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Abstract: In this paper, half-sweep iteration concept applied on quadrature-
difference schemes with Gauss-Seidel (GS) iterative method in solving lin-
ear Fredholm integro-differential equations. The combinations of discretiza-
tion schemes of repeated trapezoidal and Simpson’s 1

3 with central difference
schemes are analyzed. The formulation and the implementation of the pro-
posed methods are explained in detail. In addition, several numerical ex-
periments and computational complexity analysis were also carried out to
validate the presentation of the schemes and methods. The findings show
that, the HSGS iteration method is superior to the standard GS method.
As well the high order quadrature scheme produced more accurate approx-
imation solution compared to combination of repeated trapezoidal-central
difference schemes.
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Half-Sweep Quadrature-Difference Schemes with Iterative Method in Solving
Linear Fredholm Integro-Differential Equations

1. INTRODUCTION

Generally, the first and second order linear Fredholm integro-differential equations
(LFIDEs) can be defined as follows

y′(x) = p(x)y(x) + g(x) + λ

∫ b

a

K(x, t)y(t)dt, x, t ∈ [a, b) (1)

with the Dirichlet boundary condition, y(a) = A1, and

y′′(x) = q(x)y′(x) + p(x)y(x) + g(x) + λ

∫ b

a

K (x, t) y (t) dt, x, t ∈ [a, b] (2)

with the Dirichlet boundary conditions y(a) = A1 and y(b) = B1, where K(x, t),
g(x), q(x) and p(x) are defined variables, λ is a real parameter whereas y(x) is the
unknown function to be determined. In this paper, we focus on numerical solutions
for first and second order linear integro-differential equations of Fredholm types. In
many application areas, it is necessary to use the numerical approach to discretize
problem (1) to generate system of linear equation then solved by numerical meth-
ods such as Lagrange interpolation [1] and Taylor polynomial [2] and rationalized
Haar functions [3], Tau [4], Conjugate Gradient [5], GMRES [6] and collocation
methods [7]. However in this paper we emphasize quadrature-difference schemes [8]
to derive the approximation equation to generate system of linear equations. In
addition to that, in this paper, we proposed a new half-sweep quadrature-difference
discretization scheme which is combination of half-sweep reduction technique [9] on
standard quadrature-difference schemes.

In this paper, two combinations of half-sweep discretization schemes namely half
sweep repeated trapezoidal-central difference (HSRT-HSCD) and repeated Simpson
-central difference (HSRS-HSCD) schemes will be implemented to discretize prob-
lem (1) to generate system of linear equations. Then the generated linear system will
be solved iteratively by using half-sweep Gauss-Seidel (HSGS) method. In point of
fact, the HSGS represents combination of half-sweep iteration concept on standard
Gauss-Seidel (GS) which is also known as Full-Sweep Gauss Seidel (FSGS) method.
The concept of the half-sweep iteration has been introduced by Abdullah [9] via
Explicit Decoupled Group (EDG) iterative method to solve two-dimensional Pois-
son equation.Then, the idea of half-sweep iteration concept also identified as the
complexity reduction approach [9] extensively studied by many researchers [10–13].

The remainder of this work is organized as follows. In Section 2, the derivation
of the approximation equation is elaborated. In section 3, the formulation of the
FSGS and HSGS iterative methods are shown. Meanwhile, some numerical results
are illustrated in Section 4, to assert the effectiveness of the proposed methods and
concluding remarks are given in Section 5.

