Rate of Growth of Polynomials With Zeros on the Unit Disc

M. S. Pukhta ${ }^{[a], *}$
${ }^{[a]}$ Division of Agriculture Statistics, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India.
* Corresponding author.
Address: Division of Agriculture Statistics, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 191121, India; E-Mail: mspukhta_67@yahoo.co.in

Received: August 11, 2013/Accepted: October 10, 2013/ Published: October 31, 2013

> Abstract: If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n satisfying $p(\mathrm{z}) \neq 0$ in $|\mathrm{z}|<1$, then for $\mathrm{R} \geq 1$. Ankeny and Rivlin [1] proved that $\mathrm{M}(\mathrm{p}, \mathrm{R}) \leq\left(\frac{\mathrm{R}^{\mathrm{n}}+1}{2}\right) \mathrm{M}(\mathrm{p}, 1)$. In this paper we obtain some results in this direction by considering polynomials of degree ≥ 2, having all its zeros on $|\mathrm{z}|=\mathrm{k}, \mathrm{k} \leq 1$.

Key words: Polynomial; Inequality; Zeros

Abstract

Pukhta, M. S. (2013). Rate of Growth of Polynomials With Zeros on the Unit Disc. Progress in Applied Mathematics, 6(2), 50-58. Available from http:// www.cscanada.net/index.php/pam/article/view/j.pam. 1925252820130602.276 5. DOI:10.3968/j.pam. 1925252820130602.2765

1. INTRODUCTION AND STATEMENT OF RESULTS

For an arbitrary entire function (z), let $M(f, r)=\max _{|z|=r}|f(z)|$.Then for a polynomial $p(z)$ of degree n, it is a simple consequence of maximum modulus principle (for reference see [4, vol. I, p. 137, Problem III, 269]) that

$$
\begin{equation*}
M(p, R) \leq R^{n} M(p, 1), \text { for } R \geq 1 \tag{1}
\end{equation*}
$$

The result is best possible and equality holds for $p(z)=\lambda z^{n}$, where $|\lambda|=$ 1. $\mathrm{R} \geq 1$.

If we restrict ourselves to the class of polynomials having no zeros in $|\mathrm{z}|<1$, then inequality (1) can be sharpened. In fact it was shown by Ankeny and Rivlin [1] that if $p(z) \neq 0$ in $|z|<1$, then (1) can be replaced by

$$
\begin{equation*}
M(\mathrm{p}, \mathrm{R}) \leq\left(\frac{\mathrm{R}^{\mathrm{n}}+1}{2}\right) \mathrm{M}(\mathrm{p}, 1), R \geq 1 \tag{2}
\end{equation*}
$$

The result is sharp and equality holds for $p(z)=\alpha+\beta z^{n}$, where $|\alpha|=|\beta|$.
While trying to obtain inequality analogous to inequality (2) for polynomials not vanishing in $|z|<k, k \leq 1$, K K Dewan and Arty Ahuja [2] proved the following result.

Theorem A. If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then for every positive integer s

$$
\begin{equation*}
\{M(p, R)\}^{S} \leq\left(\frac{k^{n-1}(1+k)+\left(R^{n s}-1\right)}{k^{n-1}+k^{n}}\right)\{M(p, 1)\}^{s}, R \geq 1 \tag{3}
\end{equation*}
$$

By involving the coefficients of $p(z)$, Dewan and Ahuja [2] in the same paper obtained the following refinement of Theorem A.

Theorem B. If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then for every positive integer s

$$
\begin{align*}
& \{M(p, R)\}^{s} \\
\leq & \frac{1}{k^{n}}\left[\frac{n\left|a_{n}\right|\left\{k^{n}\left(1+k^{2}\right)+k^{2}\left(R^{n s}-r^{n s}\right)\right\}+\left|a_{n-1}\right|\left\{2 k^{n}+R^{n s}-r^{n s}\right\}}{2\left|a_{n-1}\right|+n\left|a_{n}\right|\left(1+k^{2}\right)}\right] \\
\times & \{M(p, 1)\}^{s}, R \geq 1 \tag{4}
\end{align*}
$$

In this paper, we restrict ourselves to the class of polynomials of degree $n \geq 2$ having all its zeros on $|\mathrm{z}|=\mathrm{k}, \mathrm{k} \leq 1$ and obtain an improvement and generalization of Theorem A and Theorem B. More precisely, we prove

