ISSN 1923-1555[Print] ISSN 1923-1563[Online] www.cscanada.net www.cscanada.org

Research on the Pathways and Mechanisms of AI Agents Empowering Teacher TPACK Development

CHEN Jinying^{[a],*}

[a] Guangdong Polytechnic of Industry and Commerce, Guangzhou, China.

Received 5 August 2025; accepted 28 September 2025 Published online 26 October 2025

Abstract

With the increasing penetration of artificial intelligence technology in the educational field, AI Agents, as intelligent entities characterized by autonomy, adaptability, and interactivity, are presenting new opportunities for teacher professional development. Technological Pedagogical Content Knowledge (TPACK) is the core competency that determines whether technology can be effectively integrated into teaching practice. This study aims to explore the multi-dimensional pathways through which AI agents empower teacher TPACK development, with a focus on discerning the deep-seated mechanisms behind this empowerment. Theoretically, the research deepens the understanding of a threefold mechanism: "Diagnosis-Feedback," "Situation-Reflection," and "Collaboration-Generation." It further constructs an implementation strategy framework encompassing micro (Human-Agent collaboration), meso (organizational support), and macro (ecosystem construction) levels. This study endeavors to provide theoretical support for understanding and designing teacher professional development intervention programs based on AI agents.

Key words: AI Agent; TPACK; Teacher professional development; Empowering mechanisms; Implementation strategies

Chen, J. Y. (2025). Research on the Pathways and Mechanisms of AI Agents Empowering Teacher TPACK Development. *Studies in Literature and Language*, 31(2), 41-45. Available from: http://www.cscanada.net/index.php/sll/article/view/13923 DOI: http://dx.doi.org/10.3968/13923

1. INTRODUCTION

Education is at a historical juncture of a profound technological paradigm shift. Artificial intelligence, particularly AI Agents, is transitioning from auxiliary tools to "quasi-partners" capable of participating in complex cognitive tasks. This transformation is fundamentally reshaping the educational ecosystem; it not only concerns changes in student learning methods but also poses unprecedented challenges and opportunities for teachers' professional capabilities, driving the renewal of educational concepts, the transformation of models, and the restructuring of systems (Xu Zhenguo et al., 2021). Ke Qingchao et al. (2024) assert that "the advancement of artificial intelligence technology is reshaping the educational ecology and order at an unprecedented pace, becoming a significant driving force for educational innovation". Among the various professional competencies for teachers, the Technological Pedagogical Content Knowledge (TPACK) framework (Mishra & Koehler, 2006) is widely acknowledged as the core standard for measuring a teacher's capacity for effective teaching in the information age.

The TPACK theory emphasizes that effective technology-integrated teaching is not a simple superposition of Technology (TK), Pedagogy (PK), and Content (CK), but rather their complex, dynamic interaction and fusion (Mishra & Koehler, 2006). However, traditional teacher professional development models (e.g., short-term workshops, observation lessons) often prove inadequate in promoting the deep development of this integrative knowledge, frequently resulting in a "disconnect" between technology application and teaching practice.

The emergence of AI Agents provides new solutions to this challenge. By leveraging their characteristics such as personalized adaptation, immediate feedback, situational simulation, and autonomous interaction (Liu

^{*}Corresponding author.

Ming et al., 2024), AI Agents have the potential to offer teachers a form of "on-the-job," "ambulatory," and "personalized" professional development support. In the field of education, research on intelligent agents is still in its preliminary stages (Lu Yu et al. 2024). Scholarly inquiry into the application of AI agents in education has predominantly focused on their efficacy as "intelligent tutors" assisting student learning. Conversely, research treating them as "catalysts" for teacher professional development, especially systematic investigations into the intrinsic mechanisms by which they affect the complex construct of TPACK, remains in its nascent phase.