2. HALF-SWEEP ITERATION CONCEPT

Figure 1(a) and 1(b) show distribution of uniform node points for the full- and half-
sweep cases respectively. The full- and half-sweep iteration concept will compute
approximate values onto node points of type only until the convergence criterion is
reached. Then other approximate solutions at the remaining points (points of the
different type) can be computed using the direct method [10–13].
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(a)

(b)

Figure 1
Distribution of Uniform Node Points for the Full and Half-Sweepcases
Respectively

A. Derivation of the Half-Sweep Quadrature (HSQ) Schemes
Afore-mentioned, numerical approaches were used widely to solve LFIDEs than the
analytical methods [14]. Therefore, quadrature schemes are applied to discretize the
LFIDEs to form approximation of system of linear equations. Generally, quadrature
formulas can be expressed as follows∫ b

a

y(t)dt =

n∑
j=0

Ajy(tj) + εn(y) (3)

where tj(j = 0, 1, ..., n) are the abscissas of the partition points of the integration
interval [a, b]. Aj(j = 0, 1, ..., n) are numerical coefficients that do not depend on the
function y(t) and εn(y) is the truncation error of (3). In formulating the full- and
half-sweep approximation equations for (1), further discussion will be restricted onto
quadrature methods, which is based on interpolation formulas with equally spaced
data. Numerical coefficients Aj represented for following relation namely RT and
RS schemes respectively.

Aj =


1

2
ph, j = 0, n

ph, otherwise

(4)

Aj =



1

3
ph, j = 0, n

4

3
ph, j = p, 3p, 5p, · · · , n− p

2

3
ph, otherwise

(5)

where the constants step size h is defined as

h =
b− a
n

(6)

n is the number of step size in the interval [a, b] and then consider the discrete set
of points be given as xi = a + ih. The value of p which is corresponds to 1 and 2,
represents the full- and half-sweep cases respectively.
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B. Derivation of the Half-Sweep Finite Difference (HSFD) Schemes
In solving first order LFIDEs, differential part will be approximated by second order
accuracy of central difference scheme given by

y′ (xi) =
y (xi+1)− y (xi−1)

2h
+O

(
h2
)

(7)

for i = 1, 2, ..., n− 1. However, at the point xn, second order accuracy of backward
difference, which is derived from the Taylor series expansion given as

y′ (xn) =
3y (xn)− 4y (xn−1) + y(xn−2)

2h
+O

(
h2
)

(8)

is considered. For solving second order LFIDEs, the second derivative of central
difference scheme is used as follows

y′′(xi) =
y(xi+1)− 2y(xi) + y(xi−1)

h2
+O(h2) (9)

where h is step size of interval between nodes as mentioned in (6). Equations (7),
(8) and (9) consists the same order of the truncation error where as it mostly under
our control to choose number of terms from the expansion of Taylor series. In that,
in order to obtain the finite grid work network for formulation of the full- and half-
sweep central difference approximation quations over (1), the (7), (8) and (9) can
be rewritten in general form as follows:

For i = 1p, 2p, 3p, ..., n− p,

y′ (xi) ∼=
y (xi+p)− y (xi−p)

2ph
, (10)

and at i = n,

y′ (xn) ∼=
3y (xn)− 4y (xn−p) + y(xn−2p)

2ph
, (11)

for discretize differential term in first order LFIDEs. Meanwhile to discretize second
order LFIDEs,the second order central difference schemes can be derived as

y′′(xi) =
y(xi+p)− 2y(xi) + y(xi−p)

(ph)
2 +O(h2) (12)

for i = 1p, 2p, 3p, ..., n − p. Where the value of p, which corresponds to 1 and 2,
represents the full- and half-sweep respectively. In order to generate system of linear
equations for first order LFIDEs, Equations (3), (10) and (11) will be substituted
into (1). The generated linear system either by the full-or half-sweep approximation
equation can be easily shown as

Eyn = f. (13)

where,

E =



ap,p bp,2p dp,3p · · · dp,n−2p dp,n−p dp,n
c2p,p a2p,2p b2p,3p · · · d2p,n−2p d2p,n−p d2p,n
d3p,p c3p,2p a3p,3p · · · d3p,n−2p d3p,n−p d3p,n

...
...

...
. . .

...
...

