Spectral Radius of Nonnegative Centrosymmetric Matrices

LI Hongyi^{1,*}

¹LMIB, School of Mathematics and System Science, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China *Corresponding author. Email: lihongyi@buaa.edu.cn Received 16 June 2011; accepted 20 July 2011

Abstract: In this paper, we present some results about the spectral radius of a kind of structured matrices, nonnegative centrosymmetric matrices. Furthermore, we constructrue a algorithm to compute the spectral radius of nonnegative centrosymmetric matrices.

Keywords: Centrosymmetric matrices; Spectral radius; Nonnegative matrices

LI Hongyi (2011). Spectral Radius of Nonnegative Centrosymmetric Matrices. *Studies in Mathematical Sciences*, *3*(1), 10-15. Available from: URL: http://www.cscanada.net/index.php/sms/article/view/j.sms.1923845220110301.152. DOI: http://dx.doi.org/10.3968/j.sms.1923845220110301.152.

INTRODUCTION

The classical theory of nonnegative matrices has proved that there exists a nonnegative eigenvalue $\rho(A)$ for a nonnegative square matrix A; where $\rho(A)$ is the spectral radius of A.

Our interest is focused on nonnegative matrices with central symmetric structure. Recall that a matrix A is said to be centrosymmetric if A = JAJ where J is the exchange matrix with ones on the cross diagonal (bottom left to top right) and zeros elsewhere. Centrosymmetric matrices appear in the numerical solution of certain differential equations^[2], in the study of Markov processes^[6] and in various physics and engineering problems^[3], we will review some basic notations frequently used.

Definition 0.1^[1] A matrix $A = (a_{ij})_{n \times n} \in \mathbb{R}^{n,n}$ is called a *centrosymmetric* matrix, if the elements of A satisfy the relation

$$J_n A J_n = A \tag{1}$$

where $J_n = (e_n, e_{n-1}, \dots, e_1)$, e_i denotes the standard unit vector with the *i*th entry 1.

For simplicity, we restrict our attention to the case of even, n = 2m.

For n = 2m, a centrosymmetric matrix can be written as the form^[1,9]:

$$A = \begin{bmatrix} B & J_m C J_m \\ C & J_m B J_m \end{bmatrix} \quad \text{with} \quad B, C \in \mathbb{R}^{m,m}.$$

We have known the following results, $see^{[1,2]}$

Lemma 0.1^[1]. Let $A \in \mathbb{R}^{n,n}$ be a centrosymmetric matrix, for n = 2m, let $P = \frac{\sqrt{2}}{2} \begin{bmatrix} I_m & I_m \\ -J_m & J_m \end{bmatrix}$, then

$$P^{-1}AP = \begin{bmatrix} B - J_m C \\ B + J_m C \end{bmatrix}$$

We shall use the concept of nonnegative matrices^[4,11].

Definition 0.2 Let $B = (b_{ij})_{n \times m} \in \mathbb{R}^{n,m}$ and $A = (a_{ij})_{n \times m} \in \mathbb{R}^{n,m}$. We write $B \ge 0$ (> 0) if all $b_{ij} \ge 0$ (> 0); $A \ge B$ (A > B) if $A - B \ge 0(A - B > 0)$. If $A \ge 0$, we say A is a *nonnegative*, and if A > 0, we say A is *positive*.

1. THE SPECTRAL RADIUS OF NONNEGATIVE CENTROSYM-METRIC MATRICES

Lemma 1.1^[4] Let $A = (a_{ij})_{n \times n}$, $B = (b_{ij})_{n \times n} \in \mathbb{R}^{n,n}$, if $|A| \leq B$, then

$$\rho(A) \le \rho(|A|) \le \rho(B),$$

where $|A| = (|a_{ij}|)_{n \times n}$, and $\rho(A)$ is the spectral radius of A.

According to the Lemma 2.1 and Lemma 1.1, we have the following result.

Theorem 1.1 Let $A \in \mathbb{R}^{n,n}$ be a nonnegative centrosymmetric matrix,

$$A = \begin{bmatrix} B & J_m C J_m \\ C & J_m B J_m \end{bmatrix}, \quad \text{then}\rho(A) = \rho(B + J_m C).$$

Proof. From the hypothesis, we have that *A* is nonnegative. Then, according to the definition, *B* and *C* are both nonnegative. By Lemma 1.1,

$$P^{-1}AP = \left[\begin{array}{cc} B - J_m C \\ B + J_m C \end{array} \right].$$

Note that B and C are both nonnegative, which implies

$$-B - J_m C \le B - J_m C \le B + J_m C.$$

That is, $|B - J_m C| \le B + J_m C$. From Lemma 2.1, we can deduce that $\rho(B - J_m C) \le \rho(B + J_m C)$. It is obvious that

$$\rho(A) = \rho(P^{-1}AP) = \max \{ \rho(B - J_m C), \rho(B + J_m C) \}$$

we get $\rho(A) = \rho(B + J_m B)$.

