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Abstract: In this paper, we study the matrix variate generalization of the
extended beta type 1 distribution. We also define extended matrix variate
beta type 2 and type 3 distributions and derive several of their properties. We
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1. INTRODUCTION

A random variable u is said to have an extended beta type 1 distribution with
parameters (p, q, σ), denoted by u ∼ EB1(p, q;σ), if its probability density function
(p.d.f.) is given by (Chaudhry et al. [3], Nagar, Morán-Vásquez and Gupta [11]),

up−1(1− u)q−1

B(p, q;σ)
exp

[
− σ

u(1− u)

]
, 0 < u < 1. (1)

The extended beta function B(a, b;σ) used above is defined as

B(a, b;σ) =

∫ 1

0

ta−1(1− t)b−1 exp

[
− σ

t(1− t)

]
dt, (2)
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where a and b are arbitrary complex numbers and Re(σ) > 0. If σ = 0, then Re(a) >
0 and Re(b) > 0. For Re(a) > 0 and Re(b) > 0, it is clear that B(a, b, 0) = B(a, b).
The rational and justification for introducing this function are given in Chaudhry et
al. [3] where several properties and a statistical application have also been studied.
Miller [8] further studied this function and has given several additional results.
Recently, Morán-Vásquez and Nagar [9] have applied the extended beta function in
deriving certain probability distributions. The extended beta type 1 distribution can
be used in Bayesian methodology as a prior distribution on the success probability
of a binomial distribution.

A random variable v is said to have an extended beta type 2 distribution with
parameters (p, q, σ), denoted by v ∼ EB2(p, q;σ), if its p.d.f. is given by

vp−1(1 + v)−(p+q)

B(p, q;σ) exp(2σ)
exp

[
−σ
(
v +

1

v

)]
, v > 0. (3)

Since (3) can be obtained from (1) by the transformation v = u/(1 − u) the
distribution of v can also be called the inverted extended beta distribution. By using
the transformation w = u/(2 − u), the extended beta type 3 density is obtained
as (Gupta and Nagar [5,6], Cardeño, Nagar and Sánchez [2], Nagar and Ramirez-
Vanegas [12,13]),

2pwp−1(1− w)q−1

B(p, q;σ)(1 + w)p+q
exp

[
− σ(1 + w)2

2w(1− w)

]
, 0 < u < 1. (4)

For σ = 0 with p > 0 and q > 0, the extended beta type 1, type 2 and type 3
distributions reduce to standard beta type 1, type 2 and type 3 distributions, re-
spectively. The beta type 1, type 2 and type 3 distributions have been generalized to
the matrix case in various ways. These generalizations and some of their properties
can be found in Olkin and Rubin [15], Gupta and Nagar [4–6], and Muirhead [10].
For some recent advances the reader is referred to Hassairi and Regaig [7], Ben-
Farah and Hassairi [1], and Zine [16]. However, generalizations of extended beta
distributions to the matrix case have not been studied.

In this article, we consider matrix variate generalizations of extended beta type 1,
extended beta type 2 and extended beta type 3 distributions defined by the densities
(1), (3) and (4), respectively. We derive several properties of these distributions
including joint probability density functions of the eigenvalues.

2. SOME DEFINITIONS AND PRELIMINARY RESULTS

In this section we give some definitions and preliminary results which are used in
subsequent sections.

We begin with a brief review of some definitions and notations. We adhere to
standard notations (cf. Gupta and Nagar [4]). Let A = (aij) be an m×m matrix.
Then, A′ denotes the transpose of A; tr(A) = a11 + · · ·+amm; etr(A) = exp(tr(A));
det(A) = determinant of A; A ≥ 0 means that A is symmetric positive semi-
definite; A > 0 means that A is symmetric positive definite and A1/2 denotes the
unique symmetric positive definite square root of A > 0. The multivariate gamma
function is defined by

Γm(a) =

∫
X>0

etr(−X) det(X)a−(m+1)/2 dX
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= πm(m−1)/4
m∏
i=1

Γ

(
a− i− 1

2

)
, Re(a) >

m− 1

2
. (5)