Theorem 1. If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then for every positive integer s and $\mathrm{R} \geq 1$

$$
\begin{gather*}
\{M(p, R)\}^{s} \leq\left(\frac{k^{n-1}(1+k)+\left(R^{n s}-1\right)}{k^{n-1}+k^{n}}\right)\{M(p, 1)\}^{s} \\
-s\left|a_{1}\right|\left(\frac{R^{n s}-1}{n s}-\frac{R^{n s-2}-1}{n s-2}\right)\{M(p, 1)\}^{s-1} \\
\text { if } n>2 \tag{5}
\end{gather*}
$$

and

$$
\begin{gather*}
\{M(p, R)\}^{s} \leq\left(\frac{k^{n-1}(1+k)+\left(R^{n s}-1\right)}{k^{n-1}+k^{n}}\right)\{M(p, 1)\}^{s} \\
-s\left|a_{1}\right|\left(\frac{R^{n s}-1}{n s}-\frac{R^{n s-1}-1}{n s-1}\right)\{M(p, 1)\}^{s-1}, \\
\text { if } n=2 \tag{6}
\end{gather*}
$$

By choosing $\mathrm{s}=1$ in Theorem 1.we get the following result.
Corollary 1. If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree $\mathrm{n} \geq 2$ having all its zeros on $|\mathrm{z}|=\mathrm{k}, \mathrm{k} \leq 1$, then for $\mathrm{R} \geq 1$

$$
\begin{gather*}
\{M(p, R)\} \leq\left(\frac{k^{n-1}(1+k)+\left(R^{n}-1\right)}{k^{n-1}+k^{n}}\right)\{M(p, 1)\} \\
-\left|a_{1}\right|\left(\frac{R^{n}-1}{n}-\frac{R^{n-1}-1}{n-2}\right) \\
\text { if } n>2 \tag{7}
\end{gather*}
$$

and

$$
\begin{gather*}
\{M(p, R)\} \leq\left(\frac{k^{n-1}(1+k)+\left(R^{n}-1\right)}{k^{n-1}+k^{n}}\right)\{M(p, 1)\} \\
-\left|a_{1}\right|\left(\frac{R^{n}-1}{n}-\frac{R^{n-2}-1}{n-1}\right) \\
\text { if } n=2 \tag{8}
\end{gather*}
$$

Next we prove the following result which is a refinement of Theorem 1.
Theorem 2. If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having all its zeros on
$|\mathrm{z}|=\mathrm{k}, \mathrm{k} \leq 1$, then for every positive integer s and $\mathrm{R} \geq 1$

$$
\begin{align*}
& \quad\{M(p, R)\}^{s} \leq \frac{1}{k^{n}}\left[\frac{n\left|a_{n}\right|\left\{k^{n}\left(1+k^{2}\right)+k^{2}\left(R^{n s}-1\right)\right\}+\left|a_{n-1}\right|\left\{2 k^{n}+R^{n s}-1\right\}}{2\left|a_{n-1}\right|+n\left|a_{n}\right|\left(1+k^{2}\right)}\right] \\
& \times\{M(p, 1)\}^{s}-s\left|a_{1}\right|\left(\frac{R^{n s}-1}{n s}-\frac{R^{n s-2}-1}{n s-2}\right)\{M(p, 1)\}^{s-1} \\
& \quad \text { if } n>2 \tag{9}
\end{align*}
$$

and

$$
\begin{align*}
& \quad\{M(p, R)\}^{s} \leq \frac{1}{k^{n}}\left[\frac{n\left|a_{n}\right|\left\{k^{n}\left(1+k^{2}\right)+k^{2}\left(R^{n s}-1\right)\right\}+\left|a_{n-1}\right|\left\{2 k^{n}+R^{n s}-1\right\}}{2\left|a_{n-1}\right|+n\left|a_{n}\right|\left(1+k^{2}\right)}\right] \\
& \times\{M(p, 1)\}^{s}-s\left|a_{1}\right|\left(\frac{R^{n s}-1}{n s}-\frac{R^{n s-1}-1}{n s-1}\right)\{M(p, 1)\}^{s-1} \\
& \quad \text { if } n=2 \tag{10}
\end{align*}
$$

