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Abstract: A Galerkin finite element method by using bivariate splines
(GB method) is proposed for solving parabolic partial differential equation-

s (PPDEs). Bivariate spline proper subspace of S2,3
4 (∆

(2)
mn) satisfying ho-

mogeneous boundary conditions on type-2 triangulations and quadratic B-
spline interpolating boundary functions are primarily constructed. PPDEs
are solved by the GB method.
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1. INTRODUCTION

In this paper, a Galerkin finite element method (GB method) is applied to the
following problem of parabolic type(ST problem):
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Find u = u(x, y) such that

uy − uxx = f, x ∈ [a, b], y > 0, (1)

u(a, y) = u(b, y), y > 0, (2)

u(x, 0) = u0, x ∈ [a, b], (3)

the functions f and u0 are given data.

Solving the ST problem is of great practical importance and has recently been
considered by several research. There is a vast amount of literature devoted to
it. The reader is referred to [8,14] for excellent surveys. We review some methods
referred in this paper.

The Galerkin finite element method is a well established numerical method for
solving PPDEs [8]. The method is based on the variational form of boundary value
problem, and approximates the exact solution by using piecewise polynomials or
B-spline functions. B-spline finite elements have been widely applied to solve some
kinds of PPDEs [2,5]. The finite difference method is also a popular method for
solving PPDEs [1,6]. Meshless methods are another powerful class of numerical
methods for solving PPDEs. The method of radial basis functions is a well-known
family of meshless methods [14]. For more information see [7,16].

The present work is related to our earlier work on multivariate splines [11] and
continued in [12,15]. Multivariate splines have been intensively studied in the last
forty years and have become a well established tool for computational geometry,
numerical approximation and wavelet etc. It has been successfully used in the finite
element methods and mainly used to construct various of model functions. A lot
of related work on multivariate splines and its applications has been done by Wang
and his research group during the recent twenty years [4,10].

In this paper, we first write an solution to the ST problem in a weak form. Then,

we propose GB method for solving the weak solution. Here, we select S2,3;0
4 (∆

(2)
mn) as

the testing function space. For the ST problem with homogeneous boundary condi-
tions (STH problem), we propose an algorithm (H-Algorithm). For the ST problem

with nonhomogeneous boundary conditions (STN problem), we use S1;0
2 (∆

(2)
mn) to

interpolate the boundary conditions, then we obtain a particular solution of the
original problem. According to the particular solution, the STN problem could be
changed into a STH problem. At last, we give some examples and comparisons of
the GB method and the other methods, including the RBF method mentioned in
[7], the finite difference method and the finite element method, the results indicated
that the GB method has some advantages:

• the GB method is adaptive, and the accuracy could be well controlled;

• the GB method is more convenient, since the form of the system which should
be solved is more simple;

• the GB method has fine accuracy.

The organization of this paper is as follows. In Section 2, the bivariate spline
space is introduced. The linear system is considering in Section 3. Solving the
standard model problem of parabolic type is discussed in Section 4. A conclusion
is drawn in Section 5.
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Figure 1
Uniform Type-2 Triangulation, m = 4, n = 4

2. Bivariate spline space on type-2 triangulations

Splines are piecewise polynomials with certain smoothness. Wang et al. [9,10,13]
established the basic theory on multivariate splines over arbitrary partition, and
presented the so-called conformality method of smoothing cofactor which is suitable
for studying the multivariate spline over arbitrary partition.

Let Ω be a domain in R2, Pk the collection of all these bivariate polynomials
with real coefficients and total degree no more than k, i.e.,

Pk := {p =

k∑
i=0

k−i∑
j=0

cijx
iyj |cij ∈ R}

Using a finite number of irreducible algebraic curves to carry out the partition
∆ of the domain Ω, then the domain Ω is divided into M sub-domains δ1, · · · , δM ,
each of such sub-domains is called a cell of ∆. The space of bivariate splines with
degree k and smoothness µ over ∆ is defined by

Sµk (∆) := {s ∈ Cµ(Ω)| s|δi ∈ Pk, i = 1, . . . ,M}

As well known, many regions including the so-called L-form regions and their
combinations, can be translated to many rectangular regions. Type-2 triangulation-
s are yielded by connecting two diagonals at each small rectangular cell which are
based on rectangular regions. Clearly, if the original rectangular partition is unifor-
m, then the induced type-2 triangulations are called uniform type-2 triangulations.
All of type-2 triangulations mentioned in our paper are uniform, see Fig. 1.

Without loss the generality, let Ω be a unit square region as follows:

Ω = (0, 1)⊗ (0, 1).