The multivariate generalization of the beta function is given by

Bm(a, b) =

∫ Im

0

det(X)a−(m+1)/2 det(Im −X)b−(m+1)/2 dX

=
Γm(a)Γm(b)

Γm(a+ b)
= Bm(b, a), Re(a) >

m− 1

2
, Re(b) >

m− 1

2
. (6)

Definition 2.1. The extended matrix variate beta function, denoted by Bm(a, b; Σ),
is defined as

Bm(a, b; Σ) =

∫ Im

0

etr[−ΣZ−1(Im − Z)−1]

× det(Z)a−(m+1)/2 det(Im − Z)b−(m+1)/2 dZ, (7)

where a and b are arbitrary complex numbers and Re(Σ) > 0. If Σ = 0, then
Re(a) > (m− 1)/2 and Re(b) > (m− 1)/2.

From (7) it is clear that Bm(a, b; Σ) = Bm(b, a; Σ). Further, in the above defi-
nition if we take Σ = 0, then for Re(a) > (m − 1)/2, Re(b) > (m − 1)/2, we have
Bm(a, b; 0) = Bm(a, b).

Theorem 2.1. For a and b arbitrary complex numbers and Re(Σ) > 0,

Bm(a, b; Σ) = etr(−2Σ)

∫
U>0

etr[−Σ(U + U−1)] det(U)a−(m+1)/2

det(Im + U)a+b
dU. (8)

Further, the above result also holds good for Σ = 0 if Re(a) > (m − 1)/2 and
Re(b) > (m− 1)/2.

Proof. Making the substitution Z = (Im + U)−1U with the Jacobian J(Z → U) =
det(Im + U)−(m+1) in (7), we get the desired result.

The extended matrix variate beta function has been defined and studied recently
by Nagar, Roldán-Correa and Gupta [14].

3. THE DENSITY FUNCTIONS

Recently, Nagar, Roldán-Correa and Gupta [14] have defined a matrix variate gen-
eralization of the extended beta type 1 distribution as follows:

Definition 3.1. An m ×m random positive definite matrix U is said to have an
extended matrix variate beta type 1 distribution with parameters (p, q,Σ), denoted
as U ∼ EB1(m, p, q; Σ), if its p.d.f. is given by

etr[−ΣU−1(Im − U)−1] det(U)p−(m+1)/2 det(Im − U)q−(m+1)/2

Bm(p, q; Σ)
, (9)

where 0 < U < Im, −∞ < p <∞, −∞ < q <∞ and Σ > 0.
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From the definition it is clear that if U ∼ EB1(m, p, q; Σ), then Im − U ∼
EB1(m, q, p; Σ).

We now proceed to define the extended matrix variate beta type 2 distribution.

Definition 3.2. An m ×m random positive definite matrix V is said to have an
extended matrix variate beta type 2 distribution with parameters (p, q,Σ), denoted
as V ∼ EB2(m, p, q; Σ), if its p.d.f. is given by

etr[−Σ(V + V −1)] det(V )p−(m+1)/2 det(Im + V )−(p+q)

Bm(p, q; Σ) etr(2Σ)
, (10)

where V > 0, −∞ < p <∞, −∞ < q <∞ and Σ > 0 .

The density (10) can be obtained from (9) by the transformation U = (Im +
V )−1V , with the Jacobian J(U → V ) = det(Im + V )−(m+1). Since the matrix
variate beta type 2 distribution is also known as the matrix variate F -distribution,
extended matrix variate beta type 2 distribution can be also be called extended
matrix variate F -distribution.

Note that in Definition 3.1 and Definition 3.2 if we take Σ = 0, p > (m − 1)/2
and q > (m−1)/2, then (9) and (10) slide to matrix variate beta type 1 and matrix
variate beta type 2 densities given by

det(U)p−(m+1)/2 det(Im − U)q−(m+1)/2

Bm(p, q)
, 0 < U < Im (11)

and
det(V )p−(m+1)/2 det(Im + V )−(p+q)

Bm(p, q)
, V > 0, (12)

respectively.
As we will see in the following theorem, using a linear transformation on the

matrix U , we can generalize the extended matrix variate beta type 1 distribution.

