Spectral Radius of Nonnegative Centrosymmetric Matrices

LI Hongyi ${ }^{1, *}$
${ }^{1}$ LMIB, School of Mathematics and System Science, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China
*Corresponding author. Email: lihongyi@buaa.edu.cn
Received 16 June 2011; accepted 20 July 2011

Abstract

In this paper, we present some results about the spectral radius of a kind of structured matrices, nonnegative centrosymmetric matrices. Furthermore, we constructrue a algorithm to compute the spectral radius of nonnegative centrosymmetric matrices.

Keywords: Centrosymmetric matrices; Spectral radius; Nonnegative matrices

LI Hongyi (2011). Spectral Radius of Nonnegative Centrosymmetric Matrices. Studies in Mathematical Sciences, 3(1), 10-15. Available from: URL: http://www.cscanada.net/index.php/sms/article/view/j.sms.1923845220110301.152. DOI: http://dx.doi.org/10.3968/j.sms.1923845220110301.152.

INTRODUCTION

The classical theory of nonnegative matrices has proved that there exists a nonnegative eigenvalue $\rho(A)$ for a nonnegative square matrix A; where $\rho(A)$ is the spectral radius of A.
Our interest is focused on nonnegative matrices with central symmetric structure. Recall that a matrix A is said to be centrosymmetric if $A=J A J$ where J is the exchange matrix with ones on the cross diagonal (bottom left to top right) and zeros elsewhere. Centrosymmetric matrices appear in the numerical solution of certain differential equations ${ }^{[2]}$, in the study of Markov processes ${ }^{[6]}$ and in various physics and engineering problems ${ }^{[3]}$, we will review some basic notations frequently used.
Definition $0.1^{[1]}$ A matrix $A=\left(a_{i j}\right)_{n \times n} \in R^{n, n}$ is called a centrosymmetric matrix, if the elements of A satisfy the relation

$$
\begin{equation*}
J_{n} A J_{n}=A \tag{1}
\end{equation*}
$$

where $J_{n}=\left(e_{n}, e_{n-1}, \cdots, e_{1}\right), e_{i}$ denotes the standard unit vector with the i th entry 1.
For simplicity, we restrict our attention to the case of even, $n=2 m$.
For $n=2 m$, a centrosymmetric matrix can be written as the form ${ }^{[1,9]}$:

$$
A=\left[\begin{array}{ll}
B & J_{m} C J_{m} \\
C & J_{m} B J_{m}
\end{array}\right] \quad \text { with } \quad B, C \in R^{m, m}
$$

We have known the following results, see ${ }^{[1,2]}$

Lemma 0.1 ${ }^{[1]}$. Let $A \in R^{n, n}$ be a centrosymmetric matrix, for $n=2 m$, let $P=\frac{\sqrt{2}}{2}\left[\begin{array}{ll}I_{m} & I_{m} \\ -J_{m} & J_{m}\end{array}\right]$, then $P^{-1} A P=\left[\begin{array}{ll}B-J_{m} C & \\ & B+J_{m} C\end{array}\right]$.
We shall use the concept of nonnegative matrices ${ }^{[4,11]}$.
Definition 0.2 Let $B=\left(b_{i j}\right)_{n \times m} \in R^{n, m}$ and $A=\left(a_{i j}\right)_{n \times m} \in R^{n, m}$. We write $B \geq 0 \quad(>0)$ if all $b_{i j} \geq 0 \quad(>0)$; $A \geq B \quad(A>B)$ if $A-B \geq 0(A-B>0)$.
If $A \geq 0$, we say A is a nonnegative, and if $A>0$, we say A is positive.

