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Multiple-Soliton Solutions for Extended Shallow Water
Wave Equations

Abdul-Majid Wazwaz1,∗

Abstract: Four extended shallow water wave equations are introduced and studied for complete
integrability. We show that the additional terms do not killthe integrability of the typical equa-
tions. The Hereman’s simplified method and the Cole-Hopf transformation method are used to
show this goal. Multiple soliton solutions will be derived for each model. The analysis highlights
the effects of the extension terms on the structures of the obtainedsolutions.
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1. INTRODUCTION

In [1–2], the (2+1)-dimensional shallow water wave equations

uyt + uxxxy − 3uxxuy − 3uxuxy = 0, (1)

and
uxt + uxxxy − 2uxxuy − 4uxuxy = 0, (2)

were studied. Both equations reduce to the potential KdV equation fory = x. The difference between the
two models (1) and (2) is thatx replacesy in the termuyt and in the coefficients of the other terms.

In [1,3], the (3+1)-dimensional shallow water wave equations

uyzt + uxxxyz − 6uxuxyz − 6uxzuxy = 0, (3)

and
uxzt + uxxxyz − 2(uxxuyz + uyuxxz) − 4(uxuxyz + uxzuxy) = 0, (4)

were also studied. Both equations reduce to the potential KdV equation forz = y = x. The difference
between the first terms of the two models is thatx replacesy in the termuyzt.

The focus of the studies on Eqs. (1)–(4) in [1–3], and some of the references therein was to show that
each model is completely integrable and each one gives rise to multiple soliton solutions. For more details
about the results obtained for these equations, read [1–3] and some of the references therein.

In this work, we will introduce four extended shallow water wave equations in (2+1) and (3+1) dimen-
sions. We first introduce the first two extended equations

uyt + uxxxy − 3uxxuy − 3uxuxy + αuxy = 0, (5)
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and
uxt + uxxxy − 2uxxuy − 4uxuxy + αuxy = 0. (6)

We next introduce the two extended (3+1)-dimensional shallow water wave equations

uyzt + uxxxyz − 6uxuxyz − 6uxzuxy + αuxyz = 0, (7)

and
uxzt + uxxxyz − 2(uxxuyz + uyuxxz) − 4(uxuxyz + uxzuxy) + αuxyz = 0. (8)

The extended equations are established by adding the derivative of u(x, t) with respect to the space variables
x andy for the first two equations (1) and (2), and with respect to thespace variablesx, y, andz for the last
two equations (3) and (4).

A variety of distinct methods are used for classification of integrable equations. The Painlevé analysis,
the inverse scattering method, the Bäcklund transformation method, the conservation laws method, and the
Hirota bilinear method [4–13] are mostly used in the literature for investigating complete integrability. The
Hirota’s bilinear method [1–22] is rather heuristic and possesses significant features that make it ideal for
the determination of multiple soliton solutions for a wide class of nonlinear evolution equations.

Our aim from this work is two fold. We aim first to show that the additional termsαuxy for the first
two equations, andαuxyz for the last two equations do not kill the integrability of the typical shallow water
wave equations (1)–(4). We next aim to derive multiple soliton solutions for these extended forms (5)–
(8) and to show the effect of these new terms on the structures of the obtained solutions. The Cole-Hopf
transformation combined with the Hereman’s method, that was established by Hereman et. al. in [13] will
be used to achieve the goals set for this work. The Hereman’s method can be found in [13–22], hence our
main focus will be on applying this method.

2. THE FIRST EXTENDED SHALLOW WATER WAVE EQUA-
TION

In this section we will study the extended (2+1)-dimensional shallow water wave equation

uyt + uxxxy − 3uxxuy − 3uxuxy + αuxy = 0. (9)

As stated before, the Hereman’s method and the Cole-Hopf transformation method will be used for this
analysis.