The type-2 triangulation ∆
(2)
m,n is yielded by the following partition lines:

mx− i = 0, ny − i = 0,

ny −mx− i = 0, ny +mx− i = 0,

where i = · · · ,−1, 0, 1, · · · . It is from the the basic inequality [10] that the quadratic

and quartic spline spaces with the highest possible uniform smoothness are S1
2(∆

(2)
mn)

and S2
4(∆

(2)
mn), respectively.
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Figure 2
A Locally Supported Spline

2.1. QUADRATIC SPLINE SPACES S1
2(∆

(2)
m,n)

We first introduce a locally supported spline in S1
2(∆

(2)
m,n) with its support octagon

Q centered at (0, 0) as shown in Fig. 2. It is known that a bivariate polynomial of
degree 2 on a triangle can be uniquely determined by the values of three vertices and
three midpoints of the edges. In Fig. 2, the values are given on some triangles, and
other values are obtained by the symmetry of lines x = 0, y = 0, x+y = 0, x−y = 0.

Let Φ(x, y) be a piecewise polynomial with degree 2 defined in R2, that is, zero
outside of Q, and let its representation in every triangle of Q be determined by the
values. Clearly, Φ(x, y) ∈ C1(R2), and Φ(x, y) > 0 inside of Q. Hence, Φ(x, y) is a
bivariate B-spline over the partition. Using the conformality conditions at vertices,
Φ(x, y) is uniquely determined by the symmetry of lines x = 0, y = 0, x + y =
0, x − y = 0, and normalized condition Φ(0, 0) = 1/2. We can point out that the
support of Φ(x, y) is the smallest one [10].

Denote

Φij(x, y) := Φ(mx− i+ 1/2, ny − j + 1/2),

then collection

A = {Φij(x, y) : i = 0, · · · ,m+ 1, j = 0, · · · , n+ 1}

is a subspace of S1
2(∆

(2)
m,n). From [10], we know that

dimS1
2(∆(2)

m,n) = (m+ 2)(n+ 2)− 1.

2.2. QUARTIC SPLINE SPACES S2,3;0
4 (∆

(2)
mn)

In [10], they have constructed the locally supported splines in S2
4(∆

(2)
mn) which are

consist of three classes of C2 quartic B-spline bases. Since it is not convenient in
finite element method by using them immediately, Li and Wang [11] constructed a

spline space S2,3
4 (∆

(2)
mn), where s ∈ S2,3

4 (∆
(2)
mn) is a piecewise polynomial of degree 4

with the following two continuous conditions: (i) s is C2 continuous on the rectangle
grid segments; (ii) s is C3 continuous on the diagonal grid segments. Meanwhile,
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they constructed B-spline base B(x, y) by the combination of three kinds of B-
splines in [10]. It has been proved that all the locally supported B-splines can only

span a proper subspace of S2,3
4 (∆

(2)
mn) [11].

Next, we discuss locally supported splines in proper subspace of S2,3
4 (∆

(2)
mn) with

homogenous boundary conditions on type-2 triangulations. The basic idea is to use

the linear combination of B(x, y) in S2,3
4 (∆

(2)
mn) and their translations.

Let
Bi,j(x, y) = B(mx− i, ny − j).

Define the basis functions B̃i,j(x, y) as follows:
B̃1,1(x, y) = B1,1(x, y)−B−1,1(x, y)−B1,−1(x, y) +B−1,−1(x, y),

B̃m−1,1(x, y) = Bm−1,1(x, y)−Bm+1,1(x, y)−Bm−1,−1(x, y) +Bm+1,−1(x, y),

B̃1,n−1(x, y) = B1,n−1(x, y)−B−1,n−1(x, y)−B1,n+1(x, y) +B−1,n+1(x, y),

B̃m−1,n−1(x, y) = Bm−1,n−1(x, y)−Bm+1,n−1(x, y)−Bm−1,n+1(x, y) +Bm+1,n+1(x, y),
(4)


B̃i,1(x, y) = Bi,1(x, y)−Bi,−1(x, y), i = 2, 3, · · · ,m− 2,

B̃i,m−1(x, y) = Bi,m−1(x, y)−Bi,m+1(x, y), i = 2, 3, · · · ,m− 2,

B̃1,j(x, y) = B1,j(x, y)−B−1,j(x, y), j = 2, 3, · · · , n− 2,

B̃n−1,j(x, y) = Bn−1,j(x, y)−Bn+1,j(x, y), j = 2, 3, · · · , n− 2,

(5)

B̃i,j(x, y) = Bi,j(x, y), i = 2, 3, · · · ,m− 2, j = 2, 3, · · · , n− 2. (6)

B-spline functions in Eq.(4), Eq.(5), Eq.(6) are called corner, side and interior
B-spline bases, respectively. Their supports are shown in Figure 3. The B-spline
functions are C1 across the single marked mesh lines and C0 across the double
marked mesh segments.

