αn)φ(u∗,wn) + 2αn〈yn − u∗, Ju − Ju∗〉
≤ (1 − αn)φ(u∗, xn) + 2αn〈yn − u∗, Ju − Ju∗〉,

(3.2)

for all n ∈ N.
The rest of the proof will be divided into two parts.

Case1. Suppose that there exists n0 ∈ N such that {φ(u∗, xn)}∞n=n0
is nonincreasing. In this situation,

{φ(u∗, xn)} is then convergent. Then

lim
n→∞

(φ(u∗, xn) − φ(u∗, xn+1)) = 0. (3.3)

Notice that
φ(u∗, xn+1) ≤ αnφ(u∗, u) + (1 − αn)φ(u∗,wn).

It followsfrom (3.3) and Condition (C1) that

φ(u∗, xn) − φ(u∗,wn) = φ(u∗, xn) − φ(u∗, xn+1) + φ(u∗, xn+1) − φ(u∗,wn)
≤ φ(u∗, xn) − φ(u∗, xn+1) + αn(φ(u∗, u) − φ(u∗,wn))→ 0.

Since T is strongly relatively nonexpansive multi-valued mapping,

φ(wn, xn)→ 0.

It follows from (3.1) and Lemma 3.1 that

lim sup
n→∞

〈yn − u∗, Ju − Ju∗〉 ≤ 0. (3.4)

From (3.2), we have
φ(u∗, xn+1) ≤ (1 − αn)φ(u∗, xn) + 2αn〈yn − u∗, Ju − Ju∗〉. (3.5)
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It follows from Lemma 2.6, (3.4) and (3.5) that

lim
n→∞

φ(u∗, xn) = 0.

Hence the conclusion follows from Lemmas 2.1.
Case2. Suppose that there exists a subsequence {ni} of {n} such that

φ(u∗, xni ) ≤ φ(u∗, xni+1),

for all i ∈ N. Then, by Lemma 2.7, there exists a nondecreasing sequence {mk} ⊂ N such that mk → ∞,

φ(u∗, xmk ) ≤ φ(u∗, xmk+1) and φ(u∗, xk) ≤ φ(u∗, xmk+1),

for all k ∈ N. This together with Condition (C1) gives

φ(u∗, xmk ) − φ(u∗,wmk ) = φ(u∗, xmk ) − φ(u∗, xmk+1) + φ(u∗, xmk+1) − φ(u∗,wmk )
≤ αmk (φ(u∗, u) − φ(u∗,wmk ))→ 0.

This implies that
φ(wmk , xmk )→ 0.

It now follows from (3.1) and Lemma 3.1 that

lim sup
n→∞

〈ymk − u∗, Ju − Ju∗〉 ≤ 0. (3.6)

From (3.2), we have

φ(u∗, xmk+1) ≤ (1 − αmk )φ(u∗, xmk ) + 2αmk〈ymk − u∗, Ju − Ju∗〉. (3.7)

Since φ(u∗, xmk ) ≤ φ(u∗, xmk+1), we have

αmkφ(u∗, xmk ) ≤ φ(u∗, xmk ) − φ(u∗, xmk+1) + 2αmk〈ymk − u∗, Ju − Ju∗〉
≤ 2αmk〈ymk − u∗, Ju − Ju∗〉.

In particular, since αmk > 0, we get

φ(u∗, xmk ) ≤ 2〈ymk − u∗, Ju − Ju∗〉.

It follows from (3.6) that φ(u∗, xmk )→ 0. This together with (3.7) gives

φ(u∗, xmk+1)→ 0.

But φ(u∗, xk) ≤ φ(u∗, xmk+1) for all k ∈ N. We conclude that xk → u∗.
This implies that lim

n→∞
xn = u∗ and the proof is finished.

Remark 3.3 The result [12, Theorem 3.3] and [18, Corollary 8] is a special case of our result.
Lemma 3.4 Let D be a nonempty, closed and convex subset of a uniformly convex and uniformly smooth
Banach space E. Let T : D → N(D) be a relatively nonexpansive multi-valued mapping. Let U be the
mapping defined by

U = J−1(λJ + (1 − λ)JT ),

where λ ∈ (0, 1), then U : D → N(D) is strongly relatively nonexpansive multi-valued mapping and
F(U) = F(T ).

The proof is similar to the proof of [19, Lemmas 3.1 and 3.2].
Applying Theorem 3.2 and Lemma 3.4, we have the following result.
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Theorem 3.5 Let D be a nonempty, closed and convex subset of a uniformly convex and uniformly smooth
Banach space E and let T : D → N(D) be a relatively nonexpansive multi-valued mapping. Let {xn} be a
sequence in D defined by u ∈ E, x1 ∈ D and

xn+1 = ΠDJ−1(αnJu + (1 − αn)(λJxn + (1 − λ)Jzn))

where zn ∈ T xn for all n ∈ N, {αn} is a sequence in (0,1) satisfying Conditions (C1) and (C2), and λ ∈ (0, 1).
Then {xn} converges strongly to ΠF(T )u.
Remark 3.6 In Theorems 3.2 and 3.5, the condition of the nonempty interior of fixed point set of T is not
needed.

4. APPLICATION TO ZERO POINT PROBLEM OF MAXIMAL
MONOTONE MAPPINGS

Let E be a smooth, strictly convex and reflexive Banach space. An operator A : E → 2E∗ is said to be
monotone, if 〈x− y, x∗− y∗〉 ≥ 0 whenever x, y ∈ E, x∗ ∈ Ax, y∗ ∈ Ay. We denote the zero point set {x ∈ E :
0 ∈ Ax} of A by A−10. A monotone operator A is said to be maximal, if its graph G(A) := {(x, y) : y ∈ Ax}
is not properly contained in the graph of any other monotone operator. If A is maximal monotone, then
A−10 is closed and convex. Let A be a maximal monotone operator, then for each r > 0 and x ∈ E, there
exists a unique xr ∈ D(A) such that J(x) ∈ J(xr) + rA(xr) (see, for example, [2]). We define the resolvent
of A by Jr x = xr. In other words Jr = (J + rA)−1J, ∀r > 0. We know that Jr is a single-valued relatively
nonexpansive mapping and A−10 = F(Jr), ∀r > 0, where F(Jr) is the set of fixed points of Jr. We have the
following
Theorem 4.1 Let E, {αn} be the same as in Theorem 3.2. Let A : E → 2E∗ be a maximal monotone
operator and Jr = (J + rA)−1J for all r > 0 such that A−10 , ∅. Let {xn} be the sequence generated by
u, x1 ∈ E and

xn+1 = J−1(αnJu + (1 − αn)JJr xn),

then {xn} converges strongly to ΠA−10u.
Proof. In Theorem 3.2 taking D = E, T = Jr, r > 0, then T : E → E is a single-valued relatively
nonexpansive mapping and A−10 = F(T ) = F(Jr), ∀r > 0 is a nonempty closed convex subset of E.
Therefore all the conditions in Theorem 3.2 are satisfied. The conclusion of Theorem 4.1 can be obtained
from Theorem 3.2 immediately.
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