Theorem 3.1. Let U ∼ EB1(m, p, q; Σ), and Ψ and Ω be two constant matrices of
order m such that Ω > 0, Ψ ≥ 0 and Ω−Ψ > 0. Then, the m×m random matrix
X defined by

X = (Ω−Ψ)1/2U(Ω−Ψ)1/2 + Ψ (13)

has the p.d.f. given by

det(X −Ψ)p−(m+1)/2 det(Ω−X)q−(m+1)/2

Bm(p, q; Σ) det(Ω−Ψ)p+q−(m+1)/2

× etr[−Σ(Ω−Ψ)1/2(X −Ψ)−1(Ω−Ψ)(Ω−X)−1(Ω−Ψ)1/2], (14)

where Ψ < X < Ω.

Proof. The Jacobian of the transformation (13) is J(U→X) = det(Ω−Ψ)−(m+1)/2.
Thus, the density of X is derived from the density of U by making appropriate
substitutions.

Definition 3.3. An m × m random positive definite matrix X is said to have a
generalized extended matrix variate beta type 1 distribution with parameters p, q,Σ,Ω
and Ψ, denoted by X ∼ GEB1(m, p, q; Σ,Ω,Ψ), if its p.d.f. is given by (14).
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If we takeΨ = 0 and Ω = Im in (14), then we obtain an extended matrix
variate beta type 1 density. Moreover, from Theorem 3.1, it is clear that if X ∼
GEB1(m, p, q; Σ,Ω,Ψ) then (Ω−Ψ)−1/2(X −Ψ)(Ω−Ψ)−1/2 ∼ EB1(m, p, q; Σ).

Similarly, using linear transformation on the matrix V , we can generalize the
extended matrix variate beta type 2 distribution.

Theorem 3.2. Let V ∼ EB2(m, p, q; Σ), and Ψ and Ω be two m × m constant
symmetric matrices such that Ω > 0 and Ψ ≥ 0. Then, the m×m random matrix
Y defined by

Y = (Ω + Ψ)1/2V (Ω + Ψ)1/2 + Ψ (15)

has the p.d.f. given by

det(Ω + Ψ)q det(Y −Ψ)p−(m+1)/2

Bm(p, q; Σ) etr(2Σ) det(Ω + Y )p+q
etr[−Σ(Ω + Ψ)−1/2(Y −Ψ)(Ω + Ψ)−1/2]

× etr[−Σ(Ω + Ψ)1/2(Y −Ψ)−1(Ω + Ψ)1/2], Y > Ψ. (16)

Proof. The Jacobian of the transformation (15) is J(V → Y ) = det(Ω+Ψ)−(m+1)/2.
Now, by substituting appropriately the density of Y is derived.

Definition 3.4. An m × m random positive definite matrix Y is said to have a
generalized extended matrix variate beta type 2 distribution with parameters p, q,Σ,Ω
and Ψ, denoted by Y ∼ GEB2(m, p, q; Σ,Ω,Ψ), if its p.d.f. is given by (16).

If we take Ψ = 0 and Ω = Im in (16), then we obtain an extended matrix
variate beta type 2 distribution. Moreover, from Theorem 3.2, it is clear that if
Y ∼ GEB2(m, p, q; Σ,Ω,Ψ), then (Ω+Ψ)−1/2(Y −Ψ)(Ω+Ψ)−1/2 ∼ EB2(m, p, q; Σ).

4. PROPERTIES

In this section we give some properties of random matrices which are distributed as
extended matrix variate beta type 1 and type 2.

Theorem 4.1. Let U ∼ EB1(m, p, q; Σ), and A be an m×m constant nonsingular
matrix. Then, the p.d.f. of X = AUA′ is given by

det(X)p−(m+1)/2 det(AA′ −X)q−(m+1)/2 etr[−ΣA′X−1AA′(AA′ −X)−1A]

Bm(p, q; Σ) det(AA′)p+q−(m+1)/2
, (17)

where 0 < X < AA′.

