Classification of Positive Solutions for a Quasilinear Dynamic Equations on Time Scales

LIU Lanchu ${ }^{1, *}$
${ }^{1}$ College of Science, Hunan Institute of Engineering, 88 East Fuxing Road, Xiangtan, Hunan 411104, P. R. China
* Corresponding author.
Address: College of Science, Hunan Institute of Engineering, 88 East Fuxing Road, Xiangtan, Hunan 411104, P. R. China
Email: 1lc0202@163.com
Supported by The research was supported by the Science and Research Fund of Hunan Provincial Education Department.

Received 18 September, 2011; accepted 26 November, 2011

Abstract

In this paper, A classification of nonoscillatory solution of the quasilinear dynamic equation on time scales are considered, by Schauder, Knaster's fixed-point theorem, Some necessary and sufficient conditions for nonoscillation of the dynamic equations on \mathbb{T} are established.Our results as special case when $\mathbb{T}=R$ and $\mathbb{T}=N$, involve and improve some known results.

Key words

Positive Solution; Fixed-point theorem; Time Scales

LIU Lanchu (2011). Classification of Positive Solutions for a Quasilinear Dynamic Equations on Time Scales. Studies in Mathematical Sciences, 3(2), 28-33. Available from: URL: http://www.cscanada.net/index.php/sms/article/view/j.sms. 1923845220110302.235 DOI: http://dx.doi.org/10.3968/j.sms. 1923845220110302.235

1. INTRODUCTION

The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his Ph.D.Thesis in 1988 in order to unify continuous and discrete analysis ${ }^{[1]}$. A time scale \mathbb{T}, is an arbitrary nonempty closed subset of the reals, and the cases when this time scale is equal to the reals or to the integers represent the classical theories of differential and of difference equations. Many other interesting time scales exist, and they give rise to many applications ${ }^{[3]}$.

In recent years, there has been much research activity concerning the oscillation and nonoscillation of solutions of various equations. We refer the reader to the papers ${ }^{[2-5,7]}$ and the reference cited therein.

In this paper, we consider a quasilinear dynamic equation

$$
\begin{equation*}
\left(\phi\left(y^{\Delta}(t)\right)\right)^{\Delta}+f(t, y(g(t)))=0 . \tag{1}
\end{equation*}
$$

Where $t \in\left[t_{0}, \infty\right)=T_{0} \subseteq T$. the following conditions is always satisfied
$\left(H_{1}\right): \phi \in C_{r d}(T, R)$ is a strictly increasing and odd function, and ϕ is submultiplicative, i.e. $\phi(x y) \leq \phi(x) \phi(y), x, y \geq 0$.
$\left(H_{2}\right): g \in C_{r d}\left(T_{0}, R^{+}\right)$, and $\lim _{t \rightarrow \infty} g(t)=\infty$.
$\left(H_{3}\right): f \in C_{r d}\left(T_{0} \times R, R\right)$, for each fixed $t \geq t_{0}>0, f(t, y)$ is increasing in y, and $y f(t, y)>0, y \neq 0$.
The behaviors of the solution for the equation

$$
\left(p(t) x^{\Delta}(t)\right)^{\Delta}+q(t) x(\sigma(t))=0 .
$$

have been studied by many authors, such as A.D. Medico et al. ${ }^{[4]}$. It is clear that the equation is a special case of Eq.(1).

