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Address: Instituto de Matemáticas, Universidad de Antioquia, Cl 67, No. 53–108,
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1. INTRODUCTION

The classical beta function, denoted by B(a, b), is defined (see Luke [8]) by the
Euler’s integral

B(a, b) =

∫ 1

0

ta−1(1− t)b−1 dt,

=
Γ(a)Γ(b)

Γ(a+ b)
, Re(a) > 0, Re(b) > 0. (1)

The Gauss hypergeometric function, denoted by F (a, b; c; z), and the Kum-
mer’s function or the confluent hypergeometric function the first kind, denoted
by Φ(b; c; z), for Re(c) > Re(b) > 0, are defined as (see Luke [8]),

F (a, b; c; z) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− zt)a
dt, | arg(1− z)| < π, (2)

and

Φ(b; c; z) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1 exp(zt) dt. (3)

Using the series expansions of (1−zt)−a and exp(zt) in (2) and (3), respectively,
the series representations of the hypergeometric functions can be obtained as

F (a, b; c; z) =

∞∑
n=0

(a)nB(b+ n, c− b)
B(b, c− b)

zn

n!
, |z| < 1, Re(c) > Re(b) > 0, (4)

Φ(b; c; z) =

∞∑
n=0

B(b+ n, c− b)
B(b, c− b)

zn

n!
, Re(c) > Re(b) > 0. (5)

From the confluent hypergeometric function of the first kind Φ(b; c; z), the Whit-
taker function Mκ,µ(z) is defined as (Whittaker and Watson [13]),

Mκ,µ(z) = zµ+1/2 exp
(
−z

2

)
Φ

(
µ− κ+

1

2
; 2µ+ 1; z

)
, (6)

where Re(µ) > −1/2 and Re(µ ± κ) > −1/2. The Whittaker function is a special
solution of Whittaker’s equation, a modified form of the confluent hypergeometric
equation introduced by Whittaker [12] to make the formulas involving the solutions
more symmetric.

Chaudhry et al. [2] extended the classical beta function to the whole complex
plane by introducing in the integrand of the integral given in (1) the exponential
factor exp [−σ/t(1− t)], with σ > 0. Thus, the extended beta function is defined
as

B(a, b;σ) =

∫ 1

0

ta−1(1− t)b−1 exp

[
− σ

t(1− t)

]
dt, σ > 0. (7)

If we take σ = 0 in (7), then for Re(a) > 0 and Re(b) > 0 we have B(a, b; 0) =
B(a, b). Further, replacing t by 1− t in (7), one can see that B(a, b;σ) = B(b, a;σ).
The rational and justification for introducing this function are given in Chaudhry et
al. [2] where several properties and a statistical application have also been studied.
Miller [9] further studied this function and has given several additional results.
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In 2004, Chaudhry et al. [3] gave definitions of the extended Gauss hyperge-
ometric function and the extended confluent hypergeometric function of the first
kind, denoted by Fσ(a, b; c; z) and Φσ(b; c; z), respectively. These definitions were
developed by considering the extended beta function (7) instead of beta function
(1) that appears in the general term of the series (4) and (5). They suggested

Fσ(a, b; c; z) =

∞∑
n=0

(a)nB(b+ n, c− b;σ)

B(b, c− b)
zn

n!
, σ ≥ 0, |z| < 1, Re(c) > Re(b) > 0,

(8)

Φσ(b; c; z) =

∞∑
n=0

B(b+ n, c− b;σ)

B(b, c− b)
zn

n!
, σ ≥ 0, Re(c) > Re(b) > 0. (9)

Further, using the integral representation of the extended beta function (7) in
(8) and (9), Chaudhry et al. [3] obtained integral representations, for σ ≥ 0 and
Re(c) > Re(b) > 0, of the extended Gauss hypergeometric function and the extend-
ed confluent hypergeometric function of the first kind as

Fσ(a, b; c; z) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− zt)a
exp

[
−

σ

t(1− t)

]
dt,

| arg(1− z)| < π, (10)

and

Φσ(b; c; z) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1 exp

[
zt−

σ

t(1− t)

]
dt, (11)

respectively.
In this article, we define the extended form of the Whittaker function and derive

several results pertaining to it. We also define the extended confluent hypergeomet-
ric function of the second kind.