Proof. Transforming X = AUA′ with the Jacobian J(U→X) = det(AA′)−(m+1)/2

in the density of U , we get the desired result.

Corollary 4.1.1. Let U ∼ EB1(m, p, q; Σ), and A be an m×m constant nonsingular
symmetric matrix. Then, AUA ∼ GEB1(m, p, q; Σ, A2, 0).

Proof. Replacing A′ by A in (17), we get the result.

Theorem 4.2. Let V ∼ EB2(m, p, q; Σ), and A be an m×m constant nonsingular
matrix. Then, the p.d.f. of Y = AV A′ is given by

det(AA′)q det(Y )p−(m+1)/2 etr[−Σ(A−1Y (A′)−1 +A′Y −1A)]

Bm(p, q; Σ) etr(2Σ) det(AA′ + Y )p+q
, Y > 0. (18)
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Proof. Transforming Y = AV A′, with the Jacobian J(V →Y ) = det(AA′)−(m+1)/2,
in the density of V , we get the desired result.

Corollary 4.2.1. Let V ∼ EB2(m, p, q; Σ), and A be an m×m constant nonsingular
symmetric matrix. Then, AV A ∼ GEB2(m, p, q; Σ, A2, 0).

Proof. Replacing A′ by A in (18) we get the result.

In the following two theorems, we show that extended matrix variate beta dis-
tributions are orthogonally invariant when Σ is proportional to an identity matrix.

Theorem 4.3. Let U ∼ EB1(m, p, q;λIm), λ > 0, and H be an m×m orthogonal
matrix whose elements are constants or random variables distributed independently
of U . If H is a constant matrix, then the distribution of U is invariant under the
transformation U → HUH ′. Further, if H is random, then HUH ′ and H are
independent, HUH ′ ∼ EB1(m, p, q;λIm).

Proof. First, let H be a constant matrix. Then, from Theorem 4.1, HUH ′ ∼
EB1(m, p, q;λIm). Further, if H is a random orthogonal matrix, then HUH ′|H ∼
EB1(m, p, q;λIm) and since this distribution does not depend on H, HUH ′ ∼
EB1(m, p, q;λIm).

Theorem 4.4. Let V ∼ EB2(m, p, q;λIm), λ > 0, and H be an m×m orthogonal
matrix whose elements are constants or random variables distributed independently
of V . If H is a constant matrix, then the distribution of V is invariant under the
transformation V → HVH ′. Further, if H is random, then HVH ′ and H are
independent, HVH ′ ∼ EB2(m, p, q;λIm).

Proof. Similar to the proof of Theorem 4.3.

Now, we exhibit the relationship between extended matrix variate beta type 1
and type 2 random matrices. First, we derive the densities of U−1 and V −1.

Theorem 4.5. If U ∼ EB1(m, p, q; Σ), then the p.d.f. of X = U−1 is given by

etr[−ΣX2(X − Im)−1] det(X)−(p+q) det(X − Im)q−(m+1)/2

Bm(p, q; Σ)
, X > Im, (19)

Proof. Making the transformation X = U−1 with the Jacobian J(U → X) =
det(X)−(m+1) in (9), the density of X is obtained.

The density (19) may be called the inverse extended matrix variate beta type 1.
From Theorem 4.5, it is clear that if U ∼ EB1(m, p, q; Σ), then U−1 does not follow
an extended matrix variate beta type 1 distribution. However, it can easily be
observed that X − Im ∼ EB2(m, q, p; Σ), that is, U−1 − Im ∼ EB2(m, q, p; Σ). On
the other hand, if a random matrix V has an extended matrix variate beta type 2
distribution, then the distribution of V −1 is also extended matrix variate beta type 2
as we will see in the following theorem.

Theorem 4.6. If V ∼ EB2(m, p, q; Σ), then Y = V −1 ∼ EB2(m, q, p; Σ).

