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INTRODUCTION

In this paper we consider a modified Ross model of vector-borne diseases with non-linear incidence func-
tion. The model is given as a a two dimensional system of ODE:

x′ = g1(y)h1(x) − c1µ1(x)
y′ = g2(x)h2(y) − c2µ2(y)

(1)

Herex andy represent the infective host and vector populations. The termsg1(y)h1(x) andg2(x)h2(y)
correspond to the incidence functions. In the original Ross model obtained from ideas given in [8], the
functionsgi and hi are linear. The effect of different non-linear incidence functions for usual (without
vector) epidemic models have been studied by many authors. Models with incidence function of typekIpS q

have been studied in [5, 6], and models with incidence function, wheregi(I) are of type kIp

1+αIq , have been
studied in [3, 7, 9]. Results for some general type of non-linear incidence functions are obtained in [1, 2, 4].

1. MAIN THEOREM

Equations in (1) are considered for 0≤ x, y ≤ 1 becausex andy are supposed to correspond to the relative
infectious population of host and vector. We assume that the functionsgi, hi andµi satisfy the following
conditions.
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Condition 1. gi, hi, µi are continuously differentiable in (0, 1] and continuous in [0, 1]. Moreoverh′i(z) < 0
andg′i(z), µ

′
i(z) > 0 for i = 1, 2. The functions satisfy the boundary conditionsgi(0) = 0, µi(0) = 0 and

hi(1) = 0 and parametersci are positive fori = 1, 2.

Let φi(z) =
−z f ′i (z)

fi(z)
and θi(z) =

zg′i (z)
gi(z)

where fi(z) =
hi(z)
µi(z)

and 0 < z < 1.
Condition 2. φi is increasing andθi is non-increasing and limz→0+ φi(z) = bi and limz→0+ θi(z) = ai, where
ai andbi are positive.

Conditions 1 and 2 are satisfied for many known epidemical models and incidence functions, for exam-
ple, if gi(z) = kzp

1+αzq and hi(z) = (1− z)b andµi are linear.
We now formulate our main theorem.

Theorem. Suppose system (1) satisfies Conditions 1 and 2, then we have the following structurally stable
phase portraits.
Case 1. If a1a2 > b1b2 then there is a numbercm(c1) depending onc1 such that forc2 > cm(c1) the origin
is a global attractor and forc2 < cm(c1) there are two equilibria, a saddlePs and a stable onePe except the
origin. The stable set ofPs divides the phase space into two parts, one in the basin of attraction of the origin
and the other in the basin of attraction ofPe.
Case 2. If a1a2 = b1b2 then there are two possibilities. The first one is that there is ac depending onc1 such
that whenc2 < c there is an equilibriumPe (except the origin) attracting all trajectories except the origin
and whenc2 ≥ c the origin is a global attractor. The second possibility is that for anyc2 there is exactly one
equilibriumPe (except the origin) attracting all trajectories except the origin.
Case 3. If a1a2 < b1b2 then there is always exactly one equilibriumPe (except the origin) attracting all
trajectories except the origin.

In order to prove our main theorem we need the following lemmas. To formulate the lemmas we
introduce notations convenient for using in our proof.
Notation. We consider positive-valued continuously differentiable functionsg defined in an interval (0, B],
whereB > 0.

We denote byQ(a,∞), the set of functionsg such that whenz→ 0+ then g(z)
za → A, where eitherA ∈ R+

or equal∞ and g(z)
zα → 0 for α < a, wherea is a real number.

Similarly we denote byQ(a, 0), the set of functionsg such that whenz → 0+ then g(z)
za → A, where

eitherA ∈ R+ or equals 0 andg(z)
zα → ∞ for α > a, wherea is a real number.

For theseQ-classes the following is known to hold:
Lemma 1. If g is differentiable invertible with inverseg−1 anda > 0 then

g ∈ Q(a,∞)⇔ g−1 ∈ Q(a−1, 0).

Lemma 2. If g ∈ Q(a,∞), h ∈ Q(b, 0) anda < 0 < b theng ◦ h ∈ Q(ab,∞).
If g ∈ Q(a, 0), h ∈ Q(b, 0) anda, b > 0 theng ◦ h ∈ Q(ab, 0).

Lemma 3. If g ∈ Q(a, 0) andh ∈ Q(b,∞) then g
h ∈ Q(a − b, 0).

