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Modifying Weak Solutions of a Triangular Fuzzy Linear
System to Strong Ones

Zengfeng TIAN1,∗

Abstract: This paper is concerned with the structure of solution space of triangular fuzzy linear
systems. The existence of non-triangular fuzzy number solutions for triangular fuzzy linear sys-
tems is proved. According to the structure of solution space, an approach of modifying a weak
fuzzy number solution of the triangular fuzzy linear system to a strong solution is illustrated.
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1. INTRODUCTION

Systems of simultaneous linear equations play center role in various areas such as mathematics, physics,
statistics, and so on. But in many problems the parameters in the systems are not known exactly and they
are represented by fuzzy numbers. It is important to study the structure of solution space of fuzzy linear
systems[1] from the existence of solution to numerical methods. Since triangular fuzzy numbers are widely
used in engineering, we primarily concentrate on triangular fuzzy linear systems. An embedding approach
for solving fuzzy linear system Ax = y was first proposed in [2, 3], where A is a crisp n × n matrix, x and
y are fuzzy vectors. The approach transfers a fuzzy linear system into a crisp functional linear system. By
solving the crisp function linear system, the solution of original fuzzy linear system can be obtained either
in strong or weak senses. The embedding approach is employed to investigate the structure of solution to
triangular fuzzy linear systems in this paper. Then a method of modifying a weak solution of triangular
fuzzy linear system to a strong solution is given.

The structure of this paper is organized as follows. In Section 2, some definitions and results on fuzzy
linear system are introduced. The existence of weak/strong solutions to triangular fuzzy linear systems is
explored in Section 3, followed by the structure of solution to functional linear system S X = Y in Section
4. An approach of modifying a weak solution of triangular fuzzy linear systems to a strong solution is
illustrated in Section 5, and the concluding remarks are related in Section 6.

2. PRELIMINARIES

In this section we recall the basic notations of fuzzy number arithmetic and fuzzy linear system.

Let E be the set of fuzzy numbers defined on R. A fuzzy number is uniquely characterized by its cuts.
The r−cuts of fuzzy number u are denoted by [u]r. Let u ∈ E, write [u]r = [u(r), u(r)], r ∈ [0, 1]. Then
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u(r), u(r) can be regarded as functions on [0, 1], which satisfy the following requirements[4]:

(i) u(r) is a bounded left continuous non-decreasing function over [0, 1].

(ii) u(r) is a bounded left continuous non-increasing function over [0, 1].

(iii) u(r) ≤ u(r), 0 ≤ r ≤ 1.

(iv) u(r), u(r) are right continuous at r = 0.

Conversely, for any functions a(r) and b(r) defined on [0, 1] which satisfy (i)-(iv) on the above, there exists
a unique u ∈ E such that [u]r = [a(r), b(r)] for all r ∈ [0, 1].

A fuzzy number u ∈ E is called a triangular fuzzy number if its sendograph is a triangular, so it is
uniquely characterized in parametric form by

u(r) = uc − (1 − r)(uc − ul), u(r) = uc + (1 − r)(ur − uc), r ∈ [0, 1], (1)

where uc, ul and ur are the mean value, left and right spreads of u, respectively.

The addition and scalar multiplication of fuzzy numbers previously defined can be described as follows,
for arbitrary u = [u(r), u(r)], v = [v(r), v(r)] and real number λ,

(a) u + v = [u(r) + v(r), u(r) + v(r)];

(b) λu =

 [λu(r), λu(r)], λ ≥ 0,[
λu(r), λu(r)

]
, λ < 0.

Definition 2.1 The m × n linear system
a11x1 + a12x2 + · · · + a1nxn = y1,

a21x1 + a22x2 + · · · + a2nxn = y2,
...

...

am1x1 + am2x2 + · · · + amnxn = ym,

(2)

is called a fuzzy linear system (FLS in short)[3], where the coefficients matrix A = (ai j) is a crisp m × n
matrix and yi is a fuzzy number for i = 1, ..., n. Moreover, if all the yi at the right-hand side are triangular
fuzzy numbers, (2) is a triangular fuzzy linear system (or TFLS).