2.1 Multiple Soliton-Solutions

Substituting
u(x, y, t) = eθi , θi = ki x + riy − cit, (10)

into the linear terms of (9), and solving the resulting equation, the dispersion relation

ci = k3
i + αki, i = 1, 2, · · ·N, (11)

and hence
θi = ki x + riy − (k3

i + αki)t, (12)

are readily obtained. Notice that the dispersion relationci is affected by the extension termαuxy.
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To determineR, we substitute the Cole-Hopf transformation

u(x, y, t) = R (ln f (x, y, t))x = R
fx(x, y, t)
f (x, y, t)

, (13)

where the auxiliary functionf (x, y, t) is given by

f (x, y, t) = 1+ ek1x+r1y−(k3
1+αk1)t

, (14)

into Eq. (9) and solve to find thatR = −2. This means that the single soliton solution is given by

u(x, y, t) = −
2k1ek1x+r1y−(k3

1+αk1)t

1+ ek1x+r1y−(k3
1+αk1)t

. (15)

For the two-soliton solutions, we use the auxiliary function

f (x, y, t) = 1+ eθ1 + eθ2 + a12e
θ1+θ2, (16)

into (13), and substitute the result in Eq. (9) to find the phase shift

a12 =
(k1 − k2)(r1 − r2)
(k1 + k2)(r1 + r2)

, (17)

and hence

ai j =
(ki − k j)(ri − r j)

(ki + k j)(ri + r j)
, 1 ≤ i < j ≤ N. (18)

Comparing the results for the phase shifts does not show any effect from the extension termαuxy. The result
(17) is the same as obtained for (1) in [2].

It is also clear that the phase shiftsai j, 1 ≤ i < j ≤ N depend on the coefficientskm andrm of the spatial
variablesx andy respectively. Moreover, we point out that the first extendedshallow water wave equation
does not show any resonant phenomenon [10] because the phaseshift terma12 in (17) cannot be 0 or∞ for
|k1| , |k2| and|r1| , |r2|.

This in turn gives

f (x, y, t) = 1+ ek1x+r1y−(k3
1+αk1)t + ek2x+r2y−(k3

2+αk2)t

+
(k1−k2)(r1−r2)
(k1+k2)(r1+r2) e(k1+k2)x+(r1+r2)y−(k3

1+αk1+k3
2+αk2)t.

(19)

To determine the two-soliton solutions explicitly, we substitute (19) into the formulau = −2[ln f (x, y, t)] x.

Similarly, to determine the three-soliton solutions, we set

f (x, y, t) = 1+ ek1x+r1y−(k3
1+αk1)t + ek2x+r2y−(k3

2+αk2)t + ek3x+r3y−(k3
3+αk3)t

+
(k1−k2)(r1−r2)
(k1+k2)(r1+r2) e(k1+k2)x+(r1+r2)y−(k3

1+αk1+k3
2+αk2)t

+
(k1−k3)(r1−r3)
(k1+k3)(r1+r3) e(k1+k3)x+(r1+r3)y−(k3

1+αk1+k3
3+αk3)t

+
(k2−k3)(r2−r3)
(k2+k3)(r2+r3) e(k2+k3)x+(r2+r3)y−(k3

2+αk2+k3
3+αk3)t

+ b123e(k1+k2+k3)x+(r1+r2+r3)y−(k3
1+αk1+k3

2+αk2+k3
3+αk3)t,

(20)

into (13) and substitute it into the Eq. (9) to find that

b123 = a12a13a23. (21)

To determine the three-soliton solutions explicitly, we substitute the last result forf (x, y, t) in the formula
u(x, y, t) = −2(ln f (x, y, t))x. The higher level soliton solutions, forn ≥ 4 can be obtained in a parallel man-
ner. This shows that the first extended (2+1)-dimensional shallow water wave equation (9) is completely
integrable and gives rise to multiple-soliton solutions ofany order.
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3. THE SECOND EXTENDED SHALLOW WATER WAVE EQUA-
TION

In this section we will study the second extended (2+1)-dimensional shallow water wave equation

uxt + uxxxy − 2uxxuy − 4uxuxy + αuxy = 0. (22)

We will follow a manner parallel to the approach employed before.

3.1 Multiple Soliton-Solutions

Substituting
u(x, y, t) = eθi , θi = ki x + riy − cit, (23)

into the linear terms of (22), and solving the resulting equation we obtain the dispersion relation

ci = k2
i ri + αri, i = 1, 2, · · ·N, (24)

and henceθi becomes
θi = ki x + riy − (k2

i ri + αri)t. (25)

Notice that the dispersion relationci depends on the coefficientski andri of the spatial variablesx andy
respectively, and is affected by the extension termαuxy.