Lemma 4. If g ∈ Q(a,∞) andh ∈ Q(b,∞) thengh ∈ Q(a + b,∞).
The proofs of these lemmas are obtained by straightforward calculations. More details and also details

of other parts of this preprint are available from authors.
We now state another lemma connecting theQ-classes and theθ-function defined byθ(z) = zg′(z)

g(z) . We
introduce a known lemma and give a short proof of it.
Lemma 5. If θ is non-increasing andθ(z)→ a asz→ 0+ theng ∈ Q(a,∞).
Proof of Lemma 5. We denote byu the function defined byu(z) = g(z)

zα and by η the function defined by

η(z) = zu′(z)
u(z) . Thenη(z) = θ(z) − α.

If α < a thenη(z) > b for some positiveb in a neighbourhood of zero. Integrating the inequalityu′

u >
b
z

from u to u0 = u(z0) to left and fromz to z0 to right and using monotonicity of logarithm we obtain

u0

u
>

(z0

z

)b

,
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implying u(z)→ 0 for z→ 0+.
We now assumeα = a. Sinceη is non-increasing andη→ 0 for z→ 0+, the derivativeu′ is non-positive

and the limit set ofu whenz→ 0+ cannot contain more than one point and this cannot be zero.
We are now ready to prove our main theorem. The proof of the main theorem consists of three parts.

First part examines the number of equilibria from intersections of zero-isoclines. This part needs the lem-
mas. The second part examines the type of the equilibria found. The final part makes the global analysis
using sign analysis of the right hand sides of system 1.
Proof of main theorem. We start by finding the number of equilibria and their position in relation to each
other.

First we see thatc2 can be considered as a function of thex-coordinate at equilibrium and analyze the
behaviour at endpoints 0 andx1 of the interval of definition. Secondly we differentiate that function to find
out the behaviour inside the interval (0, x1).

Let c1 be fixed and suppose (x, y) is a point on the isoclinex′ = 0. Then from Condition 1 it follows that
y = p1(x) = g−1

1

(

1
f1(x)

)

is an increasing function ofx andp1(0) = 0 andp1(x)→ ∞ for x→ 1−. Thus, there
is anx1 between 0 and 1 such thatp1(x1) = 1 and the isoclinex′ = 0 is given by the functionp1 defined in
[0, x1].

In this part of the proof calculating the limit behaviour whenz→ 0+ we consider functionsgi as defined
only for z > 0.

From Condition 2 and Lemma 5 it follows thatgi ∈ Q(ai,∞) and fi ∈ Q(−bi,∞). From Lemma 3
it follows that 1

f1
∈ Q(b1, 0) and from Lemma 1 it follows thatg−1

1 ∈ Q( 1
a1
, 0). However from Lemma 2

(second part) it follows thatp1 ∈ Q( b1
a1
, 0).

We now suppose (x, y) is also on the isocliney′ = 0, that is (x, y) is an equilibrium point. We then
calculatec2 as a function ofx i.e. c2 = g2(x) f2(p1(x)). From Lemma 2 it follows that the composition
of f2 and p1 belongs toQ(− b2b1

a1
,∞) and finally Lemma 4 implies, thatc2 as a function ofx, belongs to

Q(a2 − b2b1
a1
,∞).

We conclude that forx → 0+ we getc2(x) → 0 in case 1 wherea1a2 > b1b2 andc2(x) → ∞ in case 3
wherea1a2 < b1b2 and eitherc2(x)→ ∞ or c2(x)→ c ∈ R+ in case 2 wherea1a2 = b1b2.

Becauseh2(1) = 0, we conclude that in all casesc2(x)→ 0 for x→ x1.
We have now finished examining the behaviour ofc2 at the endpoints.
To find out whenc2(x) is growing or decreasing we calculate the derivative.
Differentiatingc1 = g1(y) f1(x) with respect tox and solving fory′ we get

y′ =
−g1(y) f ′1(x)

g′1(y) f1(x)
.

Differentiatingc2 = g2(x) f2(y) with respect tox and substituting our expression fory′ we get

dc2

dx
= g′2(x) f2(y)

(

1−
φ1(x)φ2(y)
θ2(x)θ1(y)

)

. (2)

From the boundary behaviour ofc2 and the derivative, we make conclusions about the behaviour ofc2

between 0 andx1 and from there we find the number of equilibria depending onc2. From condition 1 and
2 it follows that dc2

dx is always decreasing.