...
dn−2p,p dn−2p,2p dn−2p,3p · · · aN−2p,n−2p bn−2p,n−p dn−2p,n
dn−p,p dn−p,2p dn−p,3p · · · cn−p,n−2p an−p,n−p bn−p,n
dn,p dn,2p dn,3p · · · bn,2p en,n−p ~n,n


( n

P )×( n
P )
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where,

ai,i = −2hPi − 2hAiKi,i,

bi,j = 1− 2hAjKi,j

ci,j = −1− 2hAjKi,j

di,j = −2hAjKi,j

ei,j = −4− 2hAjKi,j

~i,i = −3− 2hPi − 2hAiKi,i

f =



2hgp + (2hApKp,0 + 1) y0
2hg2p + (2hApK2p,0) y0
2hg3p + (2hApK3p,0) y0

...
2hgn−2p + (2hApKn−2p,0) y0
2hgn−p + (2hApKn−p,0) y0

2hgN + (2hApKn,0) y0


and

yn =



yn(xp)
yn(x2p)
yn(x3p)

...
yn(xn−2p)
yn(xn−p)
yn(xn)


where E is a dense nonsymmetric coefficient matrix, f is given function and yn is
unknown function to be determined. Nevertheless, in solving first order LFIDEs,
the combination of discretization schemes of RT-CD and RS-CD leads to the non-
positive definite coefficient matrices. Therefore, for GS iterative methods, the gen-
erated linear systems will be modified by multiplying the coefficient matrices with
its transpose in order to strengthen the diagonal elements. Thus, the new linear
system (13) can be simplified as

E∗yn = f∗ (14)

where E∗ = ETE and f∗ = ET f
Now the linear system (14) can be solved iteratively via FSGS and HSGS itera-

tive methods. For second order LFIDEs, Equations (3) and (12) will be substituted
into (1) to generate linear system either by the full-or half-sweep approximation
equation easily shown as follows

Gyn = ` (15)

where

G =



σp,p ςp,2p τp,3p · · · τp,n−3p τp,n−2p τp,n−p

ς2p,p σ2p,2p ς2p,3p · · · τ2p,n−3p τ2p,n−2p τ2p,n−p

τ3p,p ς3p,2p σ3p,3p · · · τ3p,n−3p τ3p,n−2p τ3p,n−p

...
...

...
. . .

...
...

...
τn−3p,p τn−3p,2p τn−3p,3p · · · σn−3p,n−3p ςn−3p,n−2p τn−2p,n−p

τn−2p,p τn−2p,2p τn−2p,3p · · · ςn−2p,n−3p σn−2p,n−2p ςn−p,n

τn−p,p τn−p,2p τn−p,3p · · · τn−p,n−3p ςn−p,n−2p σn−p,n−p


( n
P

−1)× ( n
P

−1)
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where,

σi,i = −2− h2Pi − h2AiKi,i

ςi,j = 1− h2A jKi,j

τi,j = −h2AjKi,j

` =



h2gp +
(
1 + h2ApKp,0

)
y0 +

(
h2AnKp,n

)
yn

h2g2p +
(
h2ApK2p,0

)
y0 +

(
h2AnK2p,n

)
yn

h2g3p +
(
h2ApK3p,0

)
y0 +

(
h2AnK3p,n

)
yn

...
h2gn−3p +

(
h2ApKn−3,0

)
y0 +

(
h2AnKn−3p,n

)
yn

h2gn−2p +
(
h2ApKn−2,0

)
y0 +

(
h2AnKn−2p,0

)
yn

h2gn−p +
(
h2ApKn−p,0

)
y0 +

(
−1 + h2AnKn−p,0

)
yn


and

yn =



yn(xp)
yn(x2p)
yn(x3p)

...
yn(xn−2p)
yn(xn−p)
yn(xn)


where G is a positive definite, nonsymmetric coefficient matrix, ` is given function,
and yn is unknown function to be determined.

3. FORMULATION OF FSGS AND HSGS ITERATIVE
METHODS

In this section, generated system of linear equation of first order and second order
LFIDEs as shown in (14) and (15) will be solved by using FSGS and HSGS iterative
methods. For first order LFIDEs, the coefficient matrix, E∗ be decomposed into

E∗ = D − L− U (16)

where D, −L and −U are diagonal, strictly lower triangular and strictly upper
triangular matrices respectively. In fact, the both iterative methods attempt to
find a solution to the system of linear equations by repeatedly solving the linear
system using approximations to the vector yn. Iterations for both methods continue
until the solution is within a predetermined acceptable bound on the error.