2. AN ALGORITHM ON THE SPECTRAL RADIUS OF IRRE-DUCIBLE NONNEGATIVE MATRICES

Lemma 2.1^[11] Let $B \in \mathbb{R}^{n,n}$ be a positive (or irreducible nonnegative) matrix, and $z = (z_1, \dots, z_n)^T$, $y = (y_1, \dots, y_n)^T$.

(1) If $z \ge 0, z \ne 0$ and $Bz = \lambda z$, then $z > 0, \lambda = \rho(B)$.

(2) If $Bz = \rho(B)z$, $By = \rho(B)y$, z > 0, y > 0 then y = kz, k > 0

Lemma 2.2^[4] Let $A \in \mathbb{R}^{n,n}$ be an irreducible nonnegative matrix, then

$$(I+A)^{n-1} > 0$$

where *I* is the identity matrix of order *n*. And for any nonnegative nonzero vector *x*, we have $(I+A)^{n-1}x > 0$. **Definition 2.2** (C-*W* function)^[7] Let $A = (a_{ij})_{n \times n}$ be an irreducible nonnegative matrix. For any vector $x = (x_1, \dots, x_n)^T > 0$, $F_A(x)$ and $G_A(x)$ are defined as

$$F_A(x) = \min_{1 \le i \le n} \frac{(Ax)_i}{x_i}; \quad G_A(x) = \max_{1 \le i \le n} \frac{(Ax)_i}{x_i}.$$

Lemma 2.3^[9] Let $A = (a_{ij})_{n \times n} \in \mathbb{R}^{n,n}$ be an irreducible nonnegative matrix, $F_A(x)$ and $G_A(x)$ are the C-W functions of A. Then

(1) $F_A(tx) = F_A(x), G_A(tx) = G_A(x)$ for t > 0.

(2) $Ax - kx \ge 0$ (x > 0) implies $F_A(x) \ge k$, and

 $Ax - mx \le 0$ (x > 0) implies $G_A(x) \le m$.

(3) If x > 0 and $y = (I + A)^{n-1}x$, then $F_A(x) \le F_A(y), G_A(x) \ge G_A(y)$.

Let $A \in \mathbb{R}^{n,n}$ be an irreducible nonnegative matrix of, and $B = (I + A)^{n-1}$. Let the initial vector $x^{(0)} = (x_1^{(0)}, \dots, x_n^{(0)})^T > 0$. Define the iteration as follows:

$$y^{(k)} = Bx^{(k-1)} = (I+A)^{n-1}x^{(k-1)}, \quad x^{(k)} = [1/\|y^{(k)}\|_1]y^{(k)}, \quad k = 1, 2, \cdots$$
(2)

where $||x||_1 = \sum_{i=1}^n |x_i|$. It is obviously that $||x^{(k)}||_1 = 1 (k = 1, 2, \dots)$.

Theorem 2.1 (Convergent Theorem) Let $A \in \mathbb{R}^{n,n}$ be an irreducible nonnegative matrix, $B = (I + A)^{n-1}$, $\{x^{(k)} : k = 1, 2, \dots\}$ is a vector sequence defined in (2). Then

$$\lim_{n \to \infty} F_A(x^{(k)}) = \lim_{n \to \infty} G_A(x^{(k)}) = \rho(A)$$

and $\lim_{n\to\infty} x^{(k)} = z$, where z satisfies z > 0, $Az = \rho(A)z$, and $||z||_1 = 1$.

Proof. According to Definition 2.2, we can see

$$Ax - F_A(x)x \ge 0, \quad \text{for} \quad x > 0. \tag{3}$$

By Lemma 2.2(1),(3) and the fact that $x^{(k)} = [1/||y^{(k)}||_1]y^{(k)}$, we know

$$F_A(x^{(k)}) \le F_A(x^{(k+1)}), k = 1, 2, \cdots$$

This means $\{F_A(x^{(k)})\}$ is a monotonic sequence bounded above (from Lemma 2.3 (4)). Therefore, $\{F_A(x^{(k)})\}$ is a convergent sequence. Let $\lim_{n\to\infty} F_A(x^{(k)}) = l$.