1. THE SPECTRAL RADIUS OF NONNEGATIVE CENTROSYMMETRIC MATRICES

Lemma 1.1 ${ }^{[4]}$ Let $A=\left(a_{i j}\right)_{n \times n}, B=\left(b_{i j}\right)_{n \times n} \in R^{n, n}$, if $|A| \leq B$,then

$$
\rho(A) \leq \rho(|A|) \leq \rho(B),
$$

where $|A|=\left(\left|a_{i j}\right|\right)_{n \times n}$, and $\rho(A)$ is the spectral radius of A.
According to the Lemma 2.1 and Lemma 1.1, we have the following result.
Theorem 1.1 Let $A \in R^{n, n}$ be a nonnegative centrosymmetric matrix,

$$
A=\left[\begin{array}{ll}
B & J_{m} C J_{m} \\
C & J_{m} B J_{m}
\end{array}\right], \quad \text { then } \rho(A)=\rho\left(B+J_{m} C\right)
$$

Proof. From the hypothesis, we have that A is nonnegative. Then, according to the definition, B and C are both nonnegative. By Lemma 1.1,

$$
P^{-1} A P=\left[\begin{array}{cc}
B-J_{m} C & \\
& B+J_{m} C
\end{array}\right]
$$

Note that B and C are both nonnegative, which implies

$$
-B-J_{m} C \leq B-J_{m} C \leq B+J_{m} C
$$

That is, $\left|B-J_{m} C\right| \leq B+J_{m} C$. From Lemma 2.1, we can deduce that $\rho\left(B-J_{m} C\right) \leq \rho\left(B+J_{m} C\right)$. It is obvious that

$$
\rho(A)=\rho\left(P^{-1} A P\right)=\max \left\{\rho\left(B-J_{m} C\right), \rho\left(B+J_{m} C\right)\right\}
$$

we get $\rho(A)=\rho\left(B+J_{m} B\right)$.

2. AN ALGORITHM ON THE SPECTRAL RADIUS OF IRREDUCIBLE NONNEGATIVE MATRICES

Lemma 2.1 ${ }^{[11]}$ Let $B \in R^{n, n}$ be a positive (or irreducible nonnegative) matrix, and $z=\left(z_{1}, \cdots, z_{n}\right)^{T}, y=$ $\left(y_{1}, \cdots, y_{n}\right)^{T}$.
(1) If $z \geq 0, z \neq 0$ and $B z=\lambda z$, then $z>0, \lambda=\rho(B)$.
(2) If $B z=\rho(B) z, B y=\rho(B) y, z>0, y>0$ then $y=k z, k>0$

Lemma 2.2 ${ }^{[4]}$ Let $A \in R^{n, n}$ be an irreducible nonnegative matrix, then

$$
(I+A)^{n-1}>0
$$

where I is the identity matrix of order n. And for any nonnegative nonzero vector x, we have $(I+A)^{n-1} x>0$.
Definition 2.2 (C-W function $)^{[7]}$ Let $A=\left(a_{i j}\right)_{n \times n}$ be an irreducible nonnegative matrix. For any vector $x=\left(x_{1}, \cdots, x_{n}\right)^{T}>0, F_{A}(x)$ and $G_{A}(x)$ are defined as

$$
F_{A}(x)=\min _{1 \leq i \leq n} \frac{(A x)_{i}}{x_{i}} ; \quad G_{A}(x)=\max _{1 \leq i \leq n} \frac{(A x)_{i}}{x_{i}} .
$$

Lemma 2.3 ${ }^{[9]}$ Let $A=\left(a_{i j}\right)_{n \times n} \in R^{n, n}$ be an irreducible nonnegative matrix, $F_{A}(x)$ and $G_{A}(x)$ are the $C-W$ functions of A. Then
(1) $F_{A}(t x)=F_{A}(x), G_{A}(t x)=G_{A}(x)$ for $t>0$.
(2) $A x-k x \geq 0(x>0)$ implies $F_{A}(x) \geq k$, and
$A x-m x \leq 0(x>0)$ implies $G_{A}(x) \leq m$.
(3) If $x>0$ and $y=(I+A)^{n-1} x$, then $F_{A}(x) \leq F_{A}(y), G_{A}(x) \geq G_{A}(y)$.

