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Abstract: By selecting non-zero constant as a scaling factor, we de-
sign a reduced-order projective synchronization scheme for synchronizing the
fourth-order hyper-chaotic Lü system and the third-order chaotic Chen sys-
tem. To this end, a nonlinear synchronization controller is constructed. Fi-
nally, some numerical simulations are given to illustrate the feasibility and
effectiveness of the proposed synchronization scheme in this paper.
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1. INTRODUCTION

Our natural world is undoubtedly nonlinear. Hence, chaos is inevitable in our lives,
even though it may not be seen with the naked eye. Many literatures showed
that nonlinear system can display complex behaviors including bifurcations, chaos,
hyper-chaos, and so on. In the past twenty years, chaos synchronization has been
extensively studied not only for its importance in theory but also for its prospec-
tive applications in many areas such as biological systems, information processing,
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secure communications [1], etc. At present a lot of synchronization schemes have
been proposed, for example, complete synchronization (CS) [2], anti-synchronization
(AS) [3], phase synchronization (PS) [4], generalized synchronization (GS) [5], etc.
However, in these synchronization schemes the drive system and the response sys-
tem always have same order. Now the synchronization of chaotic systems with
different order has received less attention [6–9]. In fact, the synchronization phe-
nomena of chaotic systems with different order are the more common form. In the
case of thalamic neurons, for instance, such a problem is reasonable if their order
is different from the one of the hippocampal neurons [9]. The synchronization be-
tween heart and lung is another example. One can observe that both, circulatory
and respiratory systems, behave in synchronous way. In this paper we will design a
synchronization scheme to realize projective synchronization between fourth-order
hyper-chaotic Lü system and third-order Chen system.

2. SYNCHRONIZATION SCHEME DESIGN

In this section, a reduced-order projective synchronization scheme for synchronizing
hyper-chaotic Lü system and Chen system is designed. The hyper-chaotic Lü system
is given by [9,10]

Figure 1
Projection of Hyper-Chaotic LÜ Attractor


ẋ1 = a1(y1 − x1) + w1

ẏ1 = −x1z1 + c1y1
ż1 = x1y1 − b1z1
ẇ1 = x1z1 + r1w1

, (1)

where x1, y1, z1 and w1 are state variables, and a1, b1, c1 and r1 are mod-
el parameters. System (1) has periodic orbit when a1 = 36, b1 = 3, c1 = 20,
−1.03 ≤ r1 ≤ −0.46, and system (1) appears chaotic behavior when a1 = 36,
b1 = 3, c1 = 20, −0.46 ≤ r1 ≤ −0.35 and system (1) has hyper-chaotic attractor
when a1 = 36, b1 = 3, c1 = 20, −0.35 ≤ r1 ≤ 1.3. Figure 1 shows the projections of
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the attractor of hyper-chaotic Lü system with the parameter values a1 = 36, b1 = 3,
c1 = 20 and r1 = 1.

The dynamical equations of chaotic Chen system is described by [9] ẋ2 = a2(y2 − x2) + u1

ẏ2 = (c2 − a2)x2 − x2z2 + c2y2 + u2

ż2 = x2y2 − b2z2 + u3

(2)

where x2, y2 and z2 are state variables, and a2, b2 and c2 are model parameters.
Notations u1, u2 and u3 are three control functions to be designed. When a2 = 35,
c2 = 28, b2 = 3, system (2) has a chaotic attractor. The chaotic attractor of Chen
system and its projections have been shown in Figure 2 for the given parameter
values a2 = 35, c2 = 28, b2 = 3 and u1 = 0, u2 = 0, u3 = 0.

Figure 2
Projection of Chaotic Chen Attractor

In the following text, we will design reduced-order projective synchronization
scheme between Chen chaotic system (2) and the projective subsystem which is
constructed by the first three equations of hyper-chaotic Lü system. Suppose that
m is a non-zero constant, and let e1 = x2−m·x1, e2 = y2−m·y1 and e3 = z2−m·z1
denoting synchronization errors.