Let x j = [x j(r), x j(r)], j = 1, ..., n and yi = [y
i
(r), yi(r)], i = 1, ...,m be fuzzy numbers. Then fuzzy linear

system (2) can be rewritten in the form of following functional linear system:
n∑

j=1
ai jx j = y

i
, i = 1, ...,m,

n∑
j=1

ai jx j = yi, i = 1, ...,m.
(3)

The functional linear system (3) can be represented in 2m × 2n vector-matrix form as follows:

S X = Y, (4)

or in partitioned form, (
S 1 S 2

S 2 S 1

) (
X
−X

)
=

(
Y
−Y

)
, (5)
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where X = (X,−X)T and Y = (Y ,−Y)T and si j are defined as

ai j ≥ 0 ⇒ si j = si+n, j+n = ai j,

ai j < 0 ⇒ si+n, j = si, j+n = −ai j,

and any si j which is not determined is zero such that A = S 1 − S 2. In Eq. (5), X and X denote (x1, ..., xn)T

and (x1, ..., xn)T , respectively; similarly, Y and Y are defined.

Definition 2.2 Let X̂ = {(xi(r), xi(r)), 1 ≤ i ≤ n, r ∈ [0, 1]} be the solution of Eq. (5), the fuzzy number
vector Ŷ = {(ui(r), ui(r)), 1 ≤ i ≤ n, r ∈ [0, 1]} defined by[1]

ui(r) = min{xi(r), xi(r), xi(1), xi(1)},
ui(r) = min{xi(r), xi(r), xi(1), xi(1)},

is called the fuzzy solution of Eq. (2). If (xi(r), xi(r)) is a fuzzy number for i = 1, ..., n then Ŷ is called a
strong fuzzy solution, otherwise, a weak solution.

Weather a fuzzy linear system has strong solution depends on not only the coefficients matrix A but also
the right-hand fuzzy vector[2]. We could get a fuzzy solution of Eq. (2) by using iterative or eliminating
methods to solve Eq. (5). However, the derived solution may be a weak one even though the fuzzy linear
system is consistent. It is well-known that the consistent under-determined crisp (not fuzzy) linear system
has many solutions and this solutions constitute a linear manifold in Rn. We next consider the existence of
weak/strong fuzzy solutions to TFLS and the structure of solution space to functional linear system S X = Y .

3. EXISTENCE OF WEAK/STRONG SOLUTIONS TO TFLS

A triangular fuzzy linear system has either triangular fuzzy number solution or nontriangular fuzzy number
solution as the next examples show.

Example 1. The 1 × 2 TFLS
x1 + x2 = (2r, 4 − 2r), (6)

has a nontriangular fuzzy number solution x∗ = (x∗1, x
∗
2) and a triangular fuzzy number solution x̂ = (x̂1, x̂2),

where x∗1 = (r2 − 1, 1 − r2), x∗2 = (1 + 2r − r2, 3 − 2r + r2), x̂1 = x̂2 = (r, 2 − r).

However, the next example shows that a TFLS has possibly no triangular fuzzy vector solution at all.

Example 2. The 2 × 2 TFLS {
x1 − x2 = (r, 4 − 2r),
−x1 + x2 = (r, 2 − r),

(7)

has no triangular fuzzy number solution. Actually this TFLS is not consistent (see Theorem 4.6, Section 4).

A question naturally arises: has the triangular TFLS (7) non-triangular fuzzy numbers solutions? The
following theorem gives a negative answer.

Theorem 3.1 If a TFLS has nontriangular fuzzy number solution, then it has triangular fuzzy number
solution as well.

The proof will be given after Theorem 4.1 (see Section 4).