2. NONOSCILLATION THEOREMS

Lemma 2.1.(see[6]). If ϕ is submultiplicative on [$0, \infty$), then its inverse function Φ is supermultiplicative on $[0, \infty)$,i.e. $\Phi(x y) \geq \Phi(x) \Phi(y), x, y \geq 0$. Moreover, Φ satisfies $\Phi\left(\frac{y}{x}\right) \leq \frac{\Phi(y)}{\Phi(x)}$, for $x, y>0$.
Lemma 2.2. If $y(t)$ is a nonoscillatory solution of (1), then $y(t) y^{\Delta}(t)>0$, and there exist two positive constants c_{1}, c_{2}, such that

$$
c_{1} \leq|y(t)| \leq c_{2} t
$$

for t large enough.
Proof: Without loss of generality, we may assume that $y(t)>0$, for $t \geq t_{1} \geq t_{0}$, it follows from

$$
\left(\phi\left(y^{\Delta}(t)\right)\right)^{\Delta}=-f(t, y(g(t)))<0
$$

and ϕ is strictly increasing that $\phi\left(y^{\Delta}(t)\right)$ is strictly decreasing on $\left[t_{0}, \infty\right)$. Thus, $y^{\Delta}(t)$ is strictly decreasing. $y^{\Delta}(t)$ is eventually positive, say, $y^{\Delta}(t)>0$, for $t \geq t_{1}$, where t_{1} is large enough. Otherwise, if there exists a t^{*} such that $y^{\Delta}\left(t^{*}\right)=0$, then $t>t^{*}, y^{\Delta}(t)<0$, Thus, it is easy to see that $y(t)$ must become negative, which contradicts our assumption.

Since $y^{\Delta}(t) \leq y^{\Delta}\left(t_{1}\right)$,for $t \geq t_{1}$, integrating it from t_{1} to t , we obtain

$$
\begin{gathered}
y(t)-y\left(t_{1}\right) \leq y^{\Delta}\left(t_{1}\right)\left(t-t_{1}\right) \\
y(t) \leq y\left(t_{1}\right)+y^{\Delta}\left(t_{1}\right)\left(t-t_{1}\right) \leq c_{2} t
\end{gathered}
$$

for some $c_{2}>0$. On the other hand, since $y^{\Delta}(t)>0$, for $t \geq t_{1}$, there exists a $c_{1}>0$ such that $y(t)>c_{1}$ for $t \geq t_{1}$. Hence, we complete the proof.

It follows from Lemma 2.2 and its proof that one and only one of the following three possibilities occurs for the asymptotic behavior of any nonoscillatory solution $y(t)$ of (1):
(I) : $\lim _{t \rightarrow \infty} \frac{y(t)}{t}=$ const $\neq 0$;
(II) : $\lim _{t \rightarrow \infty} \frac{y(t)}{t}=0, \lim _{t \rightarrow \infty}|y(t)|=\infty$;
(III) : $\lim _{t \rightarrow \infty} y(t)=$ const $\neq 0$.

Theorem 2.1. The equation (1) has a positive solution of type I_{1} if and only if

$$
\begin{equation*}
\int_{t_{0}}^{\infty}|f(t, \operatorname{cg}(t))| \Delta t<\infty \tag{2}
\end{equation*}
$$

for some constant $c \neq 0$.
Proof: (i) Necessity. Suppose that (1) has a nonoscillatory solution of type I_{1}. We may assume that $y(t)$ is eventually positive. Since $y(t) \rightarrow \infty$, as $t \rightarrow \infty$, it follows from Lemma 2.2 that $t \geq t_{1}, y(t)>0$, and $y^{\Delta}(t)>0$. Since

$$
\lim _{t \rightarrow \infty} \frac{y(g(t))}{g(t)}=\text { const } \neq 0
$$

there exist three $c_{1}, c_{2}>0, t_{2}>t_{1}$ such that

$$
\begin{equation*}
c_{1} g(t) \leq y(g(t)) \leq c_{2} g(t) \tag{3}
\end{equation*}
$$

An integration of (1) yields

$$
\int_{t_{2}}^{t} f(s, y(g(s))) \Delta s=\phi\left(y^{\Delta}\left(t_{2}\right)\right)-\phi\left(y^{\Delta}(t)\right)<\phi\left(y^{\Delta}\left(t_{2}\right)\right)
$$

which implies

$$
\begin{equation*}
0<\int_{t_{2}}^{\infty} f(s, y(g(s))) \Delta s<\infty \tag{4}
\end{equation*}
$$