If we choose $s=1$ in Theorem 2, we get the following result.
Corollary 2. If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree $\mathrm{n} \geq 2$ having all its zeros on $|\mathrm{z}|=\mathrm{k}, \mathrm{k} \leq 1$, then for every $\mathrm{R} \geq 1$

$$
\begin{align*}
& \quad\{M(p, R)\}^{s} \leq \frac{1}{k^{n}}\left[\frac{n\left|a_{n}\right|\left\{k^{n}\left(1+k^{2}\right)+k^{2}\left(R^{n}-1\right)\right\}+\left|a_{n-1}\right|\left\{2 k^{n}+R^{n}-1\right\}}{2\left|a_{n-1}\right|+n\left|a_{n}\right|\left(1+k^{2}\right)}\right] \\
& \times\{M(p, 1)\}-\left|a_{1}\right|\left(\frac{R^{n}-1}{n}-\frac{R^{n-2}-1}{n-2}\right) \\
& \quad \text { if } n>2 \tag{11}
\end{align*}
$$

and

$$
\begin{align*}
& \quad\{M(p, R)\}^{s} \leq \frac{1}{k^{n}}\left[\frac{n\left|a_{n}\right|\left\{k^{n}\left(1+k^{2}\right)+k^{2}\left(R^{n}-1\right)\right\}+\left|a_{n-1}\right|\left\{2 k^{n}+R^{n}-1\right\}}{2\left|a_{n-1}\right|+n\left|a_{n}\right|\left(1+k^{2}\right)}\right] \\
& \times\{M(p, 1)\}-\left|a_{1}\right|\left(\frac{R^{n}-1}{n}-\frac{R^{n-1}-1}{n-1}\right) \\
& \quad \text { if } n=2 \tag{12}
\end{align*}
$$

2. LEMMAS

For the proof of these theorems, we need the following lemmas.
Lemma 1. If $p(z)=\sum_{v=0}^{n} c_{v} z^{v}$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-1}+k^{n}} \max _{|z|=1}|p(z)| \tag{13}
\end{equation*}
$$

The above lemma is due to Govil [3].
Lemma 2. If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having all its zeros on $|\mathrm{z}|=\mathrm{k}, \mathrm{k} \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n}}\left[\frac{n\left|a_{n}\right| k^{2}+\left|a_{n-1}\right|}{n\left|a_{n}\right|\left(1+k^{2}\right)+2\left|a_{n-1}\right|}\right] \max _{|z|=1}|p(z)| \tag{14}
\end{equation*}
$$

The above lemma is due to Dewan and Mir [5].
Lemma 3. If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree, then for all $R \geq 1$

$$
\begin{equation*}
\max _{|z|=R}|p(z)| \leq R^{n} M(p, 1)-\left(R^{n}-R^{n-2}\right)|p(0)|, \text { if } n>1 \tag{15}
\end{equation*}
$$

And

$$
\begin{equation*}
\max _{|z|=R}|p(z)| \leq R M(p, 1)-(R-1)|p(0)|, \text { if } n=1 \tag{16}
\end{equation*}
$$

The above lemma is due to Frappier, Rahman and Ruscheweyh [6].

3. PROOF OF THE THEOREMS

Proof of Theorem 1. Let $(p, 1)=\max _{|z|=1}|p(z)|$. Since $\mathrm{p}(\mathrm{z})$ is a polynomial of degree n having all its zeros on $|\mathrm{z}|=\mathrm{k}, \mathrm{k} \leq 1$, therefore, by Lemma 1 , we have

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-1}+k^{n}} \quad M(p, 1) \text { for }|z|=1 \tag{17}
\end{equation*}
$$

Now applying inequality (1) to the polynomial $p^{/}(z)$ which is of degree $n-1$ and
noting (17), it follows that for all $r \geq 1$ and $0 \leq \theta<2 \pi$

$$
\begin{equation*}
\left|p^{\prime}\left(r e^{i \theta}\right)\right| \leq \frac{n r^{n-1}}{k^{n-1}+k^{n}} \quad M(p, 1) \tag{18}
\end{equation*}
$$