Let $A \in R^{n, n}$ be an irreducible nonnegative matrix of, and $B=(I+A)^{n-1}$. Let the initial vector $x^{(0)}=$ $\left(x_{1}^{(0)}, \cdots, x_{n}^{(0)}\right)^{T}>0$. Define the iteration as follows:

$$
\begin{equation*}
y^{(k)}=B x^{(k-1)}=(I+A)^{n-1} x^{(k-1)}, \quad x^{(k)}=\left[1 /\left\|y^{(k)}\right\|_{1}\right] y^{(k)}, \quad k=1,2, \cdots \tag{2}
\end{equation*}
$$

where $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$. It is obviously that $\left\|x^{(k)}\right\|_{1}=1(k=1,2, \cdots)$.
Theorem 2.1 (Convergent Theorem) Let $A \in R^{n, n}$ be an irreducible nonnegative matrix, $B=(I+A)^{n-1}$, $\left\{x^{(k)}: k=1,2, \cdots\right\}$ is a vector sequence defined in (2). Then

$$
\lim _{n \rightarrow \infty} F_{A}\left(x^{(k)}\right)=\lim _{n \rightarrow \infty} G_{A}\left(x^{(k)}\right)=\rho(A)
$$

and $\lim _{n \rightarrow \infty} x^{(k)}=z$, where z satisfies $z>0, A z=\rho(A) z$, and $\|z\|_{1}=1$.
Proof. According to Definition 2.2, we can see

$$
\begin{equation*}
A x-F_{A}(x) x \geq 0, \quad \text { for } \quad x>0 \tag{3}
\end{equation*}
$$

By Lemma 2.2(1),(3) and the fact that $x^{(k)}=\left[1 /\left\|y^{(k)}\right\|_{1}\right] y^{(k)}$, we know

$$
F_{A}\left(x^{(k)}\right) \leq F_{A}\left(x^{(k+1)}\right), k=1,2, \cdots
$$

This means $\left\{F_{A}\left(x^{(k)}\right)\right\}$ is a monotonic sequence bounded above (from Lemma 2.3 (4)). Therefore, $\left\{F_{A}\left(x^{(k)}\right)\right\}$ is a convergent sequence. Let $\lim _{n \rightarrow \infty} F_{A}\left(x^{(k)}\right)=l$.
It is obvious that

$$
\begin{equation*}
x^{(k)}>0,\left\|x^{(k)}\right\|=1(k=1,2, \cdots) \tag{4}
\end{equation*}
$$

So $\left\{x^{(k)}\right\}$ is a bounded vector sequence. Let $\left\{v^{(k)}\right\}(k=1,2, \cdots)$ be a arbitrary convergent subsequence of $\left\{x^{(k)}\right\}$, and $z=\lim _{k \rightarrow \infty} v^{(k)}$. From (2),(3),(4), we obtain

$$
\begin{equation*}
\|z\|_{1}=1, \quad z \geq 0, \quad B z=\lambda z, \quad A z-l z>0 \tag{5}
\end{equation*}
$$

By Lemma 2.1, $B z=\lambda z=\rho(B) z, z>0$. Besides, Lemma 2.2 and (3.4) imply that $\lambda>0$. Next we will show $A z-l z=0$. If $A z-l z \neq 0$, then

$$
A z-l z=A\left(\frac{1}{\lambda} B z\right)-l\left(\frac{1}{\lambda} B z\right)=\frac{1}{\lambda} B(A z-l z)>0
$$

from Lemma 2.2. By Definition 3.2 and Lemma 2.3, we know that

$$
l<F_{A}(z)=\lim _{k \rightarrow \infty} F_{A}\left(v^{k}\right)=l
$$

which contradicts. Thus, $A z-l z=0$, or $A z=l z$. From Lemma 2.1, we get

$$
\begin{equation*}
l=\rho(A), A z=\rho(A) z \tag{6}
\end{equation*}
$$

Assume that $\left\{u^{k}\right\}(k=1,2, \cdots)$ is another convergent subsequence of $\left\{x^{k}\right\}$ and $\lim _{k \rightarrow \infty} u^{(k)}=y$, then we can also prove

$$
\|y\|_{1}=1, y>0, B y=\rho(B) y .
$$

However, by Lemma 2.1, we have $y=z$. That is to say, any convergent subsequence of $\left\{x^{k}\right\}(k=1,2, \cdots)$ converges to the same vector z. Thus, $\left\{x^{k}\right\}$ itself is convergent and $\lim _{k \rightarrow \infty} x^{k}=z$. From (6), we know that $\lim _{n \rightarrow \infty} F_{A}\left(x^{(k)}\right)=l=\rho(A)$.
Similarly, we can prove the following results

$$
\lim _{k \rightarrow \infty} G_{A}\left(x^{(k)}\right)=h, A z-h z \leq 0, \lim _{k \rightarrow \infty} x^{(k)}=z>0
$$