Figure 3
Corner B-spline Basis Side B-spline Basis Interior B-spline Basis

It can be proved that B̃i,j(x, y) : 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1 can only span

the proper subspace of S2,3
4 (∆

(2)
mn) with homogenous boundary conditions on type-2

triangulations (S2,3;0
4 (∆

(2)
mn) for short).

3. SOLVING THE LINEAR PARABOLIC PROBLEMSWITH
HOMOGENEOUS BOUNDARY CONDITIONS

Let u, v be scalar functions, we define the gradient by

∇v = (
∂v

∂x
,
∂v

∂y
).
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(·, ·) denotes the usual L2(Ω) inner product,

(u, v) =

∫
Ω

uvdxdy.

H1
0 (Ω) is the usual Sobolev space consisting of all functions v vanishing on ∂Ω and

having square integrable first order derivatives in Ω. In this paper, ‖ · ‖≡‖ · ‖2.

3.1. The GB Method

In Eq.(1), if g(u) ≡ c, the SP problem is called a linear SP problem. We shall now
discuss the following linear SP problem: Find u = u(x, y, t) such that

ut − uxx − uyy = f, in Ω, t > 0, (7)

u = 0, on ∂Ω, t > 0, (8)

u(·, 0) = u0, in Ω, (9)

Eq.(7)–Eq.(9) can be given the following equivalent weak formulation: Find u:
R+ → H1

0 (Ω) such that

(ut, v) + (∇u,∇v) = (f, v),∀v ∈ H1
0 (Ω), t > 0,

u(·, 0) = u0.
(10)

The Discontinuous Galerkin method is defined as follows: Let 0 = t0 < t1 <
· · · < tl < · · · be a (not necessarily) partition of the positive t-axis R+ into subin-
tervals Il = (tl−1, tl], and define with q a nonnegative integer the corresponding set
of piecewise polynomials of degree at most q in t with values in H1

0 (Ω) by

W = {v : v |Il=
q∑
i=0

ai,lt
i, ai,l ∈ H1

0 (Ω), i = 0, 1, · · · , q, l = 1, 2, · · · }.

In this note we shall consider only the case q = 0, it means that the solution of
problem Eq.(7)–Eq.(9) in each subintervals Il (for some suitable) is not changed.
So the Discontinuous Galerkin method for Eq.(7)–Eq.(9) takes the form[3]:

(Ul − Ul−1, v) + kl(∇Ul,∇v) =

∫
Il

(f, v)dt, ∀v ∈ H1
0 (Ω), l = 1, 2, · · · , (11)

U0 = u0, (12)

where kl = tl − tl−1 is the length of the subinterval Il. Ul is the numerical solution
of the linear SP problem (Eq.(7)–Eq.(9)) when t ∈ Il.

Since S2,3;0
4 (∆

(2)
mn) can be embedded into H1

0 (Ω), we can select it as the testing
function space.

The finite element method is to find a solution Ul ∈ S2,3;0
4 (∆

(2)
mn) such that

(Ul − Ul−1, v) + kl(∇Ul,∇v) =

∫
Il

(f, v)dt, ∀v ∈ S2,3;0
4 (∆(2)

mn), (13)

69



Galerkin Finite Element Method by Using Bivariate Splines for Parabolic PDEs

It is obvious that Eq.(13) is equivalent to the following formula:

(Ul − Ul−1, B̃s,t) + kl(∇Ul,∇B̃s,t) =

∫
Il

(f, B̃s,t)dt, ∀B̃s,t ∈ S2,3;0
4 (∆(2)

mn), (14)

By using the B-spline bases on S2,3;0
4 (∆

(2)
mn), we can write

Ul =

m−1∑
i=1

n−1∑
j=1

λi,j,lB̃i,j(x, y),

and insert to Eq.(14), we have the following linear system

m−1∑
i=1

n−1∑
j=1

λi,j,l(B̃i,j , B̃s,t) + kl

m−1∑
i=1

n−1∑
j=1

λi,j,n(∇B̃i,j ,∇B̃s,t)

=

∫
Il

(f, B̃s,t)dt+ (Ul−1, B̃s,t), ∀1 ≤ s ≤ m− 1, 1 ≤ t ≤ n− 1. (15)

Therefore, the coefficients λi,j,l can be determined by the system of linear equa-
tions Eq.(15).

4. SOLVNG TWO-DIMENSIONAL PARABOLIC PARTIAL
DIFFERENTIAL EQUATIONS

In this section, we discuss the ST problem (Eq.(1)–Eq.(3)). We should construct a
particular solution satisfying Eq.(2) at first. Using the GB method, we could obtain
the numerical solutions of the ST problem.