It follows that $\int_{t_{2}}^{\infty} f(s, c g(s)) \Delta s<\infty$. A similar argument holds if $y(t)<0$.
(ii) Sufficiency. Without loss of generality, we may assume that the constant $c>0$ in (2) is positive. Let $k>0$ be a constant such that $\Phi(2 k) \leq c$. it follows from (2) that there exists $t_{1}>t_{0}$ large enough such that

$$
\begin{equation*}
0<\int_{t_{1}}^{\infty} f(t, \operatorname{cg}(t)) \Delta t \leq k \tag{5}
\end{equation*}
$$

Define $t_{*}=\min \left\{t_{1}, \inf _{t \geq t_{1}} g(t)\right\} \geq t_{0}$,

$$
0<\int_{t_{*}}^{\infty} f(t, c g(t)) \Delta t \leq k
$$

Define a set

$$
Y:=\left\{y \in C_{r d}\left[t_{*}, \infty\right): \Phi(k)\left(t-t_{1}\right)_{+} \leq y(t) \leq \Phi(2 k)\left(t-t_{1}\right)_{+}, t \geq t_{*}\right\}
$$

where

$$
\left(t-t_{1}\right)_{+}=\left\{\begin{array}{cc}
t-t_{1}, & t \geq t_{1} \\
0, & t_{*} \leq t<t_{1}
\end{array}\right.
$$

and Y is a set with partial order $\leq: y_{1} \leq y_{2} \Leftrightarrow y_{1}(t) \leq y_{2}(t), t \geq t^{*}$. Clearly, for all $A \subset Y$, there exists $\inf A$ and $\sup A$, Let F be a mapping defined by

$$
(F y)(t)=\left\{\begin{array}{cc}
\int_{t_{1}}^{t} \Phi\left(k+\int_{s}^{\infty} f(\sigma, y(g(\sigma))) \Delta \sigma\right) \Delta s, & t \geq t_{1} \\
0, & t_{*} \leq t<t_{1}
\end{array}\right.
$$

It follows from (5), Lemma 2.1 and

$$
\int_{t_{1}}^{t} \Phi(k) \Delta s \leq(F y)(t) \leq \int_{t_{1}}^{t} \Phi(2 k) \Delta s \quad t \geq t_{1}
$$

i.e.

$$
\Phi(k)\left(t-t_{1}\right) \leq(F y)(t) \leq \Phi(2 k)\left(t-t_{1}\right) \quad t \geq t_{1}
$$

that $F Y \subseteq Y$, and F is rd-continuous and increasing. Therefore, by the Knaster's fixed-point theorem, there exists a fixed point $y \in Y$, such that $F y=y$, i.e.,

$$
y(t)=\int_{t_{1}}^{t} \Phi\left(k+\int_{s}^{\infty} f(\sigma, y(g(\sigma))) \Delta \sigma\right) \Delta s \quad t \geq t_{1}
$$

It is clear that $y(t)$ is a positive solution of Eq.(1) and $\lim _{t \rightarrow \infty} \frac{y(t)}{t}=\Phi(k)=$ const. This completes the proof.
Theorem2.2. The equation (1) has a positive solution of type (III) if and only if

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \Phi\left(\int_{t}^{\infty}|f(s, c)| \Delta s\right) \Delta t<\infty, \quad c \neq 0 \tag{6}
\end{equation*}
$$

Proof: (i) Necessity. Suppose that (1) has a positive solution $y(t)$ of type (III). it follows from Lemma 2.2 that $t \geq t_{1}, y(t)>0$, and $y^{\Delta}(t)>0$.where t_{1} is large enough. Since $\lim _{t \rightarrow \infty} y(t)=$ const $\neq 0$, there exist three $c_{1}, c_{2}>0, t_{2}>t_{1}$ such that

$$
\begin{equation*}
c_{1} \leq y(g(t)) \leq c_{2} \quad t \geq t_{2} \tag{7}
\end{equation*}
$$