Likewise, we get $A z=h z, h=\rho(A), \lim _{k \rightarrow \infty} G_{A}\left(x^{(k)}\right)=\rho(A)$,
Corollary 2.1 From the proof above, we have
$0<F_{A}\left(x^{(0)}\right) \leq F_{A}\left(x^{(1)}\right) \leq \cdots \leq F_{A}\left(x^{(k)}\right) \leq \cdots \leq \rho(A) \leq \cdots \leq G_{A}\left(x^{(k)}\right) \leq \cdots \leq G_{A}\left(x^{(1)}\right) \leq G_{A}\left(x^{(0)}\right)$.

Based on this theorem, we present a algorithm to compute the spectral radius of nonnegative square matrices:

Algorithm 1.

Step1. Let $x^{(0)}=(1,1, \cdots, 1)^{T}$ (or any other positive vector), give precision $\varepsilon>0$.
Step2. Compute $x^{(k)}$ from $x^{(k-1)}, k=1,2, \cdots$

$$
y^{(k)}=(I+A)^{n-1} x^{(k-1)}, \quad x^{(k)}=\left[1 / \sum_{i=1}^{n} y_{i}^{(k)}\right] y^{(k)}
$$

Step3. Compute $F_{A}\left(x^{(k)}\right), G_{A}\left(x^{(k)}\right)$:

$$
F_{A}(x)=\min _{1 \leq i \leq n} \frac{(A x)_{i}}{x_{i}} ; \quad G_{A}(x)=\max _{1 \leq x \leq n} \frac{(A x)_{i}}{x_{i}} .
$$

Step4. If $G_{A}\left(x^{(k)}\right)-F_{A}\left(x^{(k)}\right)<\varepsilon$, goto Step5; otherwise go back to Step 2.
Step5. Let $\lambda=\frac{1}{2}\left(G_{A}\left(x^{(k)}\right)+F_{A}\left(x^{(k)}\right)\right)$, and λ is the approximation of the spectral radius of A.
We have the following result which shows Algorithm 1 is convergent.
Theorem 2.2 Given a precision $\varepsilon>0$, if
$G_{A}\left(x^{(k)}\right)-F_{A}\left(x^{(k)}\right)<\varepsilon$, then $\left|\rho(A)-\lambda^{(k)}\right|<\frac{\varepsilon}{2}$, where $\lambda^{(k)}=\frac{1}{2}\left(F_{A}\left(x^{k}\right)+G_{A}\left(x^{k}\right)\right)$.

3. COMPUTATION OF SPECTRAL RADIUS OF NONNEGATIVE CENTROSYMMETRIC MATRICES

As a application of Theorem 2.1 and Algorithm 1, we present Algorithm 2 for computing the spectral radius of a nonnegative centrosymmetric matrix
For simplicity, we assume B is irreducible. We have the following result.
Lemma 3.1 Let $B, C \in R^{n, n}$ be nonnegative matrices. If B is irreducible, then $B+C$ is irreducible.
From the lemma above, we know that $D=B+J_{m} C$ is irreducible.