Define 1. Systems (1) and (2) are referred to as achieving reduced-order pro-
jective synchronization if and only if the three following equalities satisfy simulta-
neously:

lim
t→∞

e1(t) = lim
t→∞

|x2(t)−m · x1(t)| = 0,

lim
t→∞

e2(t) = lim
t→∞

|y2(t)−m · y1(t)| = 0,

lim
t→∞

e3(t) = lim
t→∞

|z2(t)−m · z1(t)| = 0.

By using systems (1) and (2), the error dynamical system can be obtained as
below:  ė1 = a2y2 − a2x2 −ma1y1 + ma1x1 −mw1 + u1

ė1 = c2x2 − a2x2 − x2z2 + c2y2 + mx1z1 −mc1y1 + u2

ė1 = x2y2 − b2z2 −mx1y1 + mb1z1 + u3

(3)
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We define the controllers as follows

 u1 = −a2y2 + a2x2 + ma1y1 −ma1x1 + mw1 − k1e1
u2 = −c2x2 + a2x2 + x2z2 − c2y2 −mx1z1 + mc1y1 − k2e2
u3 = −x2y2 + b2z2 + mx1y1 −mb1z1 − k3e3

(4)

Here k1, k2 and k3 are positive constants representing control gain. Hence, by
substituting (4) into (3) one can obtain

 ė1 = −k1e1
ė1 = −k2e2
ė1 = −k3e3

(5)

From system (5), one can easy see that e1(t) → 0, e2(t) → 0 and e3(t) →
0 when t → ∞. This means that the above designed reduced-order projective
synchronization scheme can be achieved.

Figure 3
Synchronization Error Signals between Hyper-Chaotic LÜ System and
Chen System (The Controller is Activated when t ≥ 10s.)

3. NUMERICAL SIMULATIONS

In this section, some numerical simulations are presented to illustrate the feasibil-
ity and effectiveness of the above designed reduced-order projective synchronization
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Figure 4
Steady-Phase Diagram of State Variables on (x1, x2) Plane

Figure 5
Steady-Phase Diagram of State Variables on (y1, y2) Plane

scheme. In the numerical simulation process, the well-known fourth-order Runge-
Kutta method is used to solve systems (1) and (2) with controllers (4) and time
step size 0.01. The values of parameters are chosen as a1 = 36, b1 = 3, c1 = 20,
r1 = 1, a2 = 35, c2 = 28, b2 = 3. The initial conditions and control gain are taken
as x1(0) = 1, y1(0) = 1, z1(0) = 1, w1(0) = 1, x2(0) = 2, y2(0) = 2, z2(0) = 1,
k1 = 1, k2 = 1, and k3 = 1. Let the scaling factor m = 2 and activate the controllers
when t ≥ 10s. Numerical simulation results are shown in Figs. 3-7, respectively.
Figure 3 shows that the synchronization errors e1, e2 and e3 quickly approach to
zero when the controllers are activated at t > 10s. The steady-phase diagram on
(x1, x2) plane is a straight line with the slope equal to 2. This means that the
state variable x2 and state variable x1 have been synchronized according to scaling
factor m = 2. Figure 5 and Figure 6 are similar to Figure 4, which indicate that
y2 and y1 is also achieved synchronization with scaling factor 2 as well as the state
variables z2 and z1. Figure 7 indicate that the trajectories of the state variable
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x2 and the state variable x1 have same wave shape but the amplitude of the state
variable x2 is twice than that of the state variable x1 at any time t when the above
designed synchronization scheme is achieved. The trajectories of other two sets of
state variables (y2 and y1, z2 and z1), which are similar to Figure 7, are omitted
for brevity sake.

Figure 6
Steady-Phase Diagram of State Variables on (z1, z2) Plane

Figure 7
State Trajectories of Variables x1 and x2

4. CONCLUSION

In this paper, we designed a reduced-order projective synchronization scheme be-
tween fourth-order hyper-chaotic Lü system and third-order chaotic Chen system.
A non-zero constant is employed to as the scaling factor. Then we design a non-
linear controller which can successfully control the lower-order response system to
synchronize the higher-order drive system according to the given scaling factor. Fi-
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nally, numerical simulations are carried out to verify the effectiveness and feasibility
of the proposed reduced-order synchronization scheme in this paper.
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