4.1. Interpolation the Boundary Conditions by Using Bivariate Spline

Considering the problem Eq.(2) in few time, i.e. T , we want to construct the
quadratic spline bases on ∂Ω. See Section 2.1, the quadratic spline bases on ∂Ω1 =
{(x, 0) | x ∈ [0, 1]} are constructed as follows:

s(1)(x, t) = h |∂Ω1
=

m+1∑
i=0

n+1∑
j=0

c
(1)
ij Φij(x, t),

where s(1)(x, t) satisfies the interpolation conditions

s(1)(w, vτ) = h(w, 0, vτ), w = 0, 1, · · · ,m+ 1, v = 0, 1, · · · , n+ 1,

where τ = T/n.
Similar to the above construction, the quadratic B-spline bases s(2), s(3) and

s(4) defined on ∂Ω2 = {(x, 1)| x ∈ [0, 1]}, ∂Ω3 = {(0, y)| y ∈ [0, 1]} and ∂Ω4 =
{(1, y)| y ∈ [0, 1]} can be easily constructed, respectively.

Given 4(m+ 2)(n+ 2) function values h(·) at the points

P =
{

(x, y, t)|(w, 0, vτ), (w, 1, vτ), (0, w, vτ), (1, w, vτ), w = 0, 1, · · · ,m+1, v = 0, 1, · · · , n+1
}
,

70



Qu, K., & Jiang, B./Progress in Applied Mathematics, 6 (1), 2013

we construct the following particular solution

ub(x, y, t) =

m+1∑
i=0

(
c
(1)
ij Φij(x, t) + c

(2)
ij Φij(x, t) + c

(3)
ij Φij(y, t) + c

(4)
ij Φij(y, t)

)
satisfying the interpolation conditions

ub(pi) = h(pi), ∀ pi ∈ P.

4.2. Solving the Nonlinear Parabolic Problems with Nonhomogeneous
Boundary Conditions

From Section 4.1, we can compute the spline ub(x, y) such that it interpolates the
boundary function h(x, y, t). If set ũ = u− ub, then ũ satisfies the corresponding
nonlinear parabolic problems with homogeneous boundary condition, i.e.,

ũt − div(g̃(ũ)∇ũ) = f̃ , in Ω, t > 0, (16)

ũ = 0, on ∂Ω, t > 0, (17)

ũ(·, 0) = ũ0, in Ω, (18)

Eq.(16)–Eq.(18) can be given the following equivalent weak formulation: Find
ũ: R+ → H1

0 (Ω) such that

(ũt, v) + (g̃(ũ)∇ũ,∇v) = (f̃ , v),∀v ∈ H1
0 (Ω), t > 0,

ũ(·, 0) = ũ0.
(19)

Using the Galerkin finite element method by using bivariate splines, we want to

find a solution Ũl ∈ S2,3;0
4 (∆

(2)
mn) such that

(Ũl − Ũl−1, v) + kl(g̃(Ũl−1)∇Ũl,∇v) =

∫
Il

(f̃ , v)dt,∀v ∈ S2,3;0
4 (∆(2)

mn), (20)

Ũ0 = ũ0, (21)

where kl = tl − tl−1 is the length of the subinterval Il.

By using the B-spline bases on S2,3;0
4 (∆

(2)
mn), we can write

Ũl =

m−1∑
i=1

n−1∑
j=1

λi,j,lB̃i,j(x, y),

and insert to Eq.(20), we have the following linear system

m−1∑
i=1

n−1∑
j=1

λi,j,l(B̃i,j , B̃s,t) + kl

m−1∑
i=1

n−1∑
j=1

λi,j,l(g̃(Ũl−1)∇B̃i,j ,∇B̃s,t)

=

∫
Il

(f, B̃s,t)dt+ (Ul−1, B̃s,t),∀1 ≤ s ≤ m− 1, 1 ≤ t ≤ n− 1. (22)

Therefore, the coefficients λi,j,l can be determined by the system of linear equa-
tions Eq.(22).

Remark 4.1. The initial condition Ũ0 is always interpolated by S2,3;0
4 (∆

(2)
mn).
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5. CONCLUSION AND FUTURE WORK

A Galerkin finite element method by using bivariate splines (GB method) is pro-
posed for solving parabolic partial differential equations. B-spline finite element
method have been widely applied to solve parabolic equations. The present work is
related the Galerkin method. The numerical results that the GB method provides
more accurate solutions.

The difference from the theory when we use the whole space S2,3
4 (∆

(2)
mn) and the

proper space of S2,3
4 (∆

(2)
mn) for solving parabolic equations remains to be our future

work.

The accuracy of the interpolation on boundary conditions affects the accuracy of

the numerical solutions of the parabolic equations. In future, we will use S2,3
4 (∆

(2)
mn)

to interpolation the boundary conditions.
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