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Abstract
In this paper,through wavelet methods,we obtain the wavelet alternation and wavelet express of a class of
random processes– Wiener processes with linear trend,and analyse its some properties of wavelet alterna-
tion,and we obtain some new results.
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1. INTRODUCTION

The stochastic system is very importment in many aspacts. Wiener processes is a sort of importment
stochastic processes. Wiener processes with linear trend is a class of useful stochastic processes in practies,
its study is very value.

With the rapid development of computerized scientific instruments comes a wide variety of interest-
ing problems for data analysis and signal processing. In fields ranging from Extragalactic Astronomy to
Molecular Spectroscopy to Medical Imaging to computer vision, One must recover a signal, curve, image,
spectrum, or density from incomplete, indirect, and noisy data. Wavelets have contributed to this already
intensely developed and rapidly advancing field.

Wavelet analysis consists of a versatile collection of tools for the analysis and manipulation of signals
such as sound and images as well as more general digital data sets, such as speech, electrocardiograms,
images. Wavelet analysis is a remarkable tool for analyzing function of one or several variables that appear
in mathematics or in signal and image processing. With hindsight the wavelet transform can be viewed
as diverse as mathematics, physics and electrical engineering. The basic idea is always to use a family
of building blocks to represent the object at hand in an efficient and insightful way, the building blocks
themselves come in different sizes, and are suitable for describing features with a resolution commensurate
with their size.

There are two important aspects to wavelets,which we shall call “mathematical” and “algorithmical”.
Numerical algorithms using wavelet bases are similar to other transform methods in that vectors and oper-
ators are expanded into a basis and the computations take place in the new system of coordinates. As with
all transform methods such as approach hopes to achieve that the computation is faster in the new system
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of coordinates than in the original domain, wavelet based algorithms exhibit a number of new and impor-
tant properties. Recently some persons have studied wavelet problems of stochastic process or stochastic
system.

Recently, some persons have studied wavelet problems of stochastic processes or stochastic system
(see[1]-[13]). In this paper, we study a class of random processes using wavelet analysis methods.

2. WAVELET TRANSFORM

Recently, some persons have studied wavelet problems of stochastic process or stochastic system [2-9],
because it is a new problem and have many applicatial value. The first, we give out some definitions as
follow.

Definition 1 Let x(t)(t ∈ R)is a stochastics processes, then its continue wavelet transform is

w(s, x) =
1
s

∫

R
x(t)φ(

x − t
s

)dt (1)

Where, φ is continue wavelet.
Definition 2 Let φ (x) is

φ(x) =



1, 0 ≤ x < 1
2

−1, 1
2 ≤ x < 1

0, other
(2)

we call φ(x) as Haar wavelet.
Then, use(2), we have

φ(
t − b

a
) =

{
1,b ≤ t ≤ 1/2a + b
−1, 1/2a + b ≤ t ≤ a + b

φ(
t1 − b − τ

a
) =

{
1, b + τ ≤ t1 ≤ a/2 + b + τ

−1, a/2 + b + τ ≤ t1 ≤ a + b + τ

3. SOME PROPERTIES OF WAVELET ALTERNATION

We study the properties use wavelet alternation for Wiener processes with Linear trend,we study its rela-
tional function,obtain its relational degree and stationary Properties.
Definition 3: Let y(t) = w(t) + At where, w(t) is Wiener processes, A is contan t, we call y(t) as Linear
trend wiener processes.