Proof. Transforming Y = V −1, with the Jacobian J(V → Y ) = det(Y )−(m+1), in
the density of V the desired result is obtained.
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Theorem 4.7. If U ∼ EB1(m, p, q; Σ) and Y = (Im−U)−1/2U(Im−U)−1/2, then
Y ∼ EB2(m, p, q; Σ). Further, if V ∼ EB2(m, p, q; Σ) and X = (Im+V )−1/2V (Im+
V )−1/2, then X ∼ EB1(m, p, q; Σ).

Proof. Since the matrix U commutes with any rational function of U , we can
write Y = (Im − U)−1/2 U(Im − U)−1/2 = (Im − U)−1U and the Jacobian of
this transformation is J(U → Y ) = det(Im + Y )−(m+1). Now, making these
substitutions, we get part one. For the second part, making the transformation
X = (Im + V )−1/2V (Im + V )−1/2 = (Im + V )−1V with the Jacobian J(V → X) =
det(Im −X)−(m+1), we obtain the result.

In the following theorem we compute expected values of functions of matrices
distributed as extended beta type 1 and 2.

Theorem 4.8. If U ∼ EB1(m, p, q; Σ), then

E[det(U)r det(Im − U)s] =
Bm(p+ r, q + s; Σ)

Bm(p, q; Σ)
.

Proof. By definition

E[det(U)r det(Im − U)s] =
1

Bm(p, q; Σ)

∫ Im

0

etr[−ΣU−1(Im − U)−1]

× det(U)p+r−(m+1)/2 det(Im − U)q+s−(m+1)/2 dU

=
Bm(p+ r, q + s; Σ)

Bm(p, q; Σ)
,

where the last line has been obtained using (7).

Theorem 4.9. If V ∼ EB2(m, p, q; Σ), then

E[det(V )r det(Im + V )−s] =
Bm(p+ r, q + s− r; Σ)

Bm(p, q; Σ)
.

Proof. By definition

E[det(V )r det(Im + V )−s] =
1

Bm(p, q; Σ) etr(2Σ)

∫
V >0

etr[−Σ(V + V −1)]

× det(V )p+r−(m+1)/2 det(Im + V )−(p+q+s) dV

=
Bm(p+ r, q + s− r; Σ)

Bm(p, q; Σ)
,

where the last line has been obtained by using (8).

5. EXTENDED MATRIX VARIATE BETA TYPE 3 DIS-
TRIBUTION

In this section we define the matrix variate beta type 3 distribution and derive
several of its properties.

46



Nagar, D. K., & Roldán-Correa, A./Progress in Applied Mathematics, 6 (1), 2013

Definition 5.1. An m ×m random positive definite matrix W is said to have an
extended matrix variate beta type 3 distribution with parameters (p, q,Σ), denoted
as W ∼ EB3(m, p, q; Σ), if its p.d.f. is given by

2pm det(W )p−(m+1)/2 det(Im −W )q−(m+1)/2

Bm(p, q; Σ) det(Im +W )p+q

× etr

[
−1

2
ΣW−1(Im −W )−1(Im +W )2

]
, (20)

where 0 < W < Im, −∞ < p <∞, −∞ < q <∞ and Σ > 0.

Note that in the Definition 5.1 if we take Σ = 0, p > (m−1)/2 and q > (m−1)/2,
then (20) slides to a matrix variate beta type 3 density given by

2pm det(W )p−(m+1)/2 det(Im −W )q−(m+1)/2

Bm(p, q) det(Im +W )p+q
, 0 < W < Im.

Theorem 5.1. Let W ∼ EB3(m, p, q; Σ), and A be an m×m constant nonsingular
matrix. Then, the p.d.f. of X = AWA′ is given by

2mp det(X)p−(m+1)/2 det(AA′ −X)q−(m+1)/2

Bm(p, q; Σ) det(AA′)−(m+1)/2

× etr

[
−1

2
ΣA′X−1AA′(AA′ −X)−1(AA′ +X)(AA′)−1(AA′ +X)(A−1)′

]
,

where 0 < X < AA′.

Proof. Similar to the proof of Theorem 4.1.

In the following theorem, we show that extended matrix variate beta type 3
distribution is orthogonally invariant when Σ is proportional to an identity matrix.