Algorithm 2

Step1. Compute $D: D=B+J_{m} C$.
Step2. Let $x^{(0)}=(1,1, \cdots, 1)^{T}$, give precision $\varepsilon>0$.
Step3. Compute $x^{(k)}$ from $x^{(k-1)} \quad, k=1,2, \cdots$

$$
y^{(k)}=(I+D)^{n-1} x^{(k-1)}, \quad x^{(k)}=\left[1 / \sum_{i=1}^{n} y_{i}^{(k)}\right] y^{(k)}
$$

Step4. Compute $F_{A}\left(x^{(k)}\right), G_{A}\left(x^{(k)}\right)$.
Step5. If $G_{D}\left(x^{(k)}\right)-F_{D}\left(x^{(k)}\right)<\varepsilon$, go to Step6; otherwise go back to Step 2.
Step6. Compute $\lambda: \lambda=\frac{1}{2}\left(G_{D}\left(x^{(k)}\right)+F_{D}\left(x^{(k)}\right)\right)$.
Here λ is the approximation of $\rho(A)$ with the precision ε.
Example 1. Given a 8×8 nonnegative centrosymmetric matrix

$$
A=\left[\begin{array}{llllllll}
0.4326 & 0.8671 & 0.9441 & 0.9989 & 1.2025 & 1.5937 & 0.5928 & 0.7633 \\
0.6656 & 0.7258 & 1.3362 & 0.6900 & 1.1908 & 1.2540 & 1.0668 & 1.1892 \\
1.2533 & 0.5883 & 0.7143 & 0.8156 & 0.6686 & 0.8580 & 1.1393 & 1.1909 \\
0.8768 & 1.1832 & 1.6236 & 0.7119 & 1.2902 & 0.6918 & 1.3645 & 1.1465 \\
1.1465 & 1.3645 & 0.6918 & 1.2902 & 0.7119 & 1.6236 & 1.1832 & 0.8768 \\
1.1909 & 1.1393 & 0.8580 & 0.6686 & 0.8156 & 0.7143 & 0.5883 & 1.2533 \\
1.1892 & 1.0668 & 1.2540 & 1.1908 & 0.6900 & 1.3362 & 0.7258 & 0.6656 \\
0.7633 & 0.5928 & 1.5937 & 1.2025 & 0.9989 & 0.9441 & 0.8671 & 0.4326
\end{array}\right] .
$$

Then we have

$$
B=\left[\begin{array}{llll}
0.4326 & 0.8671 & 0.9441 & 0.9989 \\
0.6656 & 0.7258 & 1.3362 & 0.6900 \\
1.2533 & 0.5883 & 0.7143 & 0.8156 \\
0.8768 & 1.1832 & 1.6236 & 0.7119
\end{array}\right], C=\left[\begin{array}{llll}
1.1465 & 1.3645 & 0.6918 & 1.2902 \\
1.1909 & 1.1393 & 0.8580 & 0.6686 \\
1.1892 & 1.0668 & 1.2540 & 1.1908 \\
0.7633 & 0.5928 & 1.5937 & 1.2025
\end{array}\right]
$$

Imput A and $\varepsilon=1 \times 10^{-6}$, and use the algorithm 2 . The result comes out as $\lambda=7.875600$. We recompute the spectral radius of A by MATLAB 7.1, and get $\rho(A)=7.875600$. This example shows that Algorithm 2 is an efficient methods to compute the spectral radius of a nonnegative centrosymmetric matrix.

REFERENCES

[1] LIU Z.Y. (2002). Some Properties of Centrosymmetric Matrices. Appl. Math. Comput. 141, 17-26.
[2] A.L.Andrew (1973). Eigenvectors of Certain Matrices. Linear Alg. Appl. 7, 151-162.
[3] L.Datta, A.Morgera (1989). On the Reducibility of Centrosymmetric Matrices Applications in Engineering Problems. Circ. Syst. Signal Process 8, 71-96.
[4] R.A.Horn, C.R.Johnson (1985). Matrix Analysis. Cambridge: Cambridge University Press, 487-515.
[5] J.Weaver (1985). Centrosymmetric (cross-symmetric) Matrices Their Basic Properties Eig-Envalues and Eigenvectors. Amer. Math. Monthly, 92, 717-717.
[6] Richard S. Varga (2000). Matrix Iterative Analysis (2nd ed). Springer-Verlag Berlin, Heidelberg.
[7] Z.L.Tian, C.Q.Gu (2007). The Iterative Methods for Centrosymmetric Matrices. Appl. Math. Comput. 187, 902-911.
[8] Berman A, Plemmons R.J. (1979). Nonnegative Matrices in the Mathematical Sciences. New York: Academic Press, 26-45.

