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Abstract: Propose The interval number distributed theorem. And Proof
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1. INTRODUCTION

In 1849, in the letter to Encke the German mathematician Gauss wrote that, he
found a large x by examining the number of prime numbers in the period of 1000
adjacent integers from 1792 to 1793, primes average distribution density should be
as follows [1–3]

1

lnx
, (1)

which points [1–3,5,6]:

Li(x) =

∫ x

2

1

lnu
du, (2)
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The following equation can be obtained from (2):

Li(x) =
x

lnx
+

x

ln2x
+

2!x

ln3x
+ · · · · · ·+ (k − 1)!x

lnkx
, k ≤ lnx, (3)

Here (3) has different forms.
Mathematicians have proven [4]

π(x) ∼ Li(x), (x→∞). (4)

Equation (4) is called the prime number theorem. π(x) means the number of
prime numbers less than x.

In this paper, the interval prime number theorem is proposed and proved in
order to prove the prime number theorem. Thus a new prime number theorem is
proved.

2. THE REGIONAL DISTRIBUTION OF PRIMENUMBER-
S THEOREM

Set a large number x, the prime number p, the number of prime numbers is
π(x, x/λ), by ignoring the remainder, table as an integer, get [7](p.112) [8](p.538):

π(x, x/λ) = s(x, x/λ), s(x, x/λ) =
x(λ− 1)

λ lnλ

∑
x/λ≤p≤x

1

p
, (5)

Equation (5) is called regional distribution of prime numbers theorem.
For example:
Let x = 100000000, λ = 1.000048, from (5) we can get

π(x, x/λ) = 259 + 0.00028,

Ignore 0.00028, the integer is 259, so π(x, x/λ) = 259.

3. PROOF REGIONAL DISTRIBUTION OF PRIME NUM-
BERS THEOREM

Proof. Set a large number x, there is only one prime number p from x to the interval
x/λ, label the integer by ignoring the remainder. apparently:

x− x/λ
p lnλ

= 1,

For example:
Let x = 108, λ = 1.018, x/λ = 106.09037328, p = 107. Calculate:

1 + 0.0003957,

Ignore 0.0003957, the integer is 1.
Generally speaking, get a prime number p from x to the interval x/λ, ignore the

remainder, table as an integer, get:

x− x/λ
π(x, x/λ) lnλ

∑
x/λ6p6x

1

p
= 1, (6)
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For example:
Let x = 100000000, λ = 1.000048, by (6) Calculate:

1 + 0.0000010810530266,

Ignore 0.0000010810530266, the integer is 1.
By (6), the following can be obtained:

π(x, x/λ) =
x(λ− 1)

λ lnλ

∑
x/λ6p6x

1

p
,

Then (5) is proved.

4. THE DISTRIBUTION OF PRIME NUMBERS FUNDA-
MENTAL THEOREM

Set prime number π(x, x1/2) in the range from x to x1/2

π(x, x1/2) =

a/2∑
n=1

π(xλ1−n, xλ−n),

So that:

π(x) = π(x, x1/2) + π(x1/2) =

a/2∑
n=1

π(xλ1−n, xλ−n) + π(x1/2), (7)

By setting the real numbers from (5), we can get:

π(x) = s(x, x1/2) + π(x1/2), (8)

s(x, x1/2) =
x(λ− 1)

lnλ

a/2∑
n=1

1

λn

∑
xλ−n≤p≤xλ1−n

1

p
, a = [x1/2], λ = x1/a,

Equation (8) is called the distribution of prime numbers Fundamental Theorem.
For example:
Let x = 256, a = 2561/2 = 16, λ = 2561/16 = 1.41421356, by (8):

x(λ− 1)

lnλ
= 305.9629,

8∑
n=1

1

λn

∑
xλ−n6p6xλ1−n

1

p

=
1

λ

∑
x/λ6p6x

1

p
+

1

λ2

∑
x/λ26p6x/λ

1

p
+ · · · · · ·+ 1

λ8

∑
x/λ86p6x/λ7

1

p

=0.0389781 + 0.0354226 + 0.0230385 + 0.0196627

+ 0.0129908 + 0.0093341 + 0.0097421 + 0.0069659

=0.1561
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So that s(256, 16) + π(16) = 305.9629 · 0.1561 + 6 = 54− 0.23919131.
Ignore 0.23919131, the integer is 54, the actual π(256) = 54.
Set a large number x, a = x1/2, λ = x1/a, by (8):
x π(x) s(x, x1/2) + π(x1/2)
108, 5761455, 5761455,
109, 50847534, 50847534,
1010, 455052511, 455052511,
1011, 4118054813, 4118054813,
1012, 37607912018, 37607912018,
1013, 346065536839, 346065536839,
1014, 3204941750802, 3204941750802,
1015, 29844570422669, 29844570422669,
1016, 279238341033925, 279238341033925.

5. THE FUNDAMENTAL THEOREM OF TRANSFORMA-
TION OF PRIME

From Equation (8), we can get:

π(x) + π(x)− s(x1/2) > s(x)− s(x1/2) + π(x1/2), (9)

so
2π(x) > s(x),

2π(x1/2) > s(x1/2), (10)

From (8), we have

s(x)− s(x1/2) < π(x) < s(x)− s(x1/2) + 2π(x1/2), (11)

Combining (10) and (11), we can easily get

s(x)− 2π(x1/2) < π(x) < s(x) + 2π(x1/2), (12)

and Equation (12) proves the prime number theorem.

6. MERTENS THEOREM

In 1874, mathematician Mertens had proven [5](p.11) [6](p.8)∑
p6x

1

p
= ln lnx+A1 +O

(
1

lnx

)
, (13)

where A1 is constant. And Equation (13) is called Mertens Theorem.
Set lnx→∞, from (13) we can get∑

p≤x

1

p
= ln lnx+A1, (14)

then ∑
xλ−n≤p6xλ1−n

1

p
= ln ln(xλ1−n)− ln ln(xλ−n) =

lnλ

lnx− n lnλ
, (15)
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By using Equation (15), the following can be obtained from Equation (8):

s(x) = x(λ− 1)

a∑
n=1

λ−n

lnx− n lnλ
, a = [

lnx− 1/2

lnλ
], λ = x2/x, (16)

In the integral sense (16) and (2) are the same, so:

Li(x) = s(x), (17)

For example:
Let x = 100000000, λ = 1.0000003684136828, a = 48642829, then
By (16), Calculate: s(100000000) = 5762209,
By (3), Calculate: Li(100000000) = 5762209.

7. PROVED A PRIME NUMBER THEOREM

By (12) and (17), we can get

Li(x)− 2π(x1/2) < π(x) < Li(x) + 2π(x1/2), (x→∞).

π(x) = Li(x) + o(x1/2), (x→∞).
(18)

This Equation (18) is a new prime number theorem.

8. DISCUSSION

From the course of distribution of primes, ever is not found with π(x) strictly equal
theorem. Even with π(x) strictly equivalent to the conjecture has not. To discover
and prove a π(x) equivalent theorem is not easy.

It can be said that this is a new way of prime number distribution. Along
this way, not only many complicated problems such as the distribution of prime
numbers, the Jie Bov conjecture, the Riemann conjecture has to improve, but also
opens a wide field of number theory.
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