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Abstract: Transfer functions maps the input layer of the statistical neural
network model to the output layer. To do this perfectly, the function must lie
within certain bounds. This is a property of probability distributions. This
paper establishes the heterogeneous transfer function, SATLINS TANSIG, as
a Probability Distribution Functions (p.d.f) by showing that it is proper. It
also shows the mean and variance.
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1. INTRODUCTION

Artificial Neural Networks (ANNs) are non linear mapping structures based on the
function of the human brain. They imitate the training of the human brain and
can process problems involving non linear and complex data even if the data are
imprecise and noisy. They are powerful tools for modeling, especially when the
underlying data relationship is unknown, and are ideally suited for modeling linear
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and non linear data. This is why their applications to statistical problems are very
interesting. Such networks are called the Statistical Neural Network (SNN). This
study centres on the Multi-Layer Perceptron (MLP) which happens to be the most
commonly used type of ANN [1]. It has been found to be powerful in terms of
model precision in the usage of homogeneous transfer functions (TFs), especially
with complex or large data set. The choice of MLP is because it is the only ANN
type that allows for statistical inference.

The modeling power of an SNN model lies on the transfer function that is used.
There are several transfer functions that may be used in a given SNN model. S-
elections are made from a fixed pool of different transfer functions, and possibly
using pruning techniques to drop functions that are not useful. Up till now, known
literatures and researches have reported network analysis using one transfer func-
tions (that is, homogeneous models). For example, [2–9] used the sigmoid transfer
function, while [10] compared logistic and hyperbolic tangent transfer functions, [4]
used the tangential transfer function (that is, family of tangents functions), [11] as
well as [12] used the symmetric saturated linear transfer function.

This study endeavours to investigate an analytical derivation of a heterogeneous
transfer function using the symmetric saturated linear (SATLINS) as well as the
hyperbolic tangent sigmoid (TANSIG) transfer functions. It further showed that
the derived transfer function is a proper probability density function (p.d.f). Hence
the mean and variance were also derived.

2. THE STATISTICAL NEURAL NETWORK MODEL

Anders (1996) proposed a statistical neural network model given as

y = f(X,w) + u (1)

where y is the dependent variable, X = (x0 ≡ 1, x1, ..., xI) is a vector of independent
variables, w = (α, β, γ) is the network weight: ‘α’ is the weight of the input unit,
‘β’ is the weight of the hidden unit, and ‘γ’ is the weight of the output unit, and ui
is the stochastic term that is normally distributed (that is, ui ∼ N(0, σ2In)).

Basically, f(X,w) is the artificial neural network function, expressed as

f(X,w) = αX +

H∑
h=1

βhg

(
I∑

i=0

γhixi

)
.

where g(.) is the transfer function.
The proposed convoluted form of the artificial neural network function used in

this study is

f(X,w) = αX +

H∑
h=1

βh

[
g1

(
I∑

i=0

γhixi

)
g2

(
I∑

i=0

γhixi

)]
and thus, the form of the statistical neural network model proposed is

y = αX +

H∑
h=1

βh

[
g1

(
I∑

i=0

γhixi

)
g2

(
I∑

i=0

γhixi

)]
+ uiuj (2)

where y is the dependent variable, X = (x0 ≡ 1, x1, ..., xI) is a vector of independent
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variables, w = (α, β, γ) is the network weight: ‘α’ is the weight of the input unit, ‘β’
is the weight of the hidden unit, and ‘γ’ is the weight of the output unit, ui and uj
are the stochastic terms that are normally distributed (that is, ui, uj ∼ N(0, σ2In)),
and g1(.) and g2(.) are the transfer functions.

In this paper, we investigate the distributional properties of the heterogeneous
transfer function arising from the convolution of SATLINS and TANSIG.

Let g1(.) = Symmetric Saturated Linear function (SATLINS), defined as

satlins = g1(.) = f1(n) =

 −1, n < −1
n, −1 ≤ n ≤ 1
1, n > 1

(3)

Let g2(.) = Hyperbolic Tangent Sigmoid function (TANSIG), defined as

tansig = g2(.) = f3(n) =
2

1− e−2n
− 1 (4)

3. SYMMETRIC SATURATING LINEAR ANDHYPERBOL-
IC TANGENT SIGMOID MODEL (SATLINS TANSIG)

(i). For n < −1, f1(n) = a = −1. This implies that f1(n−m) = −1.

f3(m) =
2

1− e−2n
− 1 =

1 + e−2m

1− e−2m
(5)

Let

f(n) = f1(n)⊗ f3(n)

=

∫ n

−r
f1(n−m)f3(m)dm

=

∫ n

−r

(
1− 2

1− e−2m

)
dm

= (n+ r)− 2

∫ n

−r

(
1 + e−2m + e−4m + ...