By determining values of matrices D, −L and −U as stated in (16), the proposed
algorithm for FSGS and HSGS iterative methods to solve (1) generally can be
described in Algorithm 1.
Algorithm 1: FSGS and HSGS algorithms

(i) Initializing all the parameters. Set k = 0.
(ii) For i = 1p, 2p, ..., n− p and j = 1, p, 2p, ..., n− p, n, calculate

y
(k+1)
i =

1

E∗i,i

f∗i − i−p∑
j=p,2p

E∗
i,j
y
(k+1)
j −

n∑
j=i+p,i+2p

E∗
i,j
yj

(k)
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(iii) Convergence test. If there error of tolerance
∥∥∥y(k+1)

i − y(k)i

∥∥∥ ≤ ε = 10−10 is

satisfied, then algorithms stop.
(iv) Else, set k = k + 1 and go to step (ii).
For second order LFIDEs, the general algorithm for FSGS and HSGS iterative

methods to solve (1) commonly can be described in Algorithm 2. In second order
LFIDEs, the coefficient matrix, G be decomposed into

G = D − L− U (17)

where D, −L and −U are diagonal, strictly lower triangular and strictly upper
triangular matrices respectively.
Algorithm 2: FSGS and HSGS algorithms

(i) Initializing all the parameters. Set k = 0.
(ii) For i = 1p, 2p, ..., n− p and j = 1, p, 2p, ..., n− p, calculate

y
(k+1)
i =

1

G i,i

`i − i−p∑
j=p,2p

Gi,jy
(k+1)
j −

n−1∑
j=i+p,i+2p

Gi,jyj
(k)


(iii) Convergence test. If there error of tolerance

∥∥∥y(k+1)
i − y(k)i

∥∥∥ ≤ ε = 10−10 is

satisfied, then algorithms stop.
(iv) Else, set k = k + 1 and go to step (ii).

4. NUMERICAL EXPERIMENTS

In order to evaluate the performances of the HSGS iterative methods described in
the previous section, several numerical experiments were carried out. In this paper,
we will only consider well posed equations and the case where a = 0 and b = 1.
Problem 1 [15]. Consider the first order LFIDE

y′(x) = 1− 1

3
x+

∫ 1

0

xy(t)dt 0 < x ≤ 1 (18)

with boundary condition y(0) = 0 and exact solution is y(x) = x.
Problem 2 [16]. Consider the second order LFIDE

y′′(x) = x− 2 + 60

∫ 1

0

(x− t)y(t)dt 0 < x < 1 (19)

with boundary conditions y(0) = 0 and y(1) = 0, with exact solution given as
y(x) = x.

There are three parameters considered in numerical comparison that number of
iterations, execution time and maximum absolute error. As a benchmark, the stan-
dard or full-sweep Gauss-Seidel (FSGS) method acts as the control of comparison
of numerical results. Throughout the simulations, the convergence test considered
the tolerance error of ε = 10−10. All the experimental results have been recorded
in Table 3 and 4. Based on the results, noticed that the number of iterations and
execution time for each mesh size significantly reduced by implementing half-sweep
iteration concept. The percentage reduction analysis of number of iterations and
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execution time from Table 3 and Table 4 are explained in numerically in conclu-
sion. The computational complexity for iterative methods is measured by analysing
number of arithmetic operation involved per iteration. Therefore, an estimation to-
tal of computational work was determined for FSGS and HSGS iterative methods.

Based on Algorithms 1 and 2, it can be calculated that there are
(

n
p − 1

)
addition-

s/subtractions (ADD/SUB) and
(

n
p + 1

)
multiplications/divisions (MUL/DIV) in-

volved in computing a value for each node point in the solution domain for LFIDEs.
The total numbers of arithmetic operations per iteration for the FSGS, and HSGS
iterative methods for solving Equations (14) and (15) have been summarized in
Table 1 and 2.