Theorem 3.2 The necessary condition that TFLS Ax = y has nontriangular fuzzy number solution is
rankS < 2n, where S is defined by Eq. (4).
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Proof. Since S is a 2m × 2n matrix, rankS ≤ min{2n, 2m}. Now assume that rankS = 2n. Deleting the
superfluous rows from S X = Y leads to S ′X = Y ′ which has the same solution to S X = Y , where X,Y are
defined by Eq. (5). It follows that rankS ′ = 2m = 2n. Therefore, if the functional linear system S ′X = Y ′

has solution, then the solution, denoted by (S ′)−1Y ′, is unique. Since all the entries in y are triangular
fuzzy numbers, Y consists of linear functions, so does Y ′. If fuzzy vector x satisfies TFLS Ax = y, then X
corresponding to x by Eq. (5) is a solution of S X = Y and S ′X = Y ′. It is concluded that if TFLS has fuzzy
number solution, all the entries of the solution must be triangular fuzzy numbers.

Theorem 3.4 implies that only under-determined TFLS possibly has non-triangular fuzzy number solu-
tion and over-determined (i.e. rankS = 2n > 2m) or proper-determined (i.e. rankS = 2n = 2m) TFLS has
not.

4. STRUCTURE OF SOLUTION SPACE OF FUNCTIONAL LIN-
EAR SYSTEM SX = Y

Denote C
n
[0, 1] the family of all the vector-valued functions which satisfy: (a) they are bounded left-

continuous on (0, 1], (b) they have right limit on [0, 1) and (c) they are right continuous at r = 0. The
supremun norm for C

n
[0, 1] is defined by ||u|| = supr∈[0,1] |u|, where u ∈ C

n
[0, 1] and |u| is Euclidian norm of

u, i.e. |u| = (uT u)1/2. It is obvious that (C
n
[0, 1], ||·||) is a Banach space, so is product space C

n
[0, 1]×C

n
[0, 1]

with norm ∥(·, ·)∥ = max{∥ · ∥, ∥ · ∥}.
The n-dimension fuzzy vector space[5] can be isomorphically embedded[4] in C

n
[0, 1] × C

n
[0, 1]. By

fuzzy vector we mean all entries of the vector are fuzzy numbers. If fuzzy vector x satisfies FLS Ax = y,
the function vector Y by Eq. (5) is a solution of S X = Y . The converse, however, does not hold since if
X = (X, X)T corresponds to a fuzzy vector, then X ≤ X must be fulfilled.

Theorem 4.1 Suppose that {αi}si=1 is a group of nonlinear functions such that {αi}si=1 ∪ {1, r} is linearly
independent. There are solutions to S X = Y in space (span{1, r, α1, · · · , αs})2n if and only if ∃Z1 ∈
(span{1, r})2n,∃Z2 ∈ (span{αi})2n with Z = Z1 + Z2 such that S Z1 = Y and S Z2 = 0.

Proof. It follows from linearly independence of {αi}si=1 ∪ {1, r} that

span{1, r} ∩ span{αi}si=1 = {0}. (8)

Moreover, (span{1, r, α1, α2, · · · , αs})2n = (span{1, r})2n+(span{αi})2n. Assume that there exists Z ∈ (span{1,
r, α1, · · · , αs})2n such that S Z = Y . Then ∃Z1 ∈ (span{1, r})2n,∃Z2 ∈ (span{αi})2n with Z = Z1 + Z2 subject
to S (Z1 + Z2) = Y or S Z2 = Y − S Z2. Because Y,Z1 ∈ (span{1, r})2n, S Z2 = Y − S Z1 ∈ (span{1, r})2n. But
S Z2 ∈ (span{αi})2n, it follows from Eq. (8) that S Z2 = 0 and S Z1 = Y . The sufficiency is a straightforward
verification.

If x is a nontriangular fuzzy strong solution of Ax = y and the membership functions of all en-
tries of x belong to (span{1, r, α1, · · · , αs}), then X derived by Eq. (5) is a solution of S X = Y and
X ∈ (span{1, r, α1, · · · , αs})2n. Decomposing X to linear part X1 and nonlinear part X2 leads to a trian-
gular fuzzy number solution x̂ of Ax = y whose membership functions are given by X1 according to Eq.
(5). This is a straightforward proof for Theorem 3.5. The nonlinear part X2 is a solution of S X = 0 in
(span{αi})2n. If there is not such nonlinear solution, then TFLS Ax = y has not non-triangular fuzzy number
solution whose membership functions are all in (span{1, r, α1, · · · , αs}).