In Section 2, several known properties of the extended beta, extended Gauss
hypergeometric and extended confluent hypergeometric functions have been given.
The extended Whittaker function and its properties are given in Section 3. Finally,
in Section 4, the extended confluent hypergeometric function of the second kind is
defined and an application of this function to statistical distributions is also given.

2. SOME KNOWN DEFINITIONS AND RESULTS

We shall begin by briefly reviewing some of the definitions and basic properties of
special function and statistical distributions that will be useful in our later work.

An integral representation of the modified Bessel function of the second kind
(Gradshteyn and Ryzhik [4, Eq. 3.471.9]) is given by

Kν(2
√
ab) =

1

2

(a
b

)ν/2 ∫ ∞
0

tν−1 exp

[
−
(
at+

b

t

)]
dt, (12)

where Re(a) > 0 and Re(b) > 0. It can easily be noticed that the extended gamma
function (Chaudhry and Zubair [1], Nagar, Roldán-Correa and Gupta [10]) is very
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similar to the modified Bessel function of the second kind defined above. In fact

Γ(δ;σ) = 2σδ/2Kδ(2
√
σ), (13)

where, for σ > 0 and an arbitrary complex number δ, the extended gamma function,
denoted by Γ(δ;σ), is defined by

Γ(δ;σ) =

∫ ∞
0

tδ−1 exp
[
−
(
t+

σ

t

)]
dt.

From the definition of the extended gamma function, it is clear that, if σ = 0,
then for Re(δ) > 0, the extended gamma function reduces to an ordinary gamma
function Γ(δ).

Next, we give several properties of the extended beta, extended Gauss hyperge-
ometric, and extended confluent hypergeometric functions. These results have been
taken from Chaudhry et al. [2,3].

If we consider z = 1 in (10) and compare the resulting expression with the
representation (7), we find that the extended beta function and the extended Gauss
hypergeometric function are related by the expression

Fσ(a, b; c; 1) =
B(b, c− b− a;σ)

B(b, c− b)
, Re(c) > Re(b) > 0. (14)

In the integral representation of the extended confluent hypergeometric function
(11) consider the substitution 1− u = t, whose Jacobian is given by J(t→ u) = 1,
to obtain

Φσ(b; c; z) =
exp(z)

B(b, c− b)

∫ 1

0

(1− u)b−1uc−b−1 exp

[
−zu− σ

u(1− u)

]
du. (15)

By evaluating the integral in (15) using (11), the Kummer’s relation for the
extended confluent hypergeometric function of the fist kind is derived as

Φσ(b; c; z) = exp(z)Φσ(c− b; c;−z). (16)

For σ = 0, the expression (16) reduces to the well known Kummer’s first formula
for the classical confluent hypergeometric function.

The Mellin transform of the extended confluent hypergeometric function is given
by ∫ ∞

0

σs−1Φσ(b; c; z) dσ =
Γ(s)B (b+ s, c− b+ s)

B (b, c− b)
Φ(b+ s; c+ 2s; z), (17)

where Re(s) > 0, Re(s+ b) > 0 and Re(s+ c− b) > 0.
Finally, we define the gamma and extended beta type 2 distributions. These

definitions can be found in Johnson, Kotz and Balakrishnan [7] and Nagar and
Roldán-Correa [11].