Also for each $\theta, 0 \leq \theta<2 \pi$ and $R \geq 1$, we obtain

$$
\begin{aligned}
\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(r e^{i \theta}\right)\right\}^{s} & =\int_{1}^{R} \frac{d}{d t}\left\{p\left(t e^{i \theta}\right)\right\}^{s} d t \\
& =\int_{1}^{R} s\left\{p\left(t e^{i \theta}\right)\right\}^{s-1} p^{\prime}\left(t e^{i \theta}\right) e^{i \theta} d t
\end{aligned}
$$

This implies

$$
\begin{equation*}
\left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(r e^{i \theta}\right)\right\}^{s}\right| \leq s \int_{1}^{R}\left|p\left(t e^{i \theta}\right)\right|^{s-1}\left|p^{\prime}\left(t e^{i \theta}\right)\right| d \tag{19}
\end{equation*}
$$

Since $p(z)$ is a polynomial of degree >2, the polynomial $p^{/}(z)$ which is of degree $n-1 \geq 2$, hence applying inequality (15) of Lemma 3 to $p^{\prime}(z)$, we have for $r \geq 1$ and $0 \leq \theta<2 \pi$

$$
\begin{equation*}
\left|p^{\prime}\left(r e^{i \theta}\right)\right| \leq r^{n-1} M\left(p^{\prime}, 1\right)-\left(r^{n-1}-r^{n-3}\right)\left|p^{\prime}(0)\right| \tag{20}
\end{equation*}
$$

Inequality (20) in conjunction with inequalities (19) and (1), yields for $n>2$ and for $\mathrm{R} \geq 1$

$$
\begin{aligned}
& \left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(r e^{i \theta}\right)\right\}^{s}\right| \\
\leq & s \int_{1}^{R}\left[t^{n} M(p, 1)^{s-1}\right]\left[t^{n-1} M\left(p^{\prime}, 1\right)-\left(t^{n-1}-t^{n-3}\right)\left|p^{\prime}(0)\right|\right] d t \\
= & s \int_{1}^{R} t^{n s-1}\{M(p, 1)\}^{s-1} M\left(p^{\prime}, 1\right) \\
- & \left.\left(t^{n s-1}-t^{n s-3}\right)\{M(p, 1)\}^{s-1}\left|p^{\prime}(0)\right|\right] d t \\
= & s\left[\frac{R^{n s}-1}{n s}\{M(p, 1)\}^{s-1} M\left(p^{\prime}, 1\right)-\left(\frac{R^{n s}-1}{n s}-\frac{R^{n s-2}}{n s-2}\right)\{M(p, 1)\}^{s-1}\left|p^{\prime}(0)\right|\right]
\end{aligned}
$$

On applying Lemma 1 to the above inequality, we get for $\mathrm{n}>2$

$$
\begin{aligned}
\left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(r e^{i \theta}\right)\right\}^{s}\right| & \leq \frac{R^{n s}-1}{k^{n-1}+k^{n}}\{M(p, 1)\}^{s} \\
& -s\left(\frac{R^{n s}-1}{n s}-\frac{R^{n s-2}-1}{n s-2}\right)\{M(p, 1)\}^{s-1}\left|p^{\prime}(0)\right|
\end{aligned}
$$

This gives

$$
\begin{aligned}
\{M(p, R)\}^{s} & \leq \frac{R^{n s}-1+k^{n-1}+k^{n}}{k^{n-1}+k^{n}}\{M(p, 1)\}^{s} \\
& -s\left(\frac{R^{n s}-1}{n s}-\frac{R^{n s-2}-1}{n s-2}\right)\{M(p, 1)\}^{s-1}\left|p^{\prime}(0)\right|
\end{aligned}
$$

from which proof of inequality (5) follows.
The proof of inequality (6) follows on the same lines as that of inequality (5), but instead of using inequality (15) of Lemma 3 we use inequality (16) of Lemma 3.