Therefore, the core questions of this study are: How do the technical characteristics of AI Agents align with the knowledge dimensions of TPACK? Through which specific pathways do they empower the development of teacher TPACK? More importantly, what are the deep-seated cognitive and social mechanisms underlying this empowerment effect? And, how can effective strategies be constructed in practice to ensure the realization of this empowerment? Clarifying these questions holds significant theoretical and practical importance for designing intelligent systems that genuinely serve the professional growth of teachers.

2. CORE PATHWAYS FOR AI AGENTS TO EMPOWER TPACK DEVELOPMENT

The seven dimensions of the TPACK framework constitute a complex knowledge ecosystem (Wang Qi, 2014). The empowerment of TPACK by AI agents is achieved through multiple parallel pathways, intervening precisely and systematically enhancing these foundational and integrative knowledge domains.

First, at the foundational knowledge level, AI agents function as precision enhancers for teachers' Technological Knowledge (TK) and Technological Content Knowledge (TCK). The iteration speed of technology far exceeds the update cycle of traditional training. AI agents can serve as dynamically updated knowledge repositories and operational rehearsal platforms, offering teachers justin-time training on emerging educational technologies (e.g., adaptive learning systems, VR/AR) (TK). More critically, they can transcend generic technological introductions; based on the teacher's subject discipline (C), they can intelligently recommend and demonstrate how specific technologies (T) can be used to represent or translate abstract disciplinary concepts (e.g., using physics simulation software (T) to visualize electromagnetic fields (C)), thereby efficiently constructing TCK.

Second, at the pedagogical knowledge level, AI agents serve as practice simulators for Pedagogical Knowledge (PK) and Technological Pedagogical Knowledge (TPK). Pedagogical knowledge is highly dependent on practice. By constructing high-fidelity "virtual classrooms" or

"Teaching Rehearsals," AI agents enable teachers to practice diverse pedagogical strategies (PK), such as differentiated instruction and inquiry-based learning, in a low-risk environment. The agents can simulate student cohorts with varying learning characteristics and provide immediate reactions. Building on this, when AI agents introduce specific technological tools (T) as variables, they become "coaches" for TPK. Teachers can explore "how to utilize an online collaborative whiteboard (T) to organize project-based learning (P)," while the AI agent offers immediate feedback, helping them optimize the design of technology-supported pedagogical interactions.

Third, at the content knowledge level, AI agents act as intelligent accelerators for Content Knowledge (CK) and Pedagogical Content Knowledge (PCK). An AI agent's formidable information processing and knowledge graph capabilities enable it to serve as a teacher's "subject matter expert assistant," helping teachers deepen their understanding of cutting-edge disciplinary knowledge (CK). However, its core value lies in the augmentation of PCK. PCK, emphasized by Shulman (1987) as the knowledge required to "make subject content comprehensible" to others, is central to excellent teaching. AI agents can, based on big data analysis, identify typical student misconceptions and cognitive obstacles related to specific knowledge points (C), and subsequently push various pedagogical representations, metaphors, examples, and guiding questions (P) to the teacher, thereby significantly enriching the teacher's PCK repertoire.

Finally, at the integrative knowledge level, AI agents are situational constructors of integrative TPACK. The highest realization of TPACK is the seamless integration of the three knowledge domains, manifesting as situational wisdom within specific teaching contexts. AI agents, by creating authentic and complex "ill-structured problems"—such as, "Design an inquiry-based curriculum (P) for high school argumentative writing (C) that integrates an AI writing assistant (T)"—compel teachers to comprehensively deploy all knowledge dimensions. In this process, the agent acts as a "cognitive scaffold," offering heuristic suggestions when teachers encounter decision-making difficulties, guiding them to "learn by doing" and thereby achieve the integrative development of TPACK.

3. ANALYSIS OF THE DEEP MECHANISMS FOR EMPOWERING TPACK

The aforementioned pathways describe *what* AI agents do; «mechanisms» must answer *how* they promote the internalization of knowledge and transfer of skills in teachers. This study posits that the core mechanisms by which AI agents empower TPACK lie in their activation of three key links in teacher professional learning, which can

be further explained from the perspectives of cognitive apprenticeship, situated cognition, and distributed cognition.