Definition 2.1. A random variable X is said to have a gamma distribution with
parameters θ (> 0), κ (> 0), denoted by X ∼ Ga(κ, θ), if its probability density
function (pdf) is given by

xκ−1 exp (−x/θ)
θκΓ(κ)

, x > 0. (18)
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Definition 2.2. A random variable V is said to have an extended beta type 2
distribution with parameters (p, q, σ), denoted by V ∼ EB2(p, q;σ), if its pdf is
given by

vp−1(1 + v)−(p+q)

B(p, q;σ) exp(2σ)
exp

[
−σ
(
v +

1

v

)]
, v > 0. (19)

where B(p, q;σ) is the extended beta function defined by (7), σ > 0, and −∞ <
p, q <∞.

For σ = 0 with a > 0 and b > 0, the density (19) reduces to a beta type 2
density.

The matrix variate generalizations of the gamma and extended beta type 2
distributions are given in Gupta and Nagar [5], Iranmanesh et al. [6], and Nagar
and Roldán-Correa [11].

3. EXTENDED WHITTAKER FUNCTION

This section gives the definition of the extended Whittaker function, which is an
extended form of the Whittaker function (6). Several properties and integral rep-
resentations of this function are also derived.

Definition 3.1. The extended Whittaker function, denoted by Mσ,κ,µ(z), for σ ≥ 0,
is defined as

Mσ,κ,µ(z) = zµ+1/2 exp
(
−z

2

)
Φσ

(
µ− κ+

1

2
; 2µ+ 1; z

)
, (20)

where Re(µ) > −1/2, Re(µ± κ) > −1/2 and Φσ is the extended confluent hyperge-
ometric function of the first kind defined by (11).

If we consider σ = 0 in (20), then the extended Whittaker function reduces to
the classical Whittaker function, i.e., M0,κ,µ(z) = Mκ,µ(z).

An integral representation for the extended Whittaker function Mσ,κ,µ(z) can
be obtained by replacing extended confluent hypergeometric function in (20) by its
integral representation (11). Thus, we get

Mσ,κ,µ(z) =
zµ+1/2 exp (−z/2)

B(µ− κ+ 1/2, µ+ κ+ 1/2)

×
∫ 1

0

tµ−κ−1/2(1− t)µ+κ−1/2 exp

[
zt− σ

t(1− t)

]
dt. (21)

Using the transformation t = (u − α)/(β − α) with the Jacobian (β − α)−1 in
(21), the extended Whittaker function can also be represented as

Mσ,κ,µ(z) =
(β − α)−2µzµ+1/2 exp (−z/2)

B(µ− κ+ 1/2, µ+ κ+ 1/2)

∫ β

α

(u− α)µ−κ−1/2(β − u)µ+κ−1/2

× exp

[
z(u− α)

β − α
− σ(β − α)2

(u− α)(β − u)

]
du, (22)

where α and β are two scalars such that β − α > 0. If we consider β = 1 and
α = −1 in (22), we have another integral representation of the extended extended
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Whittaker function as

Mσ,κ,µ(z) =
2−2µzµ+1/2

B(µ− κ+ 1/2, µ+ κ+ 1/2)

×
∫ 1

−1
(1 + u)µ−κ−1/2(1− u)µ+κ−1/2 exp

(
zu

2
− 4σ

1− u2

)
du. (23)

In the integral representation of the extended Whittaker function given in (21),
substituting t = (1 + u)−1u, with the Jacobian J(t → u) = (1 + u)−2, alternative
integral representation is obtained as

Mσ,κ,µ(z) =
exp(−2σ)zµ+1/2 exp (−z/2)

B(µ− κ+ 1/2, µ+ κ+ 1/2)

×
∫ ∞
0

uµ−κ−1/2

(1 + u)2µ+1
exp

[
zu

1 + u
− σ

(
u+

1

u

)]
du. (24)

Clearly, when we take σ = 0 in (21), (22), (23) and (24), we obtain integral
representations of classical Whittaker function, namely,

Mκ,µ(z) =
zµ+1/2 exp(−z/2)