Theorem 5.2. Let W ∼ EB3(m, p, q;λIm), λ > 0, and H be an m×m orthogonal
matrix whose elements are constants or random variables distributed independently
of W . If H is a constant matrix, then the distribution of W is invariant under the
transformation W → HWH ′. Further, if H is random, then HWH ′ and H are
independent, HWH ′ ∼ EB3(m, p, q;λIm).

Proof. Similar to the proof of Theorem 4.3.

Theorem 5.3. If U ∼ B1(m, p, q; Σ), then (Im + U)−1(Im − U) ∼ B3(m, q, p; Σ)
and (2Im − U)−1U ∼ B3(m, p, q; Σ).

Proof. In the p.d.f. (9) of U making the transformation W = (Ip + U)−1(Ip − U)
with the Jacobian J(U → W ) = 2m(m+1)/2(Im + W )−(m+1), we get the desired
result. The second part follows from the first part by noting that (2Im −U)−1U =
[Im + (Im − U)]−1[Im − (Im − U)] and Im − U ∼ B1(m, q, p; Σ).

Theorem 5.4. If V ∼ B2(m, p, q; Σ), then (2Im + V )−1V ∼ B3(m, p, q; Σ) and
(Im + 2V )−1 ∼ B3(m, q, p; Σ).
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Proof. Transforming W = (2Im+V )−1V with the Jacobian J(V →W ) = 2m(m+1)/2

(Im −W )−(m+1) in the p.d.f. (10) of V , we get the desired result. The second part
follows from the first part by noting that (Im + 2V )−1 = (2Im + V −1)−1V −1 and
V −1 ∼ B2(m, q, p; Σ).

Finally, from Theorem 5.3 and Theorem 5.4, we get the following result.

Theorem 5.5. If W ∼ B3(m, p, q; Σ), then 2(Im + W )−1W ∼ B1(m, p, q; Σ),
(Im + W )−1(Im − W ) ∼ B1(m, q, p; Σ), 2(Im − W )−1W ∼ B2(m, p, q; Σ) and
(Im −W )W−1/2 ∼ B2(m, q, p; Σ).

6. EIGENVALUES OF EXTENDED BETA MATRICES

In this section, we derive densities of eigenvalues of random matrices distributed as
extended matrix variate beta type 1, type 2 and type 3. First we state the following
result which is useful in deriving main results of this section.

Theorem 6.1. Let A be a positive definite random matrix of order m with the
probability density function f(A). Then, the joint p.d.f. of eigenvalues l1, l2, . . . , lm
of A is given by

πm
2/2

Γm(m/2)

m∏
i<j

(li − lj)
∫
O(m)

f(HLH ′)[dH], (l1 > l2 > · · · > lm > 0), (21)

where L = diag(l1, l2, . . . , lm) and [dH] is the unit invariant Haar measure on the
group of orthogonal matrices.

An important integral involving the invariant Haar measure on the group of
orthogonal matrices is given by∫

O(m)

etr(AHBH ′) [dH] = 0F
(m)
0 (A,B), (22)

where A and B are symmetric matrices of order m and 0F
(m)
0 (A,B) is the hyper-

geometric function of two matrix arguments. The function 0F
(m)
0 (A,B) is defined

in terms of zonal polynomials as

0F
(m)
0 (A,B) =

∞∑
k=0

∑
κ`k

Cκ(A)Cκ(B)

Cκ(Im)k!
,

where
∑
κ`k denotes summation over all ordered partitions κ, κ = (k1, . . . , km),

k1 ≥ · · · ≥ km ≥ 0 and k1 + · · ·+ km = k; Cκ(A), Cκ(B) and Cκ(Im) are the zonal
polynomials of A, B and Im corresponding to the ordered partition κ.

Also, if one of the argument matrices is proportional to the identity matrix the

function 0F
(m)
0 (A,B) reduces to a one argument function. That is, if A = αIm,

then

0F
(m)
0 (αIm, B) = 0F

(m)
0 (αB) = etr(αB).

