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Abstract
The first integral method is an efficient method for obtaining exact solutions of nonlinear partial differential
equations. The aim of this letter is to find exact solutions ofthe Zakharov-Kuznetsov(ZK) equation by the
first integral method.
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1. INTRODUCTION

Nonlinear evolution equations have a major role in various scientific and engineering fields, such as fluid
mechanics, plasma physics, optical fibers, solid state physics, chemical kinematics, chemical physics and
geochemistry. Nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction and convection are
very important in nonlinear wave equations. In recent years, quite a few methods for obtaining explicit
traveling and solitary wave solutions of nonlinear evolution equations have been proposed. A variety of
powerful methods, such as, tanh-sech method [1, 2, 3],extended tanh method [4, 5, 6], hyperbolic function
method [7], sine-cosine method [8, 9, 10], Jacobi elliptic function expansion method [11], F-expansion
method [12] ,and the first integral method [13, 14]. The first integral method was first proposed by Feng [13]
in solving Burgers-KdV equation which is based on the ring theory of commutative algebra.The Zakharov-
Kuznetsov(ZK) equation is in the following form:

ut + auux + b(uxx + uyy)x = 0,

where a, b and c are real constants. Wazwaz in [15] applied theextended tanh method to obtain exact
solutions of the generalized Zakharov-Kuznetsov (gZK) equation in the form

ut + aunu{x} + b(uxx + uyy)x = 0, n > 1. (1)

If n = 2 the Eq.(1) becomes
ut + au2ux + b(uxx + uyy)x = 0. (2)
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The ZK equation, presented in [15], governs the behavior of weakly nonlinear ion-acoustic waves in a
plasma comprising cold ions and hot isothermal electrons inthe presence of a uniform magnetic field [16,
17]. The ZK equation, which is a more isotropic two-dimensional, was first derived for describing weakly
nonlinear ion-acoustic waves in a strongly magnetized lossless plasma in two dimensions [15]. The aim of
this paper is to find exact solutions of Eq.(2).

2. FIRST INTEGRAL METHOD

Consider the nonlinear partial differential equation in the form

F(u, ux, uy, ut, uxx, uxy, · · · ) = 0, (3)

whereu = u(x, y, t) is the solution of nonlinear partial differential equation Eq.(3). We use the transforma-
tions,

u(x, y, t) = f (ξ), (4)

whereξ = x + y − st. This enables us to use the following changes:

∂

∂t
(.) = −s

∂

∂ξ
(.),

∂

∂x
(.) =

∂

∂ξ
(.),

∂2

∂x2
(.) =

∂2

∂ξ2
(.), · · · (5)

Using (5) to transfer the nonlinear partial differential equation Eq.(3) to nonlinear ordinary differential
equation

G( f (ξ), fξ(ξ), fξξ(ξ), · · · ) = 0 (6)

Next, we introduce a new independent variable

X(ξ) = f (ξ), Y =
∂ f (ξ)
∂ξ
. (7)

which leads a system of nonlinear ordinary differential equations

Xξ(ξ) = Y(ξ),

Yξ(ξ) = F1(X(ξ), Y(ξ)).
(8)

By the qualitative theory of ordinary differential equations [13] ,if we can find the integrals to Eq.(8) under
the same conditions, then the general solutions to Eq.(8) can be solved directly. However, in general, it is
really difficult for us to realize this even for one first integral, because for a given plane autonomous system,
there is no systematic theory that can tell us how to find its first integrals, nor is there a logical way for
telling us what these first integrals are. We will apply the Division Theorem to obtain one first integral to
Eq.(8) which reduces Eq.(6) to a first order integrable ordinary differential equation. An exact solution to
Eq.(3) is then obtained by solving this equation. Now, let usrecall the Division Theorem:

Division Theorem:
Suppose thatP(w, z) and Q(w, z) are polynomials inC[w, z] and P(w, z) is irreducible toC[w, z]. If

Q(w, z) vanishes through all zero points ofP(w, z), then there exists a polynomialF2(w, z) in C(w, z) such
that

q(w, z) = P(w, z)F2(w, z).

3. EXACT SOLUTIONS OF ZK EQUATION

In this section we study the ZK equation in the form

ut + au2ux + b(uxx + uyy) = 0. (9)
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By make the transformationu(x, y, t) = f (ξ), ξ = x + y − st, the Eq.(9) becomes

−s
∂ f (ξ)
∂ξ
+ a( f (ξ))2∂ f (ξ)

∂ξ
+ b
∂

∂ξ
(
∂2 f (ξ)
∂ξ2

+
∂2 f (ξ)
∂ξ2

) = 0, (10)

by integrating Eq.(10) and neglecting the constant of integration we obtain

−s f (ξ) +
a
3

( f (ξ))3 + 2b
∂2 f (ξ)
∂ξ2

= 0. (11)

Using (7) we get

Ẋ(ξ) = Y(ξ), (12)

Ẏ(ξ) =
s

2b
X(ξ) − a

6b
(X(ξ))3. (13)