To determineR, we substitute

u(x, y, t) = R (ln f (x, y, t))x = R
fx(x, y, t)
f (x, y, t)

, (26)

where the auxiliary function
f (x, y, t) = 1+ ek1x+r1y−(k2

1r1+αr1)t
, (27)

into Eq. (22) and solve to find thatR = −2. This means that the single soliton solution is given by

u(x, y, t) = −
2k1ek1x+k1y−(k2

1r1+αr1)t

1+ ek1x+k1y−(k2
1r1+αr1)t

. (28)

For the two-soliton solutions, we us the auxiliary function

f (x, y, t) = 1+ eθ1 + eθ2 + a12e
θ1+θ2, (29)

into (26), withR = −2, and we use the outcome into Eq. (22) to obtain

a12 =
(k1 − k2)2

(k1 + k2)2
, (30)

and hence

ai j =
(ki − k j)2

(ki + k j)2
, 1 ≤ i < j ≤ N. (31)

It is obvious that the phase shiftsai j, 1 ≤ i < j ≤ N do not depend on the coefficientsri of the spatial
variabley. Moreover, we point out that the second shallow water wave equation does not show any resonant
phenomenon [10] because the phase shift terma12 in (30) cannot be 0 or∞ for |k1| , |k2|. Moreover, the
phase shift was not affected by the extension termαuxy.
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Consequently, we obtain

f (x, y, t) = 1+ ek1x+r1y−(k2
1r1+αr1)t + ek2x+r2y−(k2

2r2+αr2)t

+
(k1−k2)2

(k1+k2)2 e(k1+k2)x+(r1+r2)y−((k2
1r1+αr1)+(k2

2r2+αr2))t.
(32)

To determine the two-soliton solutions explicitly, we substitute (32) into the formulau = −2[ln f (x, y, t)] x.

Similarly, to determine the three-soliton solutions, we set

f (x, y, t) = 1+ ek1x+r1y−(k2
1r1+αr1)t + ek2x+r2y−(k2

2r2+αr2)t + ek3x+r3y−(k2
3r3+αr3)t

+
(k1−k2)2

(k1+k2)2 e(k1+k2)x+(r1+r2)y−((k2
1r1+αr1)+(k2

2r2+αr2))t

+
(k1−k3)2

(k1+k3)2 e(k1+k3)x+(r1+r3)y−((k2
1r1+αr1)+(k2

3r3+αr3))t

+
(k2−k3)2

(k2+k3)2 e(k2+k3)x+(r2+r3)y−((k2
2r2+αr2)+(k2

3r3+αr3))t

+ b123e(k1+k2+k3)x+(r1+r2+r3)y−(k2
1r1+αr1+k2

2r2+αr2+k2
3r3+αr3)t,

(33)

into (26) and substitute it into Eq. (22) to find that

b123 = a12a13a23. (34)

To determine the three-soliton solutions explicitly, we substitute the last result forf (x, y, t) in the formula
u(x, y, t) = −2(ln f (x, y, t))x. The higher level soliton solutions, forn ≥ 4 can be obtained in a parallel
manner. This shows that the second extended (2+1)-dimensional shallow water wave equation (22) is
completely integrable and gives rise to multiple-soliton solutions of any order.

4. THE THIRD EXTENDED SHALLOW WATER WAVE EQUA-
TION

In this section we will study the extended (3+1)-dimensional shallow water wave equation

uyzt + uxxxyz − 6uxuxyz − 6uxzuxy + αuxyz = 0. (35)

We will apply the approach used before, hence we will skip details.

4.1 Multiple Soliton-Solutions

To determine multiple-soliton solutions for Eq. (35), we first substitute

u(x, y, z, t) = eθi , θi = kix + riy + siz − cit, (36)

into the linear terms of (35), and solving the result to obtain the dispersion relation

ci = k3
i + αki, i = 1, 2, · · ·N, (37)

and henceθi becomes
θi = kix + riy + siz − (k3

i + αki)t. (38)

Notice that the dispersion relationci depends only on the coefficientski of x and does not depend on the
coefficientsri andsi of the spatial variablesy andz respectively. Moreover, the extension termαuxyz affected
the dispersion relation.
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To determineR, we substitute the Cole-Hopf transformation

u(x, y, z, t) = R (ln f (x, y, z, t))x = R
fx(x, y, z, t)
f (x, y, z, t)