Theorem 4.2 Whether S X = 0 has nonzero solution in (span{αi})2n does not depend on the choice of {αi},
where {αi}si=1 is a group of nonlinear functions such that {αi}si=1 ∪ {1, r} is linearly independent.
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Proof. From Theorem 3.4, Ax = y has not non-triangular fuzzy number solution when rankS ≥ 2n. So,
S X = 0 has only trivial solution in (span{αi})2n. Now assume rankS < 2n. Let Z ∈ (span{αi})2n be a
solution of S X = 0 whose entries Z j =

∑s
t=1 k jtαt, ( j = 1, · · · , 2n). Accordingly,

Z =


Z1
...

Z2n

 =


∑s
t=1 k1tαt
...∑s

t=1 k2m,tαt

 =


k11 · · · k1s
... · · ·

...

k2m,1 · · · k2m,s



α1
...

αs

 , (9)

Since {αi}2n
i=1 are linear independent,

S Y = 0⇔ S


k11 · · · k1s
... · · ·

...

k2m,1 · · · k2n,s



α1
...

αs

 = 0⇔ S


k11 · · · k1s
... · · ·

...

k2m,1 · · · k2m,s

 = 0. (10)

This Theorem implies that if we receive a nontriangular fuzzy number solution of TFLS Ax = y, then
replaced those nonlinear functions in memberships of this solution by other nonlinear functions which
is also linearly independent of {1, r} leads to another nontriangular fuzzy number solution of Ax = y.
For example, changing r2 in the solutions in Exampe 3.1 to sin(πr/2) gives another nontriangular fuzzy
number solution, x̄ = {x̄1, x̄2} to x1 + x2 = (2r, 4 − 2r), where x̄1 = (sin(πr/2) − 1, 1 − sin(πr/2)), x̄2 =

(1 + 2r − sin(πr/2), 3 − 2r + sin(πr/2)).

Theorem 4.3 Functional linear system S X = 0 has nontrivial solution in (span{αi})2n if and only if rankS <
2n.

Proof. It is sufficient, due to Theorem 3.4, to prove that S X = 0 has nontrivial solution in (span{αi})2n

when rankS < 2n. In fact, the family of all solutions to S X = 0 in R2n forms a linear space, written as H.

Take nonzero vectors (k11, · · · , k2n,1)T , · · · , (k1s, · · · , k2m,s)T from H and construct functions Z j =
∑s

t=1
k jtαt, ( j = 1, · · · , 2n) and function vector Z = (Z1,Z2, · · · ,Z2n)T , then S Z = 0 and Z ∈ (span{αi})2n.

In the following we deal with the existence of linear function solutions to S X = Y in (span{1, r})2n. Let
X = (X,−X)T and Y = (Y ,−Y)T . Since X,Y ∈ (span{1, r})2n, X,−X,Y ,−Y can be decomposed as follows
X = c+ dr, X = c+ dr,Y = a+ er,Y = a+ er, here c, c, a, a, d, d, e, e ∈ Rn. If write vectors (a,−a)T , (e,−e)T

as M, E, respectively, then M + rE = Y .

Theorem 4.4 If and only if S X = M and S X = E both have solutions in R2n, functional linear system
S X = Y has solution in (span{1, r})2n.

Proof. Functional linear system S X = Y is equivalent to(
S 1 S 2

S 2 S 1

) (
c + dr
−c − dr

)
=

(
a + er
−a − er

)
, (11)

or (
S 1 S 2

S 2 S 1

) [(
c
−c

)
+

(
d
−d

)
r
]
=

(
a
−a

)
+

(
e
−e

)
r. (12)

Hence, S X = Y has solutions in (span{1, r})2n if and only if(
S 1 S 2

S 2 S 1

) (
c
−c

)
=

(
a
−a

)
, (13)
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and (
S 1 S 2

S 2 S 1

) (
d
−d

)
=

(
e
−e

)
, (14)

both have solutions in R2n, or matrix equation(
S 1 S 2

S 2 S 1

)
Γ =

(
a e
−a −e

)
, (15)

is consistent.