Proof of Theorem 6.1 and several other results such as (22) can be found in
Muirhead [10].
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Theorem 6.2. If U ∼ EB1(m, p, q; Σ), then the joint p.d.f. of the eigenvalues
u1, u2, . . . , um of U is given by

πm
2/2

Γm(m/2)Bm(p, q; Σ)

[ m∏
i<j

(ui − uj)
] m∏
i=1

[
u
p−(m+1)/2
i (1− ui)q−(m+1)/2

]
× 0F

(m)
0 (−Σ, L−1(1− L)−1), 0 < um < · · · < u1 < 1, (23)

where L = diag(u1, . . . , um).

Proof. The probability density function of U is given by (9). Applying Theorem 6.1,
we obtain the joint p.d.f. of the eigenvalues u1, u2, . . . , um of U as

πm
2/2

Γm(m/2)Bm(p, q; Σ)

[ m∏
i<j

(ui − uj)
] m∏
i=1

[
u
p−(m+1)/2
i (1− ui)q−(m+1)/2

]
×
∫
O(m)

etr[−ΣHL−1(Im − L)−1H ′][dH]. (24)

Further, using (22), we have∫
O(m)

etr[−ΣHL−1(Im − L)−1H ′][dH] = 0F
(m)
0 (−Σ, L−1(Im − L)−1). (25)

Finally substituting (25) in (24), we obtain the desired result.

Corollary 6.2.1. If U ∼ EB1(m, p, q;λIm), then the joint p.d.f. of the eigenvalues
u1, u2, . . . , um of U is given by

πm
2/2

Γm(m/2)Bm(p, q;λIm)

[ m∏
i<j

(ui − uj)
] m∏
i=1

[
u
p−(m+1)/2
i (1− ui)q−(m+1)/2

]
× exp

[
− λ

m∑
i=1

1

ui(1− ui)

]
, 0 < um < · · · < u1 < 1. (26)

Proof. Substituting Σ = λIm in (23), and noting that

0F
(m)
0 (−λIm, L−1(Im − L)−1) = 0F0(−λL−1(Im − L)−1)

= etr[−λL−1(Im − L)−1]

= exp

[
− λ

m∑
i=1

1

ui(1− ui)

]
,

we obtain the desired result.

Theorem 6.3. If V ∼ EB2(m, p, q; Σ), then the joint p.d.f. of the eigenvalues
v1, v2, . . . , vm of V is given by

πm
2/2 etr(−2Σ)

Γm(m/2)Bm(p, q; Σ)

[ m∏
i<j

(vi − vj)
] m∏
i=1

[
v
p−(m+1)/2
i (1 + vi)

−(p+q)
]

×0F
(m)
0 (−Σ, L+ L−1), 0 < vm < · · · < v1 <∞, (27)

where L = diag(v1, v2, . . . , vm).
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Proof. The p.d.f. of U is given by (10). Applying Theorem 6.1, we obtain the joint
p.d.f. of the eigenvalues v1, v2, . . . , vm of V as

πm
2/2 etr(−2Σ)

Γm(m/2)Bm(p, q; Σ)

[ m∏
i<j

(vi − vj)
] m∏
i=1

[
v
p−(m+1)/2
i (1 + vi)

−(p+q)
]

×
∫
O(m)

etr[−ΣH(L+ L−1)H ′][dH]. (28)

Finally, evaluation of the above integral using (22) yields the desired result.

Corollary 6.3.1. If V ∼ EB2(m, p, q;λIm), then the joint p.d.f. of the eigenvalues
v1, v2, . . . , vm of V is given by

πm
2/2 exp(−2m)

Γm(m/2)Bm(p, q;λIm)

[ m∏
i<j

(vi − vj)
] m∏
i=1

[
v
p−(m+1)/2
i (1 + vi)

−(p+q)
]

× exp

[
− λ

m∑
i=1

(
vi +

1

vi

)]
, 0 < vm < · · · < v1 <∞. (29)

Proof. Substituting Σ = λIm in (27), and observing that

0F
(m)
0 (−λIm, L+ L−1) = 0F0(−λ(L+ L−1))

= etr[−λ(L+ L−1)]

= exp

[
− λ

m∑
i=1

(
vi +

1

vi

)]
,

we get the desired result.