, (39)

wheref (x, y, z, t) = 1+ ek1x+r1y+s1z−(k3
1+αk1)t into Eq. (35) and solve to find thatR = −2. This gives the single

soliton solution by

u(x, y, z, t) = −
2k1ek1x+k1y+s1z−(k3

1+αk1)t

1+ ek1x+k1y+s1z−(k3
1+αk1)t

. (40)

For the two-soliton solutions, we substitute

f (x, y, z, t) = 1+ eθ1 + eθ2 + a12e
θ1+θ2, (41)

into Eq. (35) to obtain the phase shift

a12 =
(k1 − k2)2

(k1 + k2)2
, (42)

and hence

ai j =
(ki − k j)2

(ki + k j)2
, 1 ≤ i < j ≤ N. (43)

It is clear that the phase shiftsai j, 1 ≤ i < j ≤ N depend only on the coefficientskm of the spatial variable
x. Moreover, the extension termαuxyz has no effect on the phase shift. We point out that the third extended
shallow water wave equation does not show any resonant phenomenon [10] because the phase shift term
a12 in (17) cannot be 0 or∞ for |k1| , |k2|.

This in turn gives

f (x, y, z, t) = 1+ ek1x+r1y+s1z−(k3
1+αk1)t + ek2x+r2y+s2z−(k3

2+αk2)t

+
(k1−k2)2

(k1+k2)2 e(k1+k2)x+(r1+r2)y+(s1+s2)z−((k3
1+αk1)+(k3

2+αk2))t.
(44)

To determine the two-soliton solutions explicitly, we substitute (44) into the (39) and usingR = −2.

Similarly, to determine the three-soliton solutions, we set

f (x, y, z, t) = 1+ ek1x+r1y+s1z−(k3
1+αk1)t + ek2x+r2y+s2z−(k3

2+αk2)t + ek3x+r3y+s3z−(k3
3+αk3)t

+
(k1−k2)2

(k1+k2)2 e(k1+k2)x+(r1+r2)y+(s1+s2)z−((k3
1+αk1)+(k3

2+αk2))t

+
(k1−k3)2

(k1+k3)2 e(k1+k3)x+(r1+r3)y+(s1+s3)z−((k3
1+αk1)+(k3

3+αk3))t

+
(k2−k3)2

(k2+k3)2 e(k2+k3)x+(r2+r3)y+(s2+s3)z−((k3
2+αk2)+(k3

3+αk3))t

+ b123e(k1+k2+k3)x+(r1+r2+r3)y+(s1+s2+s3)z−(k3
1+αk1+k3

2+αk2+k3
3+αk3)t,

(45)

into (39) and substitute it into Eq. (35) to find that

b123 = a12a13a23. (46)

To determine the three-soliton solutions explicitly, we substitute the last result forf (x, y, z, t) in the formula
u(x, y, z, t) = −2(ln f (x, y, z, t))x. The higher level soliton solutions, forn ≥ 4 can be obtained in a parallel
manner. This shows that the extended (3+1)-dimensional shallow water wave equation (35) is completely
integrable and gives rise to multiple-soliton solutions ofany order.
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5. THE FOURTH EXTENDED SHALLOW WATER WAVE EQUA-
TION

We close our analysis by studying the fourth extended (3+1)-dimensional shallow water wave equation

uxzt + uxxxyz − 2(uxxuyz + uyuxxz) − 4(uxuxyz + uxzuxy) + αuxyz = 0. (47)

The Hereman’s method and the Cole-Hopf transformation willbe used to conduct this analysis.

5.1 Multiple Soliton-Solutions

To determine multiple-soliton solutions for Eq. (47), we follow the steps presented above. We first substitute

u(x, y, z, t) = eθi , θi = kix + riy + siz − cit, (48)

into the linear terms of the (47), and solving the resulting equation we obtain the dispersion relation

ci = k2
i ri + αri, i = 1, 2, · · ·N, (49)

and hence we set
θi = kix + riy + siz − (k2

i ri + αri)t. (50)

Notice that the dispersion relationci depends only on the coefficientski andri of the spatial variablesx and
y respectively, and on the extension termαuxyz.