3.1 Personalized Diagnosis and Immediate Feedback: A Metacognitive Activation Mechanism based on «Cognitive Apprenticeship»

Traditional teacher training (e.g., lectures, open classes) often struggles to account for individual differences, and feedback is severely delayed. AI agents, however, have the potential to realize the core functions of "Coaching" and "Modeling" central to "Cognitive Apprenticeship".

First, by collecting and analyzing data on teachers' lesson plans, virtual teaching behaviors, and even classroom discourse, AI agents can achieve a precise "diagnosis" of a teacher's current TPACK level. This diagnosis transcends a superficial "whether technology was used" assessment, delving into deeper dimensions like the alignment of technology application with teaching objectives (TPK) and the effectiveness of technology choice for content representation (TCK).

Second, based on this diagnosis, the agent can provide immediate, specific, and non-judgmental formative feedback. This "Immediate Feedback Loop" drastically shortens the "practice-reflection" cycle. From the perspective of cognitive apprenticeship theory, the AI agent assumes the role of the "expert," not only identifying "where the problem is" (diagnosis) but, more importantly, providing demonstrations ("Modeling") and "Scaffolding" for "how to improve". For instance, if a teacher's lesson design shows a disconnect between technology and content, the agent could push a "better" design exemplar (TCK modeling). This mechanism compels the teacher to immediately scrutinize their own pedagogical decisions, activating their "Metacognitive Monitoring". Teachers shift from "unconscious, habitual teaching" to "conscious, strategic adjustment," which is a critical step in TPACK enhancement. As the teacher's competence grows, the agent's "scaffolding" should gradually "fade," promoting independent knowledge transfer.

3.2 Situated Learning and Deep Reflection: A Practical Knowledge Generation Mechanism based on «Situated Cognition»

TPACK is, by its nature, a form of Practical Knowledge, highly dependent on Context. Technology training that is detached from authentic teaching situations often yields poor results, leading to "inert knowledge". Situated Cognition theory emphasizes that learning occurs within specific contexts and through participation in communities of practice. In this mechanism, the AI agent plays the role of "context creator" and "reflection medium".

On one hand, by simulating the complexity and uncertainty of real classrooms (e.g., sudden incidents, student challenges, technical failures), the AI agent provides a field for "Situated Learning"—a kind of

"teaching microworld". In this "microworld," the teacher's actions (like a question asked or a technical operation) immediately trigger responses from "virtual students," allowing the teacher to intuitively perceive the effectiveness of their TPACK decisions.

On the other hand, the agent can serve as a "Medium for Reflection," powerfully supporting what Schön termed "Reflection-in-action" and "Reflection-onaction". During the virtual teaching process, the agent can stimulate "reflection-in-action" by posing questions at critical junctures (e.g., "Why did you choose to use this tool here?" "What student reaction did you anticipate?"). After the lesson, the agent can replay key segments and present data (e.g., student engagement levels, question effectiveness) to guide the teacher in "reflection-onaction". This mechanism pulls teachers away from routine, automated teaching behaviors, forcing them to deeply contemplate the intrinsic connections between technology, pedagogy, and content, thereby achieving the explicit articulation of implicit knowledge and the reconstruction of tacit knowledge.

3.3 Collaborative Practice and Knowledge Co-Construction: A Social Constructivist Mechanism based on «Distributed Cognition»

Teacher professional development is not an isolated individual act but a social activity. Vygotsky's social constructivism emphasized the importance of the "Zone of Proximal Development" (ZPD) and the "More Knowledgeable Other" (MKO) (Kozulin et al., 2003). In this mechanism, the AI agent can act as both an "MKO" and as a "catalyst" to foster collaboration among people.

First, the AI agent can participate in the teacher's practice as a "collaborator". From the perspective of Distributed Cognition, a teacher's TPACK capability can be seen as distributed across the "teacher-agent-environment" system. For example, in curriculum design, an AI agent can act as an "idea generator" or "interdisciplinary consultant," co-designing the curriculum with the teacher (Co-design). In this "human-agent collaboration," the agent, with its powerful information processing capabilities, complements the teacher's cognitive load, allowing the teacher to focus on higher-order pedagogical decision-making.