We consider case 1 whena1a2 > b1b2. From conditions 1 and 2 it follows thatdc2
dx is positive near 0

and becomes negative nearx1. Then there is anxm(c1) such thatdc2
dx = 0 for x = xm(c1) and dc2

dx > 0 for
x < xm(c1) and dc2

dx < 0 for x > xm(c1).
We denote bycm(c1), the maximum value ofc2 for fixedc1.
In the case whenc2 > cm(c1), we cannot solve forx and thus have no equilibrium apart from the origin.
If c2 = cm(c1), we have only one solution forx i.e. x = xm(c1) and thus one equilibrium (in addition to

the origin).
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As c2(x) → 0 for x → x1 andx → 0+ for the casec2 < cm(c1) we obtain two solutions forx, one with
x < xm(c1) and the other withx > xm(c1) and thus have two equilibria (in addition to the origin).

Let us denote the equilibrium at the origin byP0. If c2 < cm(c1), we denote the equilibrium when
x > xm(c1) by Pe and the equilibrium whenx < xm(c1) by Ps.

The equilibriumPs tends toP0 (disease-free) andPe gets it’s maximal size asc2 tends to zero. At
c2 = cm(c1) there is a saddle-node bifurcation with both equilibria coinciding and disappearing after that.

Next we consider case 3, wherea1a2 < b1b2. Theredc2
dx < 0 for all x andc2 is decreasing from infinity to

zero whenx is increasing from zero tox1. Thus, there is always exactly one non-trivial equilibrium denoted
by Pe. The equilibriumPe tends to zero whenc2 grows to infinity.

Finally we consider case 2, wherea1a2 = b1b2. In this casedc2
dx ≤ 0 and if c2(x) → ∞ for x → 0+, we

have a situation analogous to the one in case 3. Ifc2(x) → c thenc2 is decreasing fromc to zero whenx
is increasing from zero tox1. Thus forc2 < c there is always exactly one non-trivial equilibrium denoted
by Pe. The equilibriumPe tends to zero whenc2 → c−. In this case there is no non-trivial (endemic)
equilibrium forc2 > c. At c2 = c there is a transcritical bifurcation.

The first part of the proof is now complete and we begin with the second part to find the type of the
equilibria.

The Jacobian matrix for system (1) is given by

J =

[

g1(y)h′1(x) − c1µ
′
1(x) g′1(y)h1(x)

g′2(x)h2(y) g2(x)h′2(y) − c2µ
′
2(y)

]

.

Using thathi(z) = fi(z)µi(z) and at equilibriumc1 = g1(y) f1(x) andc2 = g2(x) f2(y) after some calcula-
tions the Jacobian matrix becomes

J =

[

g1(y) f ′1(x)µ1(x) g′1(y) f1(x)µ1(x)
g′2(x) f2(y)µ2(y) g2(x) f ′2(y)µ2(y)

]

for x, y , 0. We now calculate the trace and determinant of the Jacobian matrix.
From Condition 1, it follows thatf ′i (z) < 0 and

Trace(J) = g1(y) f ′1(x)µ1(x) + g2(x) f ′2(y)µ2(y) < 0.

Calculations show that the determinant D of the Jacobian matrix is equal to

D = −µ1(x)µ2(y)g′1(y) f1(x)
dc2

dx
.

We consider case 1.
We have two equilibria in the casec2 < cm(c1). Whenx > xm(c1) then dc2

dx < 0. This impliesD > 0.We
note thatg′i(z) > 0 from Condition 1. Thus the determinant is positive atPe. Whenx < xm(c1) then dc2

dx > 0.
This impliesD < 0. Thus the determinant is negative atPs.

Since the trace is negative and the determinant is positive atPe, it is a sink. Also, since the determinant
is negative atPs, it is a saddle.