Since $y^{\Delta}(t) \rightarrow 0$ as $t \rightarrow \infty$, integrating (1) from t to ∞, we obtain:

$$
\phi\left(y^{\Delta}(t)\right)=\int_{t}^{\infty} f(s, y(g(s))) \Delta s \quad t \geq t_{2}
$$

i.e.,

$$
y^{\Delta}(t)=\Phi\left(\int_{t}^{\infty} f(s, y(g(s))) \Delta s \quad t \geq t_{2}\right.
$$

Since $y^{\Delta}(t)>0$ and $\lim _{t \rightarrow \infty} y(t)=$ const. Therefore

$$
\begin{equation*}
0<y(\infty)-y\left(t_{2}\right)=\int_{t_{2}}^{\infty} y^{\Delta}(s) \Delta s=\int_{t_{2}}^{\infty} \Phi\left(\int_{s}^{\infty} f(\sigma, y(g(\sigma))) \Delta \sigma\right) \Delta s<\infty \tag{8}
\end{equation*}
$$

It follows from (7),(8) that

$$
\int_{t_{2}}^{\infty} \Phi\left(\int_{t}^{\infty} f(s, c) \Delta s\right) \Delta t<\infty
$$

(ii)Sufficiency. Suppose that (6)holds. We need only consider the case where the constant $c>0$ in (6) is positive. Choose $t_{1}>t_{0}$ so large that

$$
t_{*}=\min \left\{t_{1}, \inf _{t \geq t_{1}} g(t)\right\} \geq t_{0}
$$

and

$$
\begin{equation*}
\int_{t_{1}}^{\infty} \Phi\left(\int_{t}^{\infty} f(s, c) \Delta s\right) \Delta t \leq \frac{c}{2} \tag{9}
\end{equation*}
$$

Define a set U by

$$
U:=\left\{y \in C_{r d}\left[t_{*}, \infty\right): \frac{c}{2} \leq y(t) \leq c, t \geq t_{*}\right\}
$$

and a mapping F on U by

$$
(F y)(t)=\left\{\begin{array}{cc}
c-\int_{t}^{\infty} \Phi\left(\int_{s}^{\infty} f(\sigma, y(g(\sigma))) \Delta \sigma\right) \Delta s, & t \geq t_{1} \\
c-\int_{t_{1}}^{\infty} \Phi\left(\int_{s}^{\infty} f(\sigma, y(g(\sigma))) \Delta \sigma\right) \Delta s, & t_{*} \leq t<t_{1}
\end{array}\right.
$$

It can be shown that $F U \subseteq U$ and $F U$ is relatively compact. Consequently, by the Schauder fixed-point theorem, there exists an element $y \in U$ such that $y=F y$. i.e.,

$$
y(t)=c-\int_{t}^{\infty} \Phi\left(\int_{s}^{\infty} f(\sigma, y(g(\sigma))) \Delta \sigma\right) \Delta s \quad t \geq t_{1}
$$

Clearly y is a solution of type (III) of (1), and $\lim _{t \rightarrow \infty} y(t)=c$. This completes the proof.

Theorem 2.3. The equation (1) has a positive solution of type (II) if (2) holds and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \Phi\left(\int_{t}^{\infty}|f(s, \xi)| \Delta s\right) \Delta t=\infty \tag{10}
\end{equation*}
$$

Where $0<|\xi|<|c|$ with $c \xi>0$, where c is given as in (2).
Proof: We only consider the case where $c>0$ in (2). Choose $k>0$ small enough such that $0<k<c$. choose t_{1} large enough such that

$$
t_{*}=\min \left\{t_{1}, \inf _{t \geq t_{1}} g(t)\right\} \geq t_{0}
$$

and

$$
\int_{t_{1}}^{\infty} f(s, k(g(t)+1)) \Delta t \leq \phi(k)
$$

Let

$$
W:=\left\{y \in C_{r d}\left[t_{*}, \infty\right), k \leq y(t) \leq k(t+1), t \geq t_{*}\right\}
$$