From above, then, we have E[y(t)] = E(w(t) + At) = At R(t1, t2) = Ey(t1)y(t2) = Ew(t1)w(t2) =

σ2 min(t1, t2) where, t1, t2 ≥ 0 we have

wy(a, b) =

∫

R
y(t)φ(

t − b
a

)dt

wy(a, b + τ) =

∫

R
y(t)φ(

t − b − τ
a

)

then, the relational function of wy(a, b):

R(τ) = E[wy(a, b)wy(a, b + τ)] = E[
∫

R
y(t)φ(

t − b
a

)dt
∫

R
y(t1)φ(

t1 − b − τ
a

)dt1]

= E[
∫∫

R2
y(t)y(t1)φ(

t − b
a

)φ(
t1 − b − τ

a
)dtdt1]
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=

∫∫

R2
E[y(t)y(t1)]φ(

t − b
a

)φ(
t1 − b − τ

a
)dtdt1

= σ2
∫∫

R2
min(t1, t2)φ(

t − b
a

)φ(
t1 − b − τ

a
)dtdt1

we may let σ2 = 1
Then we have

E[Wy(a, b)] =

∫

R
E[y(t)]φ(

t − b
a

)dt =

∫

R
Atφ(

t − b
a

)dt

=

∫ a/2+b

b
Atdt −

∫ a+b

a/2+b
Atdt = −Aa2

4

R(τ) =

∫ a
2 +b

b
dt

∫ a
2 +b+τ

b+τ

min(t, t1)dt1 −
∫ a

2 +b

b
dt

∫ a+b+τ

a
2 +b+τ

min(t, t1)dt1 −
∫ a+b

a
2 +b

dt
∫ a

2 +b+τ

b+τ

min(t, t1)dt1

+

∫ a+b

a
2 +b

dt
∫ a+b+τ

a
2 +b+τ

min(t, t1)dt1

= I1 + I2 + I3 + I4

we may let t1 ≥ t,then have

I1 =

∫ a
2 +b

b
tdt

∫ a
2 +b+τ

b+τ

dt1 =
1
2

a2(1 +
a
2

)

I2 = −
∫ a

2 +b

b
tdt

∫ a+b+τ

a
2 +b+τ

dt1 = −1
2

a2(1 +
a
2

)

I3 =

∫ a+b

a
2 +b

tdt
∫ a

2 +b+τ

b+τ

dt1 = −1
4

a2(
3
4

a + b)

I4 =

∫ a+b

a
2 +b

tdt
∫ a+b+τ

a
2 +b+τ

dt1 =
1
4

a2(
3
4

a + b)

Then, R(τ)=0
Then, stochastics processes wy(a, b)isstationary processes.

4. WAVELET EXPANSIONS

4.1 The first express method

Let ym(t) ∈ H, we have (see [5]) E[y(t) − ym(t)]→ 0, m→ ∞, t ∈ R

ym(t) =

m−1∑

k=−∞

∞∑

n=−∞
bknφkn(t) (3)