Proof of Theorem 2. The proof of Theorem 2 follows on the same lines as that of Theorem 1. But for the sake of completeness we give a brief outline of the proof. We first consider the case when polynomial $p(z)$ is of degree $n>2$, then the polynomial $p^{\prime}(z)$ is of degree $(n-1) \geq 2$, hence applying inequality (15) of Lemma 3 to $\mathrm{p}^{\prime}(\mathrm{z})$, we have for $\mathrm{r} \geq 1$ and $0 \leq \theta<2 \pi$

$$
\begin{equation*}
\left|p^{\prime}\left(r e^{i \theta}\right)\right| \leq r^{n-1} M\left(p^{\prime}, 1\right)-\left(r^{n-1}-r^{n-3}\right)\left|p^{\prime}(0)\right| \tag{21}
\end{equation*}
$$

Also for each $\theta, 0 \leq \theta<2 \pi$ and $R \geq 1$, we obtain

$$
\begin{aligned}
\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(r e^{i \theta}\right)\right\}^{S} & =\int_{1}^{R} \frac{d}{d t}\left\{p\left(t e^{i \theta}\right)\right\}^{s} d t \\
& =\int_{1}^{R} s\left\{p\left(t e^{i \theta}\right)\right\}^{s-1} p^{\prime}\left(t e^{i \theta}\right) e^{i \theta} d t
\end{aligned}
$$

This implies

$$
\begin{equation*}
\left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(r e^{i \theta}\right)\right\}^{s}\right| \leq s \int_{1}^{R}\left|p\left(t e^{i \theta}\right)\right|^{s-1}\left|p^{\prime}\left(t e^{i \theta}\right)\right| d t \tag{22}
\end{equation*}
$$

Inequality (22) in conjunction with inequalities (21) and (1), yields for $n>2$

$$
\begin{aligned}
& \left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(r e^{i \theta}\right)\right\}^{s}\right| \\
\leq & s \int_{1}^{R}\left[t^{n} M(p, 1)^{s-1}\right]\left[t^{n-1} M\left(p^{\prime}, 1\right)-\left(t^{n-1}-t^{n-3}\right)\left|p^{\prime}(0)\right|\right] d t \\
= & s \int_{1}^{R} t^{n s-1}\{M(p, 1)\}^{s-1} M\left(p^{\prime}, 1\right) \\
- & \left.\left(t^{n s-1}-t^{n s-3}\right)\{M(p, 1)\}^{s-1}\left|p^{\prime}(0)\right|\right] d t \\
= & s\left[\frac{R^{n s}-1}{n s}\{M(p, 1)\}^{s-1} M\left(p^{\prime}, 1\right)-\left(\frac{R^{n s}-1}{n s}-\frac{R^{n s-2}-1}{n s-2}\right)\{M(p, 1)\}^{s-1}\left|p^{\prime}(0)\right|\right]
\end{aligned}
$$

Which on combining with lemma 2 , yields for $n>2$

$$
\begin{aligned}
& \left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(r e^{i \theta}\right)\right\}^{s}\right| \\
\leq & \frac{R^{n s}-1}{k^{n}}\left(\frac{n\left|a_{n}\right| k^{2}+\left|a_{n-1}\right|}{n\left|a_{n}\right|\left(1+k^{2}\right)+2\left|a_{n-1}\right|}\right)\{M(p, 1)\}^{s} \\
- & s\left(\frac{R^{n s}-1}{n s}-\frac{R^{n s-2}-1}{n s-2}\right)\{M(p, 1)\}^{s-1}\left|p^{\prime}(0)\right|
\end{aligned}
$$

From which we get the desired result.
The proof of inequality (10) follows on the same lines as that of inequality (9), but instead of using inequality (15) of Lemma 3 we use inequality (16) of Lemma 3.

REFERENCES

[1] Ankeny, N. C., \& Rivlin, T. J. (1955). On a theorem of S. Bernstein. Pacific J. Math., 5, 849-852.
[2] Dewan, K. K., \& Ahuja, A. (2011). Growth of polynomials with prescribed zeros. Journal of Mathematical Inequalities, 5(3), 355-361.
[3] Govil, N. K. (1980). On the theorem of S. Bernstein. J. Math.and Phy.Sci., 14, 183-187.
[4] Polya, G., \& Szego, G. (1925). Aufgabed and Lehrsatze aus der analysis. Berlin: Springer-Verlag.
[5] Dewan, K. K., \& Mir, A. (2007). Note on a theorem of S. Bernstein. Southeast Asian Bulletin of Math., 31, 691-695.
[6] Frapier, C., Rahman, Q. I., \& Ruscheweyh, St. (1985). New inequalities for polynomials. Trans. Amer. Math. Soc., 288, 69-99.