In cases 2 and 3 we conclude in the same way thatPe is always stable when it exists.
The type of equilibriumP0 cannot always be found from Jacobian matrix, as the derivatives of the

functions might not exist at 0. Anyhow a lot is known about origin from global analysis below.
The second part of proof is now complete and we begin with the last part and examine the global

behaviour. We do this by using sign analysis ofx′ andy′.
We start with case 1, which has the most complicated behaviour.
We notice that in thexy-space above the isoclinex′ = 0, the sign ofx′ is positive and below negative.To

the left of the isocliney′ = 0, the sign ofy′ is negative and to the right it is positive.
We consider the situation whenc2 > cm(c1). Here the isoclines do not intersect in thexy-plane. The

isoclinex′ = 0 is above and to the left from the isocliney′ = 0. The isoclines divide the phase space into
three parts as seen in Figure 1. These parts are defined as follows:
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Figure 1
Sign Analysis for System x′ = y2(1 − x) − 0.25x, y′ = x2(1 − y) − 0.3y

Figure 2
Phase Portrait and Zero-Isoclines for System x′ = y2(1 − x) − 0.25x, y′ = x2(1 − y) − 0.3y

1. The region wherey′ < 0 < x′.
2. The region wherex′, y′ < 0.
3. The region wherex′ < 0 < y′.
In region 1 thex-coordinate of the trajectory is increasing and they-coordinate is decreasing. Thus the

trajectory cannot remain in the region, but has to hit the isoclinex′ = 0 entering region 2 after some time . In
region 3 thex-coordinate of the trajectory is decreasing and they-coordinate is increasing. In that way the
trajectory cannot remain in the region, but has to hit the isocliney′ = 0 entering region 2 after some time. In
region 2, thex- andy-coordinates are decreasing and the trajectory cannot escape from region 2 against the
direction field on the boundariesx′ = 0 andy′ = 0 and also onx = 1 andy = 1. In region 2, trajectories can
be attracted only to the origin. We conclude that in the first and the third region the trajectories hit either
the isoclinex′ = 0 or y′ = 0 and afterwards they remain in region 2 where they are all attracted toP0. Thus
the disease-free origin is a global attractor. One example of such a phase portrait is given in Figure 2.

We now consider the situationc2 < cm(c1). Here the isoclines intersect and divide the phase space into
five parts as shown in Figure 3. These regions are defined as follows:

1. The region wherey′ < 0 < x′.
2. The region wherex′, y′ < 0 andx is less than thex-coordinate ofPs.
3. The region wherex′, y′ < 0 andx is greater than thex-coordinate ofPe.

10
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Figure 3
Sign Analysis for System x′ = y2(1 − x) − 0.25x, y′ = x2(1 − y) − 0.15y

Figure 4
Phase Portrait and Zero-Isoclines for System x′ = y2(1 − x) − 0.1x, y′ = x2(1 − y) − 0.4y

4. The region wherex′, y′ > 0.
5. The region wherex′ < 0 < y′.
In region 1, thex-coordinate of the trajectory is increasing and they-coordinate is decreasing. This

means the trajectory cannot remain in the region, but has to hit either the isoclinex′ = 0 or y′ = 0 entering
one of regions 2, 3 or 4 after some time, or the trajectory is attracted toPs or Pe. In region 5, thex-coordinate
of the trajectory is decreasing and they-coordinate is increasing. This means the trajectory cannot remain
in the region, but has to hit either the isoclinex′ = 0 or y′ = 0 entering one of regions 2, 3 or 4 after
some time, or the trajectory is attracted toPs or Pe. In region 2, thex- andy-coordinates are decreasing
and the trajectory cannot escape from region 2 against the direction field on the boundariesx′ = 0 and
y′ = 0. In region 2, trajectories can be attracted only to the origin. In region 4, thex- andy-coordinates
are increasing and the trajectory cannot escape from region 4 against the direction field on the boundaries
x′ = 0 andy′ = 0. In region 4, trajectories can be attracted only toPe. In region 3, thex- andy-coordinates
are decreasing and the trajectory cannot escape from region 3 against the direction field on the boundaries
x′ = 0 andy′ = 0 and also onx = 1 andy = 1. In region 3, trajectories can be attracted only toPe.

We conclude that in the first and the fifth region trajectories after some time either hit the isoclinex′ = 0
or y′ = 0 or tend directly to some equilibrium without visiting other parts. If they go through one of the
isoclines they come into one of regions 2, 3 or 4 and remain in the region they enter. Trajectories in region
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Bismark Akoto; Emmanuel Kwame Essel; Gunnar Söderbacka/Studies in Mathematical Sciences Vol.4
No.1, 2012

2 are attracted toP0 and in regions 3 and 4 toPe. Thus the stable set of the saddlePs divides the phase
space into two parts, one where trajectories are attracted to origin and another where they are attracted to
Pe. One example of such a phase portrait is given in Figure 4.