where, bkn =
∫

R y(t)φkn(t)dt
We have

E[bmnbk j] =

∫∫

R2
E[y(t)y(t1)]φ(2mt − n)φ(2kt1 − j)2

m
2 2

k
2 dtdt1
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Where, we have

φ(2mt − n) =

{
1, n2−m ≤ t ≤ (1/2 + n)2−m

−1, (1/2 + n)2−m ≤ t ≤ (1 + n)2−m

φ(2kt1 − j) =

{
1, j2−k ≤ t1 ≺ (1/2 + j)2−k

−1, (1/2 + j)2−k ≺ t1 ≤ (1 + j)2−k

We have

E[bmn] =

∫

R
E[y(t)]φmn(t)dt =

∫

R
Atφmn(t)dt

=

∫ (1/2+n)2−m

n2−m
Atdt −

∫ (1+n)2−m

(1/2+n)2−m
Atdt

= −A2−2−2m

E[bmnbk j] =

∫∫

R2
min(t, t1)φ(2mt − n)φ(2kt1 − j)2

m
2 2

k
2 dtdt1

=

∫ ( 1
2 +n)2−m

n2−m
dt

∫ ( 1
2 + j)2−k

j2−k
min(t, t1)dt1 −

∫ ( 1
2 +n)2−m

n2−m
dt

∫ (1+ j)2−k

( 1
2 + j)2−k

min(t, t1)dt1

−
∫ (1+n)2−m

(1/2+n)2−m
dt

∫ (1/2+ j)2−k

j2−k
min(t, t1)dt1 +

∫ (1+n)2−m

(1/2+n)2−m
dt

∫ (1+ j)2−k

(1/2+ j)2−k
min(t, t1)dt1

We may let t1 ≥ t, then have

E[bmnbk j] =

∫ (1/2+n)2−m

n2−m
tdt

∫ (1/2+ j)2−k

j2−k
dt1 −

∫ (1/2+n)2−m

n2−m
tdt

∫ (1+ j)2−k

(1/2+ j)2−k
dt1

−
∫ (1+n)2−m

(1/2+n)
tdt

∫ (1/2+ j)2−k

j2−k
dt1 +

∫ (1+n)2−m

(1/2+n)2−m
tdt

∫ (1+ j)2−k

(1/2+ j)2−k
dt1

= (1/4 + n)2−2−2m−k − (1/4 + n)2−2−2m−k − (3/4 + n)2−2−2m−k + (3/4 + n)2−2−2m−k

= 0

Then we have: stochastic processes bmn is stationary processes.
Use (3),we have

y(t) = lim
m→∞

ym(t) =

∞∑

k=−∞

∞∑

n=−∞
bknφkn(t)

4.2 The second express method

If θ ∈
{
V j } , j ∈ Z, and hk ∈ l2, have (see[14])

θ(t) =
√

2
∑

k∈Z
hkθ(2t − k)

Let φ(t) =
√

2
∑
k∈Z

(−1)kh1−kθ(2t − k) We fix J ∈ Z, then have

y(t) = 2−J/2
∑

k∈Z
CJ

nθ(2
−Jt − n) +

∑

j≤J

2− j/2
∑

n∈Z
d j

nφ(2− jt − n) (4)
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where
C j

n = 2− j/2
∫

R
y(t)θ(2− jt − n)dt

d j
n = 2− j/2

∫

R
y(t)φ(2− jt − n)dt

We also have
dk

m =

∫
y(u)φ(2−ku − m)du

We can obtain

E[d j
ndk

m] = 2− j/2
∫∫

R2
E[y(t)y(u)]φ(2− jt − n)dtφ(2−ku − m)dtdu = 0

E[d j
n] = 2− j/2

∫

R
E(y(t))φ(2− jt − n)dt

= 2− j/2(
∫ (1/2+n)2−m

−n2−m
Atdt −

∫ (1+n)2−m

(1/2+n)2−m
Atdt)

= −A2−2− j/2

Let

θ(t) =

{
1, 0 ≤ t ≤ 1
0, other

Then have

E[C j
n] = 2−

j
2

∫

R
E[y(t)]θ(2− jt − n)dt = 2−

j
2

∫ (n+1)2− j

n2− j
Atdt = 2−

3 j
2 A

5. POWER OF THE STOCHASTIC SYSTEM

The study of power of stochastic system is importment in many application, it express energy of the stochas-
tic. We have two sort of wavelet as follows for discuss energy of system. (1) To Haar wavelet (2),we have

WR(a, b) =

∫

R
R(t, t1)φ(

t − b
a

)dt =

∫

R
min(t, t1)φ(

t − b
a

)dt

We may let t1 ≥ t,then have

WR(a, b)∗ =

∫

R
tφ(

t − b
a

)dt =

∫ a/2+b

b
tdt −

∫ a+b

a/2+b
tdt = −1

4
a2

(2)To Morlet wavelet:

φ(t) = (1 − t2)
1√
2π

e−
t2
2 ,−∞ < t < +∞ (5)

WR(a, b) =

∫

R
tφ(

t − b
a

)dt =

∫

R
t(1 − (

t − b
a

)2)
1√
2π

e−
( t−b

a )2

2 dt

=

∫

(t−t( t−b
a

)2)
1√
2π

e−
( t−b

a )2

2 dt

=
1√
2π

∫

R
te−

(t−b)2

2a2 dt − 1√
2π

∫

R
t
(t − b)2

a2 e−
(t−b)2

2a2 dt

= 0
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