Where the set W with the partial order $\leq: y_{1} \leq y_{2} \Leftrightarrow y_{1}(t) \leq y_{2}(t)$, for $t \geq t_{*}$. clearly, if $A \subset W$, there exsits $\inf A$ and $\sup A$, define a mapping F on W by

$$
(F y)(t)=\left\{\begin{array}{cc}
k+\int_{t_{1}}^{t} \Phi\left(\int_{s}^{\infty} f(\sigma, y(g(\sigma))) \Delta \sigma\right) \Delta s, & t \geq t_{1} \\
k, & t_{*} \leq t<t_{1}
\end{array}\right.
$$

Obviously, if $y \in W$, then, for $t_{*} \leq t$,

$$
\begin{gathered}
k \leq(F y)(t) \leq k+\int_{t_{1}}^{t} \Phi\left(\int_{s}^{\infty} f(\sigma, y(g(\sigma))) \Delta \sigma\right) \Delta s \\
\leq k+\int_{t_{1}}^{t} \Phi(\phi(k)) \Delta s \leq k(t+1)
\end{gathered}
$$

i.e., $F W \subseteq W$, and F is rd-continuous. Therefore, by the Knaster's fixed-point theorem, there exist a fixed point $y \in W$, such that $F y=y$, i.e.,

$$
\begin{equation*}
y(t)=k+\int_{t_{1}}^{t} \Phi\left(\int_{s}^{\infty} f(\sigma, y(g(\sigma))) \Delta \sigma\right) \Delta s, t \geq t_{1} \tag{11}
\end{equation*}
$$

which implies $y(t)$ is a positive solution of (1) on $\left[t_{1}, \infty\right)$. It follows from (10),(11) that

$$
\begin{gathered}
\lim _{t \rightarrow \infty} \frac{y(t)}{t}=\lim _{t \rightarrow \infty} y^{\Delta}(t)=\lim _{t \rightarrow \infty} \Phi\left(\int_{t}^{\infty} f(s, y(g(s)))\right) \Delta s=0 \\
\lim _{t \rightarrow \infty} y(t) \geq \lim _{t \rightarrow \infty}\left[k+\int_{t_{1}}^{t} \Phi\left(\int_{s}^{\infty} f(\sigma, k) \Delta \sigma\right) \Delta s\right]=\infty
\end{gathered}
$$

This shows that $y(t)$ is a solution of (1). This completes the proof.

REFERENCES

[1] S. Hilger (1990). Analysis on Measure Chains A Unified Approach to Continuous and Discrete Calculus. Results in Matematics, 18, 18-56.
[2] S. Hilger (1997). Differential and Difference Calculus-Unified. Nonlinear Analysis, 30(5) , 26832694.
[3] Martin Bohner \& Allan C. Peterson (2001). Dynamic Equations on Time Scales: An Introduction with Applications. Boston: Birkhauser.
[4] A. D. Medico and Q. K. Kong (2004). Kamenev-type and Interval Oscillation Criteria for Secondorder Linear Differential Equations on a Measure Chain. J. Math. Anal. Appl., 294, 621-643.
[5] Zhang B. G. and Den X. H. (2002). Oscillation of Delay Differential Equations on Time Scales. J.Mathematical and Computer Modelling, 36, 1307-1318.
[6] H. L. Hong and F. H. Wong and C. C. Yeh. (1999). Classification of Positive Solutions of Generalized Functional Differential Equations. J. Math. Comp. Model., 30, 89-99
[7] Y. F. CHENG and Z. D.YANG. (2011). Positive Solutions for a Class of Quasilinear Elliptic Equations with a Dirichlet Problem. J. Studies in Mathematics, 2(1), 145-156.