According to the first integral method, we suppose theX(ξ) andY(ξ), are the nontrivial solutions of (12)
and (13) also

q(X, Y) =
N

∑

i=0

ai(X)Y i = 0,

is an irreducible polynomial in the complex domain C(X, Y), such that

q(X(ξ), Y(ξ)) =
N

∑

i=0

ai(X(ξ))Y(ξ)i = 0, (14)

whereai(X)(i = 0, 1, . . . ,N), are polynomials of X andaN(X) , 0. Equation (14) is called the first integral
to (12), (13). Due to the Division Theorem, there exists a polynomialg(X)+ h(X)Y, in the complex domain
C(X, Y), such that

dq
dξ
=

dq
dX

dX
dξ
+

dq
dY

dY
dξ
= (g(X) + h(X)Y)

m
∑

i=0

ai(X)Y i (15)

In this example, we take two different cases, assuming that N= 1, and N= 2, in (14).
Case A: Suppose thatN = 1, by comparing with the coefficients ofY i(i = 2, 1, 0), of both sides of (15), we
have

ȧ1(X) = h(X)a1(X), (16)

ȧ0(X) = g(X)a1(X) + h(X)a0(X), (17)

a1(X)[
s

2b
X(ξ) −

a
6b

(X(ξ))3] = g(X)a0(X). (18)

We obtain thata1(X), is constant andh(X) = 0, takea1(X) = 1, and balancing the degrees ofg(X), a1(X)
anda0(X), we conclude thatdeg g(X) = 1, only. Suppose thatg(X) = A1X + B0, then we finda0(X).

a0(X) = A0 + B0X +
1
2

A1X2. (19)

Substitutinga0(X), a1(X) andg(X), in the last equation in (18) and setting all the coefficients ofX to be
zero, then we obtain a system of nonlinear equations and by solving it, we obtain

B0 = 0, A1 = ±
√

− a
3b
, S = ±2bA0

√

− a
3b
, (20)

whereA0 is arbitrary constant.
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Using the conditions (20), into Eq.(14), we obtain

Y(ξ) = −A0 ±
1
2

√

− a
3b

(X(ξ))2 (21)

Combining (21) with (12),we obtain the exact solution to equation (12), (13) and exact solutions to Eq.(9)
can be written as:

u1(x, y, t) = −
√

√

√ 2A0
√

− a
3b

tanh[

√

√

A0

√

− a
3b

2
(x + y ± 2bA0

√

− a
3b

t + ξ0)].

u2(x, y, t) = −
√

√

√ 2A0
√

− a
3b

tan[

√

√

A0

√

− a
3b

2
(x + y ± 2bA0

√

− a
3b

t + ξ0)].

Case B: Suppose thatN = 2, by equating the coefficients ofY i(i = 3, 2, 1, 0) on both sides of (15), we have

ȧ2(X) = h(X)a2(X), (22)

ȧ1(X) = g(X)a2(X) + h(X)a1(X), (23)

ȧ0(X) = −2a2(X)[
s

2b
X(ξ) − a

6b
(X(ξ))3)] + g(X)a1(X) + h(X)a0(X), (24)

a1(X)[
s

2b
X(ξ) −

a
6b

(X(ξ))3] = g(X)a0(X). (25)

We obtain thata2(X), is constant andh(X) = 0, takea2(X) = 1, and balancing the degrees ofg(X), a0(X),
anda0(X), we conclude thatdeg g(X) = 1, only. Suppose thatg(X) = A1X + B0, then we finda1(X) and
a0(X), as

a1(X) = A0 + B0X +
1
2

A1X2, (26)

a0(X) = d + B0A0X +
1
2

(

−
s
b
+ B2

0 + A0A1

)

X2 +
1
2

A1B0X3 +
1
4

(

a
3b
+

1
2

A2
1

)

X4. (27)

Substitutinga0(X), a1(X), a1(X) andg(X), in the last equation in (25) and setting all the coefficients ofX to
be zero, then we obtain a system of nonlinear equations and bysolving with aid Maple, we obtain

d =
1
4

A2
0, B0 = 0, A1 = ±

2
√
−3ba
3b

, S = ±bA0

√

− a
3b
, (28)

whereA0 is arbitrary constant.
Using the conditions (28), into Eq.(14), we obtain

Y(ξ) = −
√
−3ba(x(ξ))2 + 3A0b

6b
. (29)

Combining (29) with (12),we obtain the exact solution to equation (12), (13) and the exact solution to Eq.(9)
can be written as:

u3(x, y, t) = −

√

A0b
√
−3ba

√
−ba

tanh[

√

−A0b
√
−3ba

2b
√

3
(x + y ± bA0

√

− a
3b

t + ξ0)].

The exact solutions of the Zakharov-Kuznetsov (ZK) equation,u1(x, y, t) andu3(x, y, t) are soliton solutions.
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4. CONCLUSION

In this paper, the first integral method has been successfully applied to find the solutions for Zakharov-
Kuznetsov(ZK) equation.Thus, we can say that the proposed methods can be extended to solve the problems
of nonlinear partial differential equations arising in the theory of solitons and other areas.
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