)
dm

=

∞∑
p=1

e−2pn

p
−
∞∑
p=1

e2pr

p
− (n+ r)

(6)

(ii). For −1 ≤ n ≤ 1, f1(n) = n. This implies that f1(n−m) = n−m.

f3(m) =
2

1− e−2m
− 1 =

1 + e−2m

1− e−2m

f1(n)⊗ f3(n) =

∫ n

−1
f1(n−m)f3(m)dm, − 1 ≤ n ≤ 1

=

∫ n

−1
(n−m)

(
2

1− e−2m
− 1

)
dm

(7)
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I =
∫ n

−1
2m

1− e−2m
dm decreases rapidly for any interval of m. Hence I = 0.

Therefore, (7) becomes

f1(n)⊗ f3(n) = 2n

∫ n

−1
(1− e−2m)dm+

∫ n

−1
(n−m)dm

=

(
2n2 + 3n+

1

2

)
− n

(
n∑

p=1

e−2pn

p
−

n∑
p=1

e−2p

p

) (8)

(iii). For n > 1, f1(n) = a = 1. This implies that f1(n−m) = 1 as

f3(m) =
2

1− e−2m
− 1

f1(n)⊗ f3(n) =

∫ n

1

f1(n−m)f3(m)dm

Therefore,

f1(n)⊗ f3(n) =

∫ n

1

1

(
2

1− e−2m
− 1

)
dm

= 2

∫ n

1

(
1 + e−2m + e−4m + ...

)
dm−

∫ n

1

dm

= (n− 1)−
∞∑
p=1

e−2pn

p
+

∞∑
p=1

e−2p

p

(9)

The summary of the derived function is given as

g1

(
I∑

i=0

γhixi

)
g2

(
I∑

i=0

γhixi

)
= f(n)

=



∑∞
p=1

e−2pn

p −
∑∞

p=1
e2pr

p − (n+ r), n < −1

(
2n2 + 3n+ 1

2

)
− n

(∑n
p=1

e−2pn

p −
∑n

p=1
e−2p

p

)
, −1 ≤ n ≤ 1

(n− 1)−
∑∞

p=1
e−2pn

p +
∑∞

p=1
e−2p

p , n > 1

(10)

Equation (10) is the derived transfer function for the Symmetric Saturated Linear
transfer function and the Hyperbolic Tangent transfer function.

4. DISTRIBUTIONAL PROPERTIES OF THE SATLINS -
TANSIG MODEL

We now show that the derived transfer function is a probability density function.
By definition, the probability density function (p.d.f) of function f(x) of a random
variable X : Ω → R is said to be a proper p.d.f if for x ∈ (−∞,+∞), x ∈ X, we
have that, ∫ ∞

−∞
f(x)dx = 1, ∀x ∈ X
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From the derived transfer function∫ ∞
−∞

f1(n)⊗ f3(n)dn

=

∫ −1
−∞

[ ∞∑
p=1

e−2pn

p
−
∞∑
p=1

e2pr

p
− (n+ r)

]
dn

+

∫ 1

−1

[(
2n2 + 3n+

1

2

)
− n

(
n∑

p=1

e−2pn

p
−

n∑
p=1

e−2p

p

)]
dn

+

∫ ∞
1

[
(n− 1)−

∞∑
p=1

e−2pn

p
+

∞∑
p=1

e−2p

p

]
dn

=−
∫ −1
−∞

( ∞∑
p=1

e2pr

p

)
dn−

∫ −1
−∞

(n+ r)dn

+

∫ 1

−1

(
2n2 + 3n+

1

2

)
dn−

∫ 1

−1

(
n∑

p=1

ne−2pn

p

)
dn+

∫ 1

−1

(
n∑

p=1

ne−2p

p

)
dn

+

∫ ∞
1

(n− 1)dn+

∫ ∞
1

( ∞∑
p=1

e−2p

p

)
dn

=
7

3
−
∞∑
p=1

∫ 1

−1

ne−2pn

p
dn =

7

3
−A

(11)

where A =
∞∑
p=1

(
e2p − e−2p

2p2
+

1

2p2

(
e2p − e−2p

2p

)]
.

Hence, for suitable values of p such that A =
4

3
, we conclude that f1(n)⊗ f3(n)

is a probability density function.

We next obtain the mean and variance of the derived transfer function.