It is obvious that

$$x^{(k)} > 0, \left\| x^{(k)} \right\| = 1(k = 1, 2, \cdots)$$
(4)

So $\{x^{(k)}\}$ is a bounded vector sequence. Let $\{v^{(k)}\}(k = 1, 2, \dots)$ be a arbitrary convergent subsequence of $\{x^{(k)}\}$, and $z = \lim_{k \to \infty} v^{(k)}$. From (2),(3),(4), we obtain

$$||z||_1 = 1, \quad z \ge 0, \quad Bz = \lambda z, \quad Az - lz > 0.$$
 (5)

By Lemma 2.1, $Bz = \lambda z = \rho(B)z$, z > 0. Besides, Lemma 2.2 and (3.4) imply that $\lambda > 0$. Next we will show Az - lz = 0. If $Az - lz \neq 0$, then

$$Az - lz = A(\frac{1}{\lambda}Bz) - l(\frac{1}{\lambda}Bz) = \frac{1}{\lambda}B(Az - lz) > 0$$

from Lemma 2.2. By Definition 3.2 and Lemma 2.3, we know that

$$l < F_A(z) = \lim_{k \to \infty} F_A(v^k) = l$$

which contradicts. Thus, Az - lz = 0, or Az = lz. From Lemma 2.1, we get

$$l = \rho(A), Az = \rho(A)z \tag{6}$$

Assume that $\{u^k\}(k = 1, 2, \dots)$ is another convergent subsequence of $\{x^k\}$ and $\lim_{k \to \infty} u^{(k)} = y$, then we can also prove

$$||y||_1 = 1, y > 0, By = \rho(B)y.$$

However, by Lemma 2.1, we have y = z. That is to say, any convergent subsequence of $\{x^k\}(k = 1, 2, \dots)$ converges to the same vector z. Thus, $\{x^k\}$ itself is convergent and $\lim_{k \to \infty} x^k = z$. From (6), we know that

$$\lim_{n \to \infty} F_A(x^{(k)}) = l = \rho(A).$$

Similarly, we can prove the following results

$$\lim_{k \to \infty} G_A(x^{(k)}) = h, Az - hz \le 0, \lim_{k \to \infty} x^{(k)} = z > 0.$$

Likewise, we get Az = hz, $h = \rho(A)$, $\lim_{k \to \infty} G_A(x^{(k)}) = \rho(A)$,

Corollary 2.1 From the proof above, we have

 $0 < F_A(x^{(0)}) \le F_A(x^{(1)}) \le \dots \le F_A(x^{(k)}) \le \dots \le \rho(A) \le \dots \le G_A(x^{(k)}) \le \dots \le G_A(x^{(1)}) \le G_A(x^{(0)}).$

Based on this theorem, we present a algorithm to compute the spectral radius of nonnegative square matrices:

Algorithm 1.

Step1. Let $x^{(0)} = (1, 1, \dots, 1)^T$ (or any other positive vector), give precision $\varepsilon > 0$. Step2. Compute $x^{(k)}$ from $x^{(k-1)}$, $k = 1, 2, \dots$

$$y^{(k)} = (I + A)^{n-1} x^{(k-1)}, \quad x^{(k)} = [1 / \sum_{i=1}^{n} y_i^{(k)}] y^{(k)}$$

Step3. Compute $F_A(x^{(k)})$, $G_A(x^{(k)})$:

$$F_A(x) = \min_{1 \le i \le n} \frac{(Ax)_i}{x_i}; \quad G_A(x) = \max_{1 \le x \le n} \frac{(Ax)_i}{x_i}.$$

Step4. If $G_A(x^{(k)}) - F_A(x^{(k)}) < \varepsilon$, goto Step5; otherwise go back to Step 2. Step5. Let $\lambda = \frac{1}{2}(G_A(x^{(k)}) + F_A(x^{(k)}))$, and λ is the approximation of the spectral radius of *A*. We have the following result which shows **Algorithm 1** is convergent.

Theorem 2.2 Given a precision $\varepsilon > 0$, if $G_A(x^{(k)}) - F_A(x^{(k)}) < \varepsilon$, then $|\rho(A) - \lambda^{(k)}| < \frac{\varepsilon}{2}$, where $\lambda^{(k)} = \frac{1}{2}(F_A(x^k) + G_A(x^k))$.