B(µ−κ+1/2, µ+κ+1/2)

∫ 1

0

tµ−κ−1/2(1− t)µ+κ−1/2 exp(zt) dt,

Mκ,µ(z) =
(β − α)−2µzµ+1/2 exp (−z/2)

B(µ− κ+ 1/2, µ+ κ+ 1/2)

×
∫ β

α

(u− α)µ−κ−1/2(β − u)µ+κ−1/2 exp

[
z(u− α)

β − α

]
du,

Mκ,µ(z) =
2−2µzµ+1/2

B(µ− κ+ 1/2, µ+ κ+ 1/2)

×
∫ 1

−1
(1 + u)µ−κ−1/2(1− u)µ+κ−1/2 exp

(zu
2

)
du.

and

Mκ,µ(z) =
zµ+1/2 exp(−z/2)

B(µ− κ+ 1/2, µ+ κ+ 1/2)

∫ ∞
0

uµ−κ−1/2 exp[z(1 + u)−1u]

(1 + u)2µ+1
du. (25)

Replacing exp(−σ/t) and exp[−σ/(1 − t)] by their respective series expansions

involving Laguerre polynomials Ln(σ) ≡ L(0)
n (σ) (n = 0, 1, 2, . . .) given in Miller [9,

Eq. 3.4a, 3.4b], namely,

exp
(
−σ
t

)
= exp(−σ)t

∞∑
n=0

Ln(σ)(1− t)n, |t| < 1,

and

exp

(
− σ

1− t

)
= exp(−σ)(1− t)

∞∑
m=0

Lm(σ)tm, |t| < 1,
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in (21), and integrating t using (3), the extended Whittaker function can also be
expressed as

Mσ,κ,µ(z) =
2−2µ exp(−2σ)zµ+1/2

B(µ− κ+ 1/2, µ+ κ+ 1/2)

∞∑
m,n=0

B

(
µ− κ+

3

2
+m,µ+ κ+

3

2
+ n

)
× Lm(σ)Ln(σ)Φ

(
µ− κ+

3

2
+m; 2µ+m+ n+ 3; z

)
.

If we put z = 0 in (21) and compare the resulting expression with (7), we obtain
an interesting relationship between the extended Whittaker function and extended
beta function

Mσ,κ,µ(0) =
zµ+1/2 exp (−z/2)B(µ− κ+ 1/2, µ+ κ+ 1/2;σ)

B(µ− κ+ 1/2, µ+ κ+ 1/2)
.

Theorem 3.1. For σ ≥ 0,

Mσ,κ,µ(−z) = (−1)µ+1/2Mσ,−κ,µ(z).

Proof. Using the transformation (16) in (20) we have

Mσ,κ,µ(−z) = (−1)µ+1/2zµ+1/2 exp
(
−z

2

)
Φσ

(
µ+ κ+

1

2
; 2µ+ 1; z

)
.

Now, writing the right hand side of the above expression in terms of extended
Whittaker function by using (20), we get the result.

Theorem 3.2. If σ > 0, µ > −1/2 and µ± κ > −1/2, then

Mσ,κ,µ(z) ≤ exp(−4σ)Mκ,µ(z) ≤ exp(−1)

4σ
Mκ,µ(z).

Proof. For u > 0 and σ > 0, σ(u+ u−1 − 2) ≥ 0 implies that σ(u+ u−1) ≥ 2σ and
exp[−σ(u+ u−1)] ≤ exp(−2σ).

Now, using this inequality in the representation given in (24), we get

Mσ,κ,µ(z) ≤ exp(−4σ)zµ+1/2 exp (−z/2)

B(µ− κ+ 1/2, µ+ κ+ 1/2)

∫ ∞
0

uµ−κ−1/2

(1 + u)2µ+1
exp

[
zu

1 + u

]
du

= exp(−4σ)Mκ,µ(z),

where the last line has been obtained by using (25). Further, the inequality
ln v ≤ v − 1, v > 0, for v = 4σ, yields

exp(−4σ) ≤ exp(−1)

4σ
,

which gives the second part of the inequality.