Second, AI agents can support the construction of Professional Learning Communities (PLCs) for teachers. The agent can organize and support collaborative practices among teacher groups, for instance, by automatically matching teachers at similar TPACK development stages for "paired lesson polishing" (peer coaching) and by intelligently aggregating and refining excellent cases (PCK/TPACK) generated by the group in practice. It can also act as a "neutral facilitator"; when teachers disagree on a lesson design, the agent can provide evidence-based analysis to promote deep dialogue. This mechanism integrates individual exploration with collective wisdom,

accelerating the generation and diffusion of complex knowledge like TPACK within the community through social negotiation and knowledge sharing.

4. IMPLEMENTATION STRATEGY FRAMEWORK FOR ALAGENT EMPOWERMENT OF TPACK

Although AI agents show immense theoretical potential, transforming this "potential" into "practical efficacy" requires the construction of a multi-level, systematic implementation strategy framework to address complex technological, humanistic, and organizational challenges.

4.1 Micro-Level: Optimizing «Human-Agent Collaboration» Interaction and Trust

The micro-level core is the interactive experience between the individual teacher and the AI agent.

First, the agent's "pedagogical awareness" must be ensured. The design of AI agents cannot be merely technology-driven; it must be deeply integrated with an understanding of TPACK. This means the agent needs to possess pedagogical "common sense," capable of understanding the teacher's "instructional intent" rather than just responding to superficial commands. For example, the feedback it provides should be "pedagogically-oriented" (e.g., "This tool is novel, but it might distract younger students' attention") rather than "technically-oriented" (e.g., "You clicked incorrectly").

Second, a balance must be struck between "Explainability" (XAI) and "Teacher Agency". Teachers must trust the agent's feedback. If the agent is a "black box," teachers will resist its suggestions. Therefore, when providing a "diagnosis," the agent should offer an "explanation" (e.g., "I am recommending this case because data shows 80% of students have this misconception"). Concurrently, the teacher's final decision-making power must be guaranteed. The agent should be a "suggester," not an "instructor". Teachers must be able to accept, modify, or reject the agent's advice; this "Human-inthe-loop" (HITL) design is key to maintaining teachers' professional autonomy.

4.2 Meso-Level: Building «Organizational Support» through Practice Communities

The meso-level focuses on how schools or districts provide organizational and cultural support for the application of AI agents.

First, foster a school culture of "fault tolerance" and "experimentation". TPACK development involves trial and error. If a school's evaluation system is overly rigid, teachers will not dare to try new technologies and pedagogies. School administrators should encourage teachers to use AI agents for teaching experiments and provide temporal and spatial support for this exploration,

treating "trial and error" as a normal part of professional development.

Second, integrate AI agents into existing professional development structures (like PLCs). AI agents should not be "air-dropped" as isolated tools but should be combined with teacher professional learning communities (PLCs), such as subject-based research groups and lesson preparation groups. For example, a PLC could use an AI agent for a collective "virtual lesson polishing" session, where the agent is responsible for recording and analyzing data, while the teacher group focuses on in-depth discussion of the pedagogical meaning behind the data. This achieves a coupling of "intelligent technology" and "human wisdom".

4.3 Macro-Level: Cultivating an «Ecological Synergy» of Policy and Ethics

The macro-level requires top-level design in policy, ethics, and resources to ensure the healthy development of AI agents.

First, establish data governance and ethical norms. AI agent empowerment of TPACK relies on deep analysis of teacher instructional behavior data. This inevitably touches upon ethical issues such as data privacy, algorithmic bias, and teaching autonomy (Chen Liting et al., 2025). Clear "data red lines" must be established, clarifying what data can be collected, how it is used, and who has access. The transparency and fairness of algorithms must be ensured to prevent agents from becoming new "surveillance tools".