E(n) =

∫ −1
−∞

n

[ ∞∑
p=1

e−2pn

p
−
∞∑
p=1

e2pr

p
− (n− r)

]
dn

+

∫ 1

−1
n

[(
2n2 − 3n+

1

2

)
−
∞∑
p=1

n
e−2pn

p
+

∞∑
p=1

n
e2p

p

]
dn

+

∫ ∞
1

n

[
(n− 1)−

∞∑
p=1

e−2pn

p
+

∞∑
p=1

e2p

p

]
dn

=−
∞∑
p=1

1

p

∫ −1
−∞

ne−2prdn−
∫ −1
−∞

(n2 − nr)dn+

∫ 1

−1

(
2n3 − 3n2 +

n

2

)
dn

−
∞∑
p=1

1

p

∫ 1

−1
n2e−2pndn+

∞∑
p=1

1

p

∫ 1

−1
n2e−2pdn

44



Udomboso, C. G./Progress in Applied Mathematics, 5 (2), 2013

+

∫ ∞
1

(n2 − n)dn+

∞∑
p=1

1

p

∫ ∞
1

ne−2pdn

=− 2 +
2

3

∞∑
p=1

e2p

p
−
∞∑
p=1

1

p

∫ 1

−1
n2e−2pndn

(12)

Let I =
∫
udv =

∫ 1

−1 n
2e−2pndn, where

∫
udv = uv −

∫
vdu. Also, let u = n2

and v =
∫
e−2pndn.

Then,

I =

[
−n2

e−2pn

2p

]1
−1

+
1

p

∫ 1

−1
ne−2pndn

=
1

2p

(
e2p − e−2p

)
−

1

2p2
(
e2p + e−2p

)
+

1

4p3
(
e2p − e−2p

)
Therefore, mean is given as

E(n) = −2+

∞∑
p=1

1

p

[
2e2p

3
+

1

2p

(
e−2p − e2p

)
+

1

2p2
(
e−2p + e2p

)
+

1

4p3
(
e−2p − e2p

)]
(13)

Also,

E(n2) =

∫ −1
−∞

n2

[ ∞∑
p=1

e−2pn

p
−
∞∑
p=1

e2pr

p
− (n− r)

]
dn

+

∫ 1

−1
n2

[(
2n2 − 3n+

1

2

)
−
∞∑
p=1

n
e−2pn

p
+

∞∑
p=1

n
e2p

p

]
dn

+

∫ ∞
1

n2

[
(n− 1)−

∞∑
p=1

e−2pn

p
+

∞∑
p=1

e2p

p

]
dn

=

∞∑
p=1

1

p

∫ −1
−∞

n2e−2pndn−
∞∑
p=1

1

p

∫ −1
−∞

n2e−2prdn−
∫ −1
−∞

n2(n− r)dn

+

∫ 1

−1
n2
(

2n2 − 3n+
1

2

)
dn−

∞∑
p=1

1

p

∫ 1

−1
n3e−2pndn+

∞∑
p=1

1

p

∫ 1

−1
n3e−2pdn

+

∫ ∞
1

n2(n− 1)dn−
i∑

p=1

nfty
1

p

∫ ∞
1

n2e−2pndn+

∞∑
p=1

1

p

∫ ∞
1

n2e−2pdn

=
23

15
−
∞∑
p=1

1

p

∫ 1

−1
n3e−2pndn

Let J =
∫
udv =

∫ 1

−1 n
3e−2pndn, where

∫
udv = uv −

∫
vdu. Also, let u = n3
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and v =
∫
e−2pndn. Then,

J =

[
−n3

e−2pn

2p

]1
−1

+
3

2p

∫ 1

−1
n2e−2pndn

= − 1

2p

{(
e−2p + e2p

)
− 3

[
1

2p

(
e2p − e−2p

)
+

1

2p2
(
e2p + e−2p

)
− 1

4p3
(
e2p − e−2p

)]}
Thus,

E(n2)

=
23

15
+

1

2p

{(
e−2p + e2p

)
− 3

[
1

2p

(
e2p − e−2p

)
+

1

2p2
(
e2p + e−2p

)
−

1

4p3
(
e2p − e−2p

)]}
Hence,

var(n) = E(n2)− [E(n)]
2

=
23

15
+

1

2p

{(
e−2p + e2p

)
− 3

[
1

2p

(
e2p − e−2p

)
+

1

2p2
(
e2p + e−2p

)
− 1

4p3
(
e2p − e−2p

)]}

−

{
−2 +

∞∑
p=1

1

p

[
2e2p

3
+

1

2p

(
e−2p − e2p

)
+

1

2p2
(
e−2p + e2p

)
+

1

4p3
(
e−2p − e2p

)]}2

5. CONCLUSION

This study derived a heterogeneous transfer function involving the symmetric sat-
urated linear and hyperbolic tangent sigmoid transfer functions. It went further to
show that the derived transfer function is a proper probability distribution function
(p.d.f), having mean and variance.
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