Using the inequality exp(x) > 1+xn/n!, x > 0, n > 0, in (21), anthor interesting
inequality is obtained as
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Mσ,κ,µ(z) ≥ zµ+1/2 exp (−z/2)

B(µ− κ+ 1/2, µ+ κ+ 1/2)

×
∫ 1

0

tµ−κ−1/2(1− t)µ+κ−1/2
[
1 +

(zt)n

n!

]
exp

[
− σ

t(1− t)

]
dt.

Now, evaluating the above integral by using (7), we get

Mσ,κ,µ(z) ≥ zµ+1/2 exp (−z/2)

B(µ− κ+ 1/2, µ+ κ+ 1/2)

[
B

(
µ− κ+

1

2
, µ+ κ+

1

2
;σ

)
+
zn

n!
B

(
µ− κ+ n+

1

2
, µ+ κ+

1

2
;σ

)]
.

The following theorem gives the Mellin transform of the extended Whittaker
function.

Theorem 3.3. For Re(s) > 0 and Re(µ± κ+ s) > −1/2, we have∫ ∞
0

σs−1Mσ,κ,µ(z) dσ =
Γ(s)B(µ− κ+ s+ 1/2, µ+ κ+ s+ 1/2)

B(µ− κ+ 1/2, µ+ κ+ 1/2)
z−sMκ,µ+s(z).

Proof. Replacing Mσ,κ,µ(z) by its definition given in (20), one obtains∫ ∞
0

σs−1Mσ,κ,µ(z) dσ = zµ+1/2 exp
(
−z

2

)∫ ∞
0

σs−1Φσ

(
µ− κ+

1

2
; 2µ+ 1; z

)
dσ.

Now, evaluating the above integral by using (17) and then writing the resulting
expression in terms of Whittaker function, we get the final result.

Substitution of s = 1 in the previous theorem yields an interesting relationship
between the functions Mσ,µ,κ(z) and Mµ,κ(z) as∫ ∞

0

Mσ,κ,µ(z) dσ =
B(µ− κ+ 3/2, µ+ κ+ 3/2)

B(µ− κ+ 1/2, µ+ κ+ 1/2)
z−1Mκ,µ+1(z).

Theorem 3.4. If σ ≥ 0, 2α > β > 0, and Re(a+ µ) > −1/2, then∫ ∞
0

exp(−αx)xa−1Mσ,κ,µ(βx) dx

=
Γ(a+ µ+ 1/2)βµ+1/2

(α+ β/2)a+µ+1/2
Fσ

(
a+ µ+

1

2
, µ− κ+

1

2
; 2µ+ 1;

2β

2α+ β

)
. (26)

Proof. Using the integral representation of the extended Whittaker function given
in (21), we have∫ ∞

0

exp(−αx)xa−1Mσ,κ,µ(βx) dx

=
βµ+1/2

B(µ− κ+ 1/2, µ+ κ+ 1/2)

∫ 1

0

tµ−κ−1/2(1− t)µ+κ−1/2 exp

[
− σ

t(1− t)

]
×
∫ ∞
0

xa+µ−1/2 exp

[
−
(
α+

1

2
β − βt

)
x

]
dxdt.

Now, first integrating x by using the definition of the gamma function then
integrating t by applying (10), we get the desired result.
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Corollary 3.4.1. If σ ≥ 0, α > 0, and Re(a+ µ) > −1/2, then∫ ∞
0

exp(−αx)xa−1Mσ,κ,µ(2αx) dx

=
Γ(a+ µ+ 1/2)B(µ− κ+ 1/2, κ− a;σ)

B(µ− κ+ 1/2, µ+ κ+ 1/2)(2α)a
.

Proof. Take β = 2α in (26), then use (14) in the resulting expression.