Second, establish quality standards and resource coconstruction mechanisms. The quality of AI educational products on the market is uneven. Educational authorities should take the lead in developing quality standards and access mechanisms for AI agents that meet TPACK development needs. Concurrently, "government-industryacademia-research" collaboration should be encouraged to build high-quality, discipline-specific teaching case libraries and simulation repositories, avoiding low-level redundant construction and ensuring teachers receive high-quality professional support.

5. RESEARCH LIMITATIONS AND FUTURE OUTLOOK

This study theoretically constructed a "Pathways-Mechanisms-Strategies" framework for AI agents empowering TPACK. However, this framework is primarily based on theoretical deduction and logical construction. Its effectiveness and feasibility urgently require empirical testing. For example, to what extent is the "Diagnosis-Feedback" mechanism of AI agents superior to traditional expert feedback? Are there differences in the impact of the "Situation-Reflection" mechanism on the TPACK development of teachers with

different years of experience? These are questions that future research needs to answer through quasi-experiments or Design-Based Research (DBR).

Furthermore, this study's discussion of AI agents tends toward an idealized "omnipotent" model. In reality, the "intelligence" level of agents is limited. Future research needs to explore in greater depth the specific application boundaries of "weak AI" or "domain-specific" AI Agents in empowering TPACK.

6. CONCLUSION

AI agents offer an unprecedented technological lever to overcome the dilemmas in teacher TPACK development. This study's exploration shows that AI agents transcend the limitations of traditional tools. Through four core pathways—"precision enhancement," "practice simulation," "intelligent acceleration," and "situational construction"—they systematically empower the seven dimensions of teacher TPACK. The realization of this empowerment depends on the deep activation of three intrinsic mechanisms: "Diagnosis-Feedback" (Cognitive Apprenticeship), "Situation-Reflection" (Situated Cognition), and "Collaboration-Generation" (Distributed Cognition).

However, technological potential does not automatically translate into educational effectiveness. To truly achieve empowerment, it is essential to optimize human-agent collaboration and trust at the micro-level, build organizational support and practice communities at the meso-level, and cultivate an ethical and ecologically synergistic policy environment at the macro-level. In the future, the development of AI agents must place greater emphasis on "Pedagogically-aware Agents"—that is, agents that not only understand technology but, more importantly, understand education, understand content, and understand teachers. Only when technology and pedagogy are deeply integrated can AI agents truly

transform from teachers' "assistants" into "enablers" and "intelligent partners" for their professional growth.

REFERENCES

- Fanni, F. (2014). Confidence in technology use: The development and validation of the technological, pedagogical, and content self-efficacy scale[Doctoral dissertation, Università della Svizzera italiana].
- Köhler, M., & Mishra, P. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. *Teachers College Record*, 108(6), 1017-1054.
- Luo, S. (2025, October 18). Focusing on the improvement of core literacy of teachers and students, the "Shiyuan" teacher large model was released [News report]. Tencent News. https://news.qq.com/rain/a/20251018A05YXK00
- Lyndon. (2024, March 5). *Plan ahead to promote educational equity with generative artificial intelligence*. AntPedia. https://m.antpedia.com/news/3130183.html
- Ma, Z., Liu, X., & Wang, L. (2024). *Teaching method record book*. [WeChat public account post].
- Microsoft. (2025, October). Learning outcomes with GenAI in the classroom: A review of empirical evidence. https://www. microsoft.com/en-us/research/wp-content/uploads/2025/10/ GenAILearningOutcomes-Report-published-10-07-2025.pdf
- Mu, S. (2019, May 20). Reflections on the article "Looking at the development of teachers' professional knowledge in the process of educational informatization from excellent lessons" [WeChat public account post].
- Qian, L. (2025, October 22). AI is not the answer, but the question. Tencent News. https://news.qq.com/rain/a/20251022A04VVA00
- Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. *Harvard Educational Review*, *57*(1), 1-23.
- Xi'an University of Electronic Science and Technology, School of Artificial Intelligence. (2024). *Artificial intelligence general knowledge foundation*. People's Posts and Telecommunications Press.