We next use the Cole-Hopf transformation

u(x, y, z, t) = R
fx(x, y, z, t)
f (x, y, z, t)

, (51)

where f (x, y, z, t) = 1 + ek1x+r1y+s1z−(k2
1r1+αr1)t into Eq. (47) and solve to find thatR = −2. This gives the

single soliton solution

u(x, y, z, t) = −
2k1ek1x+k1y+s1z−(k2

1r1+αr1)t

1+ ek1x+k1y+s1z−(k2
1r1+αr1)t

. (52)

For the two-soliton solutions, we use

f (x, y, z, t) = 1+ eθ1 + eθ2 + a12e
θ1+θ2, (53)

into Eq. (47) to obtain

a12 =
(k1 − k2)2

(k1 + k2)2
, (54)

and hence

ai j =
(ki − k j)2

(ki + k j)2
, 1 ≤ i < j ≤ N. (55)

It is clear that the phase shiftsai j, 1 ≤ i < j ≤ N depend only on the coefficientskm of the spatial variable
x. The other coefficientsrm, sm andα has no effect on the phase shifts. Moreover, we point out that the first
shallow water wave equation does not show any resonant phenomenon [10] because the phase shift term
a12 in (54) cannot be 0 or∞ for |k1| , |k2|.

This in turn gives

f (x, y, z, t) = 1+ ek1x+r1y+s1z−(k2
1r1+αr1)t + ek2x+r2y+s2z−(k2

2r2+αr2)t

+
(k1−k2)2

(k1+k2)2 e(k1+k2)x+(r1+r2)y+(s1+s2)z−((k2
1r1+αr1)+(k2

2r2+αr2))t.
(56)
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To determine the two-soliton solutions explicitly, we substitute (56) into (51) withR = −2.

Similarly, to determine the three-soliton solutions, we set

f (x, y, z, t) = 1+ ek1x+r1y+s1z−(k2
1r1+αr1)t + ek2x+r2y+s2z−(k2

2r2+αr2)t

+ ek3x+r3y+s3z−(k2
3r3+αr3)t

+
(k1−k2)2

(k1+k2)2 e(k1+k2)x+(r1+r2)y+(s1+s2)z−((k2
1r1+αr1)+(k2

2r2+αr2))t

+
(k1−k3)2

(k1+k3)2 e(k1+k3)x+(r1+r3)y+(s1+s3)z−((k2
1r1+αr1)+(k2

3r3+αr3))t

+
(k2−k3)2

(k2+k3)2 e(k2+k3)x+(r2+r3)y+(s2+s3)z−((k2
2r2+αr2)+(k2

3r3+αr3))t

+ b123e(k1+k2+k3)x+(r1+r2+r3)y+(s1+s2+s3)z−(k2
1r1+αr1+k2

2r2+αr2+k2
3r3+αr3)t,

(57)

and proceed as before we obtain
b123 = a12a13a23. (58)

To determine the three-soliton solutions explicitly, we substitute the last result forf (x, y, t) in the formula
u(x, y, z, t) = −2(ln f (x, y, z, t))x. The higher level soliton solutions, forn ≥ 4 can be obtained in a paral-
lel manner. This shows that the fourth extended (3+1)-dimensional shallow water wave equation (47) is
completely integrable and gives rise to multiple-soliton solutions of any order.

6. CONCLUSIONS AND DISCUSSIONS

From the results obtained above, we can make the following conclusions:

1. The extension termsαuxy andαuxyz that were added to the first two models and the last two models in
(1)–(4) did not kill the integrability of these four models.The extended models were proved to retain
the integrability and multiple soliton solutions were formally derived for each extended model.

2. The only effect of the extension terms was on the dispersion relation as shown above.

3. The phase shifts of the typical shallow water waves equations (1)–(4) and for the extended models
(5)–(8) were the same without any change and not affected by the extension terms.

In this work we have examined four extended shallow water waves equations in higher dimensions.
We have showed that the extended terms do not kill the integrability of the extended equations. Multiple
soliton solutions have been formally derived for these equations. The only effect caused by the extended
terms is on the dispersion relations, whereas the phase shifts remain unchanged. The Hereman’s method
and the Cole-Hopf transformation method show effectiveness and reliability in handling nonlinear evolution
equations.
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