4. EXTENDED TRICOMI’S FUNCTION

In this section, we give an extended form of the Tricomi’s function or confluent
hypergeometric function of the second kind and show that this function occurs
naturally in statistical distribution theory.

The extended confluent hypergeometric function of the second kind, denoted by
Ψσ(b; c; z), may be defined as

Ψσ(b; c; z) =
1

Γ(b)

∫ ∞
0

tb−1(1 + t)c−b−1 exp
(
−zt− σ

t

)
dt, σ ≥ 0, (27)

where z > 0 and Re(b) > 0. For σ = 0, this function reduces to the classical
confluent hypergeometric function of the second kind defined by the integral

Ψ(b; c; z) =
1

Γ(b)

∫ ∞
0

tb−1(1 + t)c−b−1 exp (−zt) dt,

where z > 0 and Re(b) > 0. By making the substitution zt = v in (27), the extended
confluent hypergeometric function of the second kind can also be represented as

Ψσ(b; c; z) =
z−b

Γ(b)

∫ ∞
0

vb−1
(

1 +
v

z

)c−b−1
exp

(
−v − σz

v

)
dv. (28)

For c = b+ 1, (28) slides to

Ψσ(b; b+ 1; z) =
z−b

Γ(b)

∫ ∞
0

vb−1 exp
(
−v − σz

v

)
dv

=
z−b

Γ(b)
Γ(b;σz), σz ≥ 0, (29)

where Γ(b;σ) is the extended gamma function. Also, substituting c = b+ 1 in (27)
and comparing the resulting expression with (12), we obtain a direct relationship
between the extended confluent hypergeometric function of the second kind and the
modified Bessel function of the second kind as

Ψσ(b; b+ 1; z) =
2

Γ(b)

(σ
z

)b/2
Kb(2

√
σ z), σ > 0, z > 0. (30)

Note that, in view of (13), the expressions (29) and (30) are equivalent if z and
σ are positive.

The Mellin transform of the extended confluent hypergeometric function of the
second kind is derived as∫ ∞

0

σs−1Φσ(b; c; z) dσ =
Γ(s)Γ(b+ s)

Γ(b)
Ψ(b+ s; c+ s; z),
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where Re(s) > 0 and Re(b) > 0.
Finally, we give the following theorem which gives the density of the ratio of

two independent random variables in terms of extended confluent hypergeometric
function of the second kind.

Theorem 4.1. If U ∼ Ga(a, σ1) and V ∼ EB2(b, c;σ2) are independent, then the
density of X = U/V is given by

Γ(a+ b)xa−1

σa1Γ(a)B(b, c;σ2) exp(2σ2)
Ψσ2

(
a+ b, a− c+ 1;σ2 +

x

σ1

)
, x > 0,

where σ1 > 0, σ2 > 0, Re(a) > 0 and Re(a+ b) > 0.

Proof. As U and V are independent, from (18) and (19), the joint density of U and
V is given by

ua−1vb−1(1 + v)−(b+c) exp[−u/σ1 − σ2(v + 1/v)]

σa1 Γ(a)B(b, c;σ2) exp(2σ2)
, u > 0, v > 0.

Making the transformation X = U/V , with the Jacobian J(u→ x) = v, we find
the joint density of V and X as

xa−1va+b−1(1 + v)−(b+c) exp[−xv/σ1 − σ2(v + 1/v)]

σa1Γ(a)B(b, c;σ2) exp(2σ2)
, v > 0, x > 0.

Now, the density of X is obtained by integrating the above expression with
respect to v as

xa−1

σa1Γ(a)B(b, c;σ2) exp(2σ2)

∫ 1

0

va+b−1

(1 + v)b+c
exp

[
−
(
σ2 +

x

σ1

)
v − σ2

v

]
dv.

Finally, evaluating the above integral by using the integral representation (27),
we obtain the desired result.
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