Definition 4.5 If the matrix equation (15) is consistent, then we call that TFLS Ax = y is consistent, where
S , X, Y are defined by Eq. (5).

Integrating the above theorems gives the next conclusion.

Theorem 4.6 Firstly, convert TFLS Ax = y into functional linear system S X = Y as Eq. (5),

I. If Ax = y is not consistent, then it has no (neither triangular nor nontriangular) fuzzy number solu-
tions.

II. If Ax = y is consistent and rankS = 2n, then it has only triangular fuzzy number solutions.

III. If Ax = y is consistent and rankS < 2n, then it has triangular fuzzy number solution and nontrian-
gular fuzzy number solution as well.

IV. Suppose that Z ∈ (span{1, r, α1, · · · , αs})2n is nonlinear function solution of S X = Y, where {1, r, α1,
· · · , αs} is linearly independent. Let {β1, · · · , βs} be another group of nonlinear functions which is
linearly independent of {1, r}. A new function vector Z′ whose entries are obtained by replacing αi by
βi in turn is also a nonlinear function solution to S X = Y.

5. MODIFYING A WEAK SOLUTION OF TFLS TO A STRONG
SOLUTION

The freedom in selectivity of nonlinear functions provided by Theorem 4.6 supplies us a possibility to
choose appreciate functions such that they correspond to a strong solution to TFLS.

5.1 Linearly Modifying a Weak Solution to a Strong Solution

To solve S X = Y in (span{1, r})2n is actually to solve two systems of simultaneous linear equations S X = M
and S X = E in R2n with M + rE = Y . Denote the solution in R2n of S X = M and S X = E by C,D,resp.
Then X = C + rD is a solution of S X = Y in (span{1, r})2n.

Write the solution space of S X = 0 in R2n as H = span{v1, · · · , vl}. So, ∀Z ∈ span{v1, · · · , vl}, S Z = 0.

Solve S X = M and S X = E in R2n to obtain their solution C and D, if we use Eq. (5) backwards
and receive a fuzzy vector x̃, then x̃ is a strong solution to TFLS Ax = y. Otherwise, choose an appreciate
function from span{1, r}, then add it to a vector in H, to form a fuzzy strong solution of Ax = y.
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Suppose that G = (v1, · · · , vl)T whose columns are all not zero vector. If the ith entry of X needs to
modify in order to get a fuzzy number solution to Eq. (2), we select vi ∈ H and f (r) ∈ span{1, r}. Write
vi = (vi,−vi)T and set Z = X + vi f (r). Then Z = X + vi f (r), Z = X + vi f (r).

To obtain a fuzzy number solution of Eq. (2), it is sufficient that
dZ(r)

dr =
dX(r)

dr + vi
d f (r)

dr ≥ 0,
dZ(r)

dr =
dX(r)

dr + vi
d f (r)

dr ≤ 0,
Z(1) ≤ Z(1),

(16)

Since f (r) ∈ span{1, r}, denote f (r) = ar + b, where a, b ∈ R. So, Eq. (16) is equivalent to
X′(r) + avi ≥ 0,
X
′
(r) + avi ≤ 0,

X(1) + (a + b)vi ≤ X(1) + (a + b)vi.

(17)

The points satisfying the first and second inequalities in Eq. (17) consist of a convex field. It is easy
to find a feasible a to fit the two inequalities or to assert its non-existence. We next give an example to
illustrate the procedure.

Example 3. Consider the 2 × 3 TFLS[6]{
x̃1 + x̃2 + x̃3 = (r, 2 − r),
x̃1 + x̃2 − x̃3 = (1 + r, 3 − r).

(18)

The coefficients matrix

S =


1 1 1 0 0 0
1 1 0 0 0 1
0 0 0 1 1 1
0 0 1 1 1 0

 . (19)

This is a consistent system, and rankS = 3,Y = (r, 1 + r, r − 2, r − 3)T . The solution space of linear
system S X = 0 in R6, H = span{v1, v2, v3}, where v1 = (−1, 0, 1,−1, 0, 1)T , v2 = (0, 0, 0,−1, 1, 0)T , v3 =

(−1, 1, 0, 0, 0, 0)T .