5. CONCLUSIONS

In this work, we implemented half-sweep iterative concept on quadrature-difference
schemes and GS iterative methodto solve LFIDEs. Based on the numerical results
in Table 3 and Table 4, the half-sweep RT-CD and RS-CD with HSGS iterative
method have decreased the number of iterations and execution time approximately
62.81%-74.23% and 85.56%-96.93% respectively for problem 1 and 73.21%-76.25%
and 46.71%-83.05% respectively for problem 2. Based on Table 1 and Table 2 the
accuracy of numerical solutions for RS-CD combination is more accurate than the
RT-CD scheme. Overall, the numerical results have shown that the HSGS method is
more superior in term of number of iterations and the execution time than standard
method.
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APPENDIX

Table 1
Number of Arithmetic Operations per Iterations Involved in a Node
Point Based on FSGS and HSGS Method for First Order Linear FIDE

Arithmetic operations per node
ADD/SUB MUL/DIV

FSGS n(n− 1) n(n+ 1)
HSGS n

2 (n
2 − 1) n

2 (n
2 + 1)

Table 2
Number of Arithmetic Operations per Iterations Involved in a Node
Point Based on FSGS and HSGS Method for Second Order Linear
FIDE

Arithmetic operations per node
ADD/SUB MUL/DIV

FSGS (n− 1)2 n2 − 1

HSGS (n
2 − 1)

2 n2

4 − 1

Table 3
Comparison of Number of Iterations, Execution Time (Seconds) and
Maximum Absolute Error by Using RT-CD and RS-CD Discretization
Schemes with Iterative Methods for Problem 1

Mesh
size

Schemes Number of Execution Maximum
& iteration time absolute error

methods FSGS HSGS FSGS HSGS FSGS HSGS

24 CD-RT 7814 2907 5.93 0.89 1.653e-4 6.620e-4
CD-RS 7964 2962 6.53 0.96 4.767e-8 1.654e-8

48 CD-RT 23006 7814 108.77 7.40 4.119e-5 1.653e-4
CD-RS 23428 7964 120.52 6.77 1.518e-8 4.767e-8

72 CD-RT 45002 14536 684.15 40.01 1.807e-5 4.119e-5
CD-RS 45756 14810 730.15 35.73 3.122e-8 9.269e-8

96 CD-RT 73430 23006 2469.69 142.92 9.828e-6 4.119e-5
CD-RS 74614 23428 2753.81 124.61 5.291e-8 1.518e-8

120 CD-RT 107988 33174 10347.03 429.21 3.506e-6 2.623e-5
CD-RS 109685 33759 10460.84 328.75 1.233e-8 2.249e-8
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Table 4
Comparison of Number of Iterations, Execution Time (Seconds) and
Maximum Absolute Error by USIng RT-CD and RS-CD Discretization
Schemes with Iterative Methods for Problem 2

Mesh
size

Schemes Number of Execution Maximum
& iteration time absolute error

methods FSGS HSGS FSGS HSGS FSGS HSGS

24 CD-RT 502 130 0.22 0.05 4.656e-4 2.885e-3
CD-RS 497 134 0.29 0.08 2.414e-6 3.246e-6

48 CD-RT 2101 502 0.49 0.26 1.164e-4 7.912e-4
CD-RS 2097 497 0.50 0.34 1.389e-8 2.414e-7

72 CD-RT 4628 1183 1.17 0.34 5.172e-5 3.627e-4
CD-RS 4625 1179 1.18 0.36 8.892e-8 3.777e-8

96 CD-RT 8034 2101 2.30 0.49 2.905e-5 2.072e-4
CD-RS 8032 2097 2.34 0.50 4.345e-8 2.136e-8

120 CD-RT 12278 3251 4.37 0.72 1.854e-5 1.338e-4
CD-RS 12276 3249 4.10 0.81 7.967e-8 1.371e-8
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