Figure 5
Sign Analysis for System x′ = y2(1 − x) − 0.25x, y′ = x2(1 − y) − 0.25y

In the casec2 = cm(c1) there is a saddle-node bifuraction dividing the parameter space into two parts
with different qualitative behaviour described in the two sitautions above. In this case, the isoclines intersect,
except at origin at a tangency point which is an equilibrium. The phase space is divided into four parts as
shown in Figure 5. The regions are defined as follows:

1. The region wherey′ < 0 < x′.
2. The region wherex′, y′ < 0 andx is less than thex-coordinate of the equilibrium.
3. The region wherex′, y′ < 0 andx is greater than thex-coordinate of the equilibrium.
4. The region wherex′ < 0 < y′.
In region 1, thex-coordinate of the trajectory is increasing and they-coordinate is decreasing. Thus the

trajectory cannot remain in the region, but has to hit either the isoclinex′ = 0 entering one of region 2 or
3 after some time or the trajectory is attracted to the equilibrium point at tangency of isoclines. In region 4
thex-coordinate of the trajectory is decreasing and they-coordinate is increasing. In that way the trajectory
cannot remain in the region but has to hit after some time either the isocliney′ = 0 entering one of region 2
or 3 or the trajectory is attracted to the equilibrium point. Trajectories in region 2 cannot escape against the
direction field on the boundary and they are all attracted by the origin. For the same reason, the trajectories
in region 3 cannot escape and they must be attracted by the equilibrium at tangency.

We conclude that trajectories in regions 1 and 4 either hit one of the isoclinesx′ = 0 ory′ = 0 after some
time or are attracted to the equilibrium at tangency. The equilibrium is a saddle-node and the boundary of
it’s stable set divides the phase space into two parts, to the left, the trajectories are in the basin of attraction
of the origin and to the right, we have the stable set of the equilibrium including the boundary of itself.
Figure 6 shows one example of such a phase portrait.

In case 2, wherea1a2 = b1b2 and in the situationc2 ≥ c the sign analysis can be carried out in the same
way as in case 1 whenc2 > cm(c1) and we get origin as global attractor.

In case 2 and in the situation whenc2 < c we have the typical situation in the endemic case in the Ross
model. The zero-isoclines divide the phase space into four regions as shown in Figure 7. The regions are
defined as:

1. The region wherey′ < 0 < x′.
2. The region wherex′, y′ > 0 (herex is less than thex-coordinate of the endemic equilibrium).
3. The region wherex′, y′ < 0 (herex is greater than thex-coordinate of the endemic equilibrium).
4. The region wherex′ < 0 < y′.
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Figure 6
Phase Portrait and Zero-Isoclines for System x′ = y2(1 − x) − 0.25x, y′ = x2(1 − y) − 0.25y

Figure 7
Sign Analysis for System x′ = y(1 − x) − 0.5x, y′ = x(1 − y) − 0.5y

As before we conclude that the trajectories in regions 1 and 4 hit one of the isoclines after some time
or are attracted directly by the endemic equilibrium. After hitting one isocline they either enter region 2 or
3 where they are attracted to the endemic equilibrium. Thus the endemic equilibrium is a global attractor,
attracting everything except the origin. One example of such a phase portrait is given in Figure 8.

In case 3, wherea1a2 < b1b2 similar sign analysis as in the previous case shows thatPe is a global
attractor attracting everything except the origin.

2. SOME EXAMPLES

We now study special cases of the functionsgi, hi andµi in system (1). These are often used in models
with non-linear incidence. We assume the functions have the formgi(z) = za, hi(z) = (1− z)b andµi(z) = z,
i = 1, 2, which gives system

x′ = ya(1− x)b − c1x
y′ = xa(1− y)b − c2y.

(3)
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Figure 8
Phase Portrait and Zero-Isoclines for System x′ = y(1 − x) − 0.5x, y′ = x(1 − y) − 0.5y

We supposea > 1 which here will imply case 1, a saddle-node bifurcation and two possible main types
of phase portraits.