It is easy to get a solution of S X = Y in (span{1, r})6, X = (−0.25 + 1.25r, 0.75 − 0.25r,−0.5,−1.75 +
0.75r,−0.75 + 0.25r, 0.5)T , which give a weak solution x̃ to Ax = y

x̃1 = (−0.25 + 1.25r, 1.75 − 0.75r),
x̃2 = (0.75 − 0.25r, 0.75 − 0.25r),
x̃3 = (−0.5,−0.5).

(20)

Since x2 is strictly monotonously decreasing, taking the structure of H in mind, let 1
4 S v3(r− 1) = 0 in order

to obtain a strong solution. Set Z = X + r−1
4 v3. A strong solution z̃ = (z̃1, z̃2, z̃3)T to Eq. (18) is given by
z̃1 = (r, 1.75 − 0.75r),
z̃2 = (0.5, 0.75 − 0.25r),
z̃3 = (−0.5,−0.5).

(21)

5.2 Nonlinearly Modifying a Weak Solution to a Strong Solution

To solve S X = Y in (span{1, r, α1, α2, · · · , αs})2n is essentially to solve it in (span{1, r})2n + (span{α1, · · · ,
αs})2n. In other words, we solve S X = Y in (span{1, r})2n and solve S X = 0 in (span{α1, · · · , αs})2n.
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The meanings for C,D,H are same as the preceding subsection. Solve S X = M and S X = E in R2n to
obtain their solution C and D. If we use Eq. (5) backwards and do not receive a fuzzy vector x̃, then choose
an appreciate function from span{α1, · · · , αs}, then add it to a vector in H, in order to construct a strong
solution of Ax = y.

The nonlinearly modifying procedure is similar to the linear one except f (r) ∈ span{α1, · · · , αs}. As-
sume that αi(r) is differentiable in [0, 1]. To obtain a fuzzy number solution of Eq. (2), it follows from the
definition of fuzzy number that 

dZ(r)
dr =

dX(r)
dr + vi

d f (r)
dr ≥ 0,

dZ(r)
dr =

dX(r)
dr + vi

d f (r)
dr ≤ 0,

X(1) + vi f (1) ≤ X(1) + vi f (1).
(22)

Example 4. This continues Example 3. We add a monotonously increasing function f (r), r ∈ [0, 1] to
x2 such that the resulting is increasing. Due to the structure of H, let Z = X + v3 f (r) whose entries are

Z1 = −0.25 + 1.25r − f (r),
Z2 = 0.75 − 0.25r + f (r),
Z3 = X3,Z4 = X4,Z5 = X5,Z6 = X6,

(23)

subject to the definition of fuzzy number, i.e.{
−0.25 + 1.25r − f (r) ≤ 1.75 − 0.75r,
0.75 − 0.25r + f (r) ≤ 0.75 − 0.25r, r ∈ [0, 1],

(24)

and −0.25+ 1.25r − f (r) ↑ [0, 1], 0.75− 0.25r + f (r) ↑ [0, 1]. Assume that f is differentiable on [0, 1], then

{
f (r) ≤ 0,
f (r) ≥ −2 + 2r, r ∈ [0, 1],

and
{

f ′(r) ≤ 1.25,
f ′(r) ≥ 0.25, r ∈ [0, 1].

Given and substituted any function f (r) that satisfies the above conditions, say f (r) = sin r − sin 1, into
Z = v3 f (r), Z is a solution of S Z = Y , say Z = (−0.25 + 1.25r − sin r + sin 1, 0.75 − 0.25r + sin r −
sin 1,−0.5,−1.75 + 0.75r,−0.75 + 0.25r, 0.5)T which corresponds to a strong fuzzy number solution of
TFLS (18) by Eq. (5).

6. CONCLUSIONS

In this work, we study the structure of solution space of functional linear system S X = Y corresponding to
fuzzy linear system Ax = y. Due to the structure an approach of (both linearly and nonlinearly) modifying
a weak solution of triangular fuzzy linear system to a strong one is given.
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