Theorem 6.4. If W ∼ EB3(m, p, q; Σ), then the joint p.d.f. of the eigenvalues
w1, w2, . . . , wm of W is given by

2mpπm
2/2

Γm(m/2)Bm(p, q; Σ)

[ m∏
i<j

(wi − wj)
] m∏
i=1

[
w
p−(m+1)/2
i (1− wi)q−(m+1)/2

(1 + wi)p+q

]
× 0F

(m)
0 (−Σ, 2−1L−1(1− L)−1(1 + L)2), 0 < um < · · · < u1 < 1, (30)

where L = diag(w1, . . . , wm).

Proof. Similar to the proof of Theorem 6.2.

Corollary 6.4.1. If W ∼ EB3(m, p, q;λIm), then the joint p.d.f. of the eigenvalues
w1, w2, . . . , wm of W is given by

2mpπm
2/2

Γm(m/2)Bm(p, q;λIm)

[ m∏
i<j

(wi − wj)
] m∏
i=1

[
w
p−(m+1)/2
i (1− wi)q−(m+1)/2

(1 + wi)p+q

]

× exp

[
− λ

2

m∑
i=1

(1 + wi)
2

wi(1− wi)

]
, 0 < wm < · · · < w1 < 1. (31)

Proof. Similar to the proof of Corollary 6.2.1.
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7. SOME INTERESTING MULTIPLE INTEGRALS

Since the density over its support set integrates to one, from (23), (26), (27), (29),
(30) and (31), we get several interesting integrals∫

· · ·
∫

0<um<···<u1<1

[ m∏
i<j

(ui − uj)
] m∏
i=1

[
u
p−(m+1)/2
i (1− ui)q−(m+1)/2

]

× 0F
(m)
0 (−Σ, L−1(1− L)−1)

m∏
i=1

dui

=
Γm(m/2)Bm(p, q; Σ)

πm2/2
,

∫
· · ·
∫

0<um<···<u1<1

[ m∏
i<j

(ui − uj)
] m∏
i=1

[
u
p−(m+1)/2
i (1− ui)q−(m+1)/2

]

× exp

[
− λ

m∑
i=1

1

ui(1− ui)

] m∏
i=1

dui

=
Γm(m/2)Bm(p, q;λIm)

πm2/2
,

∫
· · ·
∫

0<vm<···<v1<∞

[ m∏
i<j

(vi − vj)
] m∏
i=1

[
v
p−(m+1)/2
i (1 + vi)

−(p+q)
]

× 0F
(m)
0 (−Σ, L+ L−1)

m∏
i=1

dvi

=
Γm(m/2)Bm(p, q; Σ) etr(2Σ)

πm2/2
,

∫
· · ·
∫

0<vm<···<v1<∞

[ m∏
i<j

(vi − vj)
] m∏
i=1

[
v
p−(m+1)/2
i (1 + vi)

−(p+q)
]

× exp

[
− λ

m∑
i=1

(
vi +

1

vi

)] m∏
i=1

dvi

=
Γm(m/2)Bm(p, q;λIm) exp(2mλ)

πm2/2
.

∫
· · ·
∫

0<wm<···<w1<1

[ m∏
i<j

(wi − wj)
] m∏
i=1

[
w
p−(m+1)/2
i (1− wi)q−(m+1)/2

(1 + wi)p+q

]

× 0F
(m)
0

(
−Σ, 2−1L−1(1− L)−1(1 + L)2

) m∏
i=1

dwi
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=
Γm(m/2)Bm(p, q; Σ)

2mpπm2/2
,

and ∫
· · ·
∫

0<wm<···<w1<1

[ m∏
i<j

(wi − wj)
] m∏
i=1

[
w
p−(m+1)/2
i (1− wi)q−(m+1)/2

(1 + wi)p+q

]

× exp

[
−λ

2

m∑
i=1

(1 + wi)
2

wi(1− wi)

]
m∏
i=1

dwi

=
Γm(m/2)Bm(p, q;λIm)

2mpπm2/2
.
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