It is possible to prove that this system satisfies Conditions 1-2 by direct calculations.
Calculations giveθi(z) = a andφi(z) = 1+dz

1−z , whered = b − 1 anda1 = a2 = a andb1 = b2 = 1. Thus,
we can apply case 1 in our theorem.

The saddle-node bifurcation occurs whendc2
dx = 0 in (2) thereby giving us

φ1(x)φ2(y) = θ2(x)θ1(y) (4)

Equation (4) must be satisfied for an equilibrium point (x, y) in order to get a saddle-node bifurcation.
Equation (4) for bifurcation in our example (3) becomes

1+ dx
1− x

1+ dy
1− y

= a2, (5)

and solving fory we get:

y =
−(d + a2)x − 1+ a2

(d2 − a2)x + d + a2
. (6)

For any equilibrium in system (3) we must have

c1 =
ya(1− x)b

x
, c2 =

xa(1− y)b

y
. (7)

Substituting (6) into (7) we obtain a parameter representation for the saddle-node bifurcation curve in
the c1c2-space ifa andb are known. Some examples of such bifurcation curves are shown in Figures 9
and 10.

In some special cases, it is possible to get algebraic formulas for calculatingc1 andc2 or the equilibrium
(x, y) at bifurcation.

In the case whereb = 1, it is possible to calculatec1, c2 and the equilibrium at bifurcation if the product
c|c2 is given.

In this case bifurcation equation (5) becomes

(1− x)(1− y) =
1
a2
. (8)

Multiplying equalities (7) we get

14



Bismark Akoto; Emmanuel Kwame Essel; Gunnar Söderbacka/Studies in Mathematical Sciences Vol.4
No.1, 2012

Figure 9
Bifurcation Curves for a = 1.5, 3, 4, 6 and b = 1 of System 3.

Figure 10
Bifurcation Curves for b = 0.25, 0.5, 1, 1.5, 2, 3 and a = 2 of System 3.

c1c2 = (xy)a−1(1− x)(1− y) (9)

and using (8), we obtain an expression forxy:

xy =
(

a2c1c2

)
1

a−1
. (10)

Using expression (10) in expansion of (8) gives

x + y = 1− 1
a2
+

(

a2c1c2

)
1

a−1
. (11)

Solving fory from (8) and substituting into (11), we obtain a second order equation forx if a andc1c2

are known. Knowingx we can solvey from (8) and finally we can calculatec1 andc2 from equalities (7).
Finally we consider a special case wherea = 2 andb = 1. Here it is possible to get an expression forc1

or c2 at bifurcation, if we know one of them. Also the bifurcation point (x, y) can be easily calculated from
explicit algebraic expressions afterwards.

In this case equality (10) takes on a simple form

xy = 4c1c2, (12)
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and (11) takes on the form

4x + 4y = 3+ 16c1c2. (13)

Subsitutinga = 2 andb = 1 into the expression fory in (6) we get

y =
3− 4x

4(1− x)
. (14)

From (7) using (14) we see that

c1x
y2
= 1− x =

3− 4x
4y
, (15)

which simplifies to

3y − 4xy = 4c1x. (16)

Pluging (12) in (16) we obtain

−4c1x + 3y = 16c1c2. (17)

Solving forx andy from (13) and (17) we obtain expressions

x =
9− 16c1c2

16c1 + 12
, y =

(16c2
1 + 16c1)c2 + 3c1

4c1 + 3
(18)

Substituting now expressions (18) forx andy into (12) we see after simplifications that the bifurcation
curve in thec1c2-space satisfies the condition

256(c2
1c2

2 + c1c2
2 + c2

1c2) + 288c1c2 = 27. (19)

From this we can easily solve forc1 or c2 from a second order equation, if one of them is known. And
knowingc1 andc2, we can calculate the coordinates for the equilibrium at bifurcation from formulas (18).

CONCLUSION

We have examined a generalized Ross model for a large class of non-linear incidence functions and found
possible phase portraits and bifurcations. Many known incidence functions are inside this class. There are
three types of structurally stable types of phase portraits. One type has the disease-free origin as a global
attractor. A second one has the endemic equilibrium as a global attractor. In the third type both disease-free
origin and endemic equilibrium are attractors and there is a saddle equilibrium with stable set forming the
boundary between the basins of attractions of the both attractors. The possible bifurcations are the usual
saddle-node and transcritical bifurcations.
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