3. COMPUTATION OF SPECTRAL RADIUS OF NONNEGATIVE CENTROSYMMETRIC MATRICES

As a application of Theorem 2.1 and **Algorithm 1**, we present **Algorithm 2** for computing the spectral radius of a nonnegative centrosymmetric matrix

For simplicity, we assume B is irreducible. We have the following result.

Lemma 3.1 Let $B, C \in \mathbb{R}^{n,n}$ be nonnegative matrices. If B is irreducible, then B + C is irreducible.

From the lemma above, we know that $D = B + J_m C$ is irreducible.

Algorithm 2

Step1. Compute $D: D = B + J_m C$.

Step2. Let $x^{(0)} = (1, 1, \dots, 1)^T$, give precision $\varepsilon > 0$.

Step3. Compute $x^{(k)}$ from $x^{(k-1)}$, $k = 1, 2, \cdots$

$$y^{(k)} = (I + D)^{n-1} x^{(k-1)}, \quad x^{(k)} = [1 / \sum_{i=1}^{n} y_i^{(k)}] y^{(k)}.$$

Step4. Compute $F_A(x^{(k)})$, $G_A(x^{(k)})$.

Step5. If $G_D(x^{(k)}) - F_D(x^{(k)}) < \varepsilon$, go to Step6; otherwise go back to Step 2.

Step6. Compute $\lambda: \lambda = \frac{1}{2}(G_D(x^{(k)}) + F_D(x^{(k)})).$

Here λ is the approximation of $\rho(A)$ with the precision ε .

Example 1. Given a 8×8 nonnegative centrosymmetric matrix

	0.4326	0.8671	0.9441	0.9989	1.2025	1.5937	0.5928	0.7633	
<i>A</i> =	0.6656	0.7258	1.3362	0.6900	1.1908	1.2540	1.0668	1.1892	
	1.2533	0.5883	0.7143	0.8156	0.6686	0.8580	1.1393	1.1909	
	0.8768	1.1832	1.6236	0.7119	1.2902	0.6918	1.3645	1.1465	
	1.1465	1.3645	0.6918	1.2902	0.7119	1.6236	1.1832	0.8768	
	1.1909	1.1393	0.8580	0.6686	0.8156	0.7143	0.5883	1.2533	
	1.1892	1.0668	1.2540	1.1908	0.6900	1.3362	0.7258	0.6656	
i	0.7633	0.5928	1.5937	1.2025	0.9989	0.9441	0.8671	0.4326	

Then we have

B =	0.4326	0.8671	0.9441	0.9989	, C =	1.1465	1.3645	0.6918	1.2902
	0.6656	0.7258	1.3362	0.6900		1.1909	1.1393	0.8580	0.6686
	1.2533	0.5883	0.7143	0.8156		1.1892	1.0668	1.2540	1.1908
	0.8768	1.1832	1.6236	0.7119		0.7633	0.5928	1.5937	1.2025

Imput *A* and $\varepsilon = 1 \times 10^{-6}$, and use the algorithm 2. The result comes out as $\lambda = 7.875600$. We recompute the spectral radius of *A* by MATLAB 7.1, and get $\rho(A) = 7.875600$. This example shows that Algorithm 2 is an efficient methods to compute the spectral radius of a nonnegative centrosymmetric matrix.

REFERENCES

[1] LIU Z.Y. (2002). Some Properties of Centrosymmetric Matrices. Appl. Math. Comput. 141, 17-26.

- [2] A.L.Andrew (1973). Eigenvectors of Certain Matrices. *Linear Alg. Appl.* 7, 151-162.
- [3] L.Datta, A.Morgera (1989). On the Reducibility of Centrosymmetric Matrices Applications in Engineering Problems. *Circ. Syst. Signal Process* 8, 71-96.
- [4] R.A.Horn, C.R.Johnson (1985). Matrix Analysis. Cambridge: Cambridge University Press, 487-515.
- [5] J.Weaver (1985). Centrosymmetric (cross-symmetric) Matrices Their Basic Properties Eig-Envalues and Eigenvectors. *Amer. Math. Monthly*, *92*, 717-717.
- [6] Richard S. Varga (2000). *Matrix Iterative Analysis* (2nd ed). Springer-Verlag Berlin, Heidelberg.
- [7] Z.L.Tian, C.Q.Gu (2007). The Iterative Methods for Centrosymmetric Matrices. *Appl. Math. Comput. 187*, 902-911.
- [8] Berman A, Plemmons R.J. (1979). *Nonnegative Matrices in the Mathematical Sciences*. New York: Academic Press, 26-45.