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Abstract: Recently, some researchers have studied wavelet problems of
stochastic processes or stochastic system by using wavelet. In this paper, we
take wavelet and use it in a series expansion of signals or functions. Wavelet
has its energy concentration in time to give a tool for the analysis of transient
and nonstationary and time-varying phenomena. Wavelets have contributed
to this already intensely developed and rapidly advancing field. The study of
Wiener difference processes stochastic system is very important in theory and
application. In this paper, Wiener difference processes are studied by using
wavelet analysis, and some properties and wavelet express are obtained.
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1. INTRODUCTION

Wavelet analysis is a remarkable tool for analyzing function of one or several vari-
ables that appear in mathematics or in signal and image processing. With hindsight
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the wavelet transform can be viewed as diverse as mathematics, physics and elec-
trical engineering. The basic idea is to use a family of building blocks to represent
the object at hand in an efficient and insightful way, the building blocks come in
different sizes, and are suitable for describing features with a resolution commen-
surate with their sizes. Recently some persons have studied wavelet problems of
stochastic process or stochastic system [1–10]. In this paper, we study random pro-
cesses by using wavelet analysis methods. Wiener difference processes are important
processes.

Definition 1 Let {w(t), t ≥ 0} is one of σ2-Wiener processes, a > 0.

x(t) = w(a+ t)− w(t), (1)

We call x(t) is Wiener difference processes.

We have E(x(t)) = 0.

E (x(s)x(t))

=E (w(a+ s)w(a+ t)− w(a+ s)w(t)− w(s)w(a+ t) + w(s)w(t))

= [min(a+ s, a+ t)−min(a+ s, t)−min(s, a+ t) + min(s, t)]σ2

=

 0, a ≤ |t− s|

(a− |t− s|)σ2, |t− s| < a

(2)

If t > s, then

E (x(s)x(t)) =

 0, a ≤ t− s

(a− t+ s)σ2, a > t− s
(3)

Definition 2 Let {x(t), t ∈ R} is a stochastic processes, E(x(t))2 < +∞, then

w(s, x) =
1

s

∫
R

x(t)ψ

(
x− t
s

)
dt (4)

is wavelet change of x(t), where ψ is mather wavelet.

Haar wavelet is

ψ(x) =


1, 0 ≤ x < 1/2

−1, 1/2 ≤ x < 1

0, other

(5)

2. SOME PROPERTIES

By Equation (4), we have

w(s, x+ τ) =
1

s

∫
R

x(t)ψ

(
x+ τ − t

s

)
dt (6)
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then

R(τ) = E (w(s, x)w(s, x+ τ))

=E

(
1

s

∫
R

x(t)ψ

(
x− t
s

)
dt

1

s

∫
R

x(t)ψ

(
x+ τ − t

s

)
dt1

)

=
1

s2

∫∫
E (x(t)x(t1))ψ

(
x− t
s

)
ψ

(
x+ τ − t

s

)
dtdt1

(7)

We have the following by Equation (5):

ψ

(
x− t
s

)
=

{
1, x− s/2 ≤ t < x
−1, x− s ≤ t < x− s/2

ψ

(
x+ τ − t

s

)
=

{
1, x+ τ − s/2 ≤ t < x+ τ
−1, x+ τ − s ≤ t < x+ τ − s/2

then,

R(τ) =
1

s2

∫∫
u−t>a

(a− t− u)σ2ψ

(
x− t
s

)
ψ

(
x+ τ − u

s

)
dtdu

=
σ2

s2

(∫ x

x−s/2
(a− t+ u)dt

∫ x+τ

t+a

du−
∫ x

x−s/2
(a− t+ u)dt

∫ x+τ−s/2

t+a

du

−
∫ x−s/2

x−s
(a− t+ u)dt

∫ x+τ

t+a

du+

∫ x−s/2

x−s
(a− t+ u)dt

∫ x+τ−s/2

t+a

du

)
=I1 + I2 + I3 + I4

where

I1 = 1/s2

(∫ x

x−s/2
dt

∫ x+τ

t+a

(a− t+ u)du

)

=
1

s2

∫ x

x−s/2
(a− t)(x+ τ − t− a) +

1

2
(x+ τ)

2 −
1

2
(t+ a)

2
dt

I2 = −
1

s2

∫ x

x−s/2
(a− t+ u)dt

∫ x+τ−s/2

t+a

du

= −
1

s2

∫ x

x−s/2
(a− t)(x+ τ −

s

2
) +

1

2
(x+ τ − s/2)2 − (a− t)(t+ a)−

1

2
(t+ a)2dt

I3 = −
1

s2

∫ x−s/2

x−s
dt

∫ x+τ

t+a

(a− t+ u)du

= −
1

s2

∫ x−s/2

x−s
(a− t)(x+ τ) +

1

2
(x+ τ)

2 − (a− t)(t+ a)−
1

2
(t+ a)

2
dt

I4 =
1

s2

∫ x−s/2

x−s
dt

∫ x+τ−s/2

t+a

(a− t+ u)du

=
1

s2

∫ x−s/2

x−s
(a− t)(x+ τ − s/2) +

1

2
(x+ τ − s/2)− (a− t)(t+ a)−

1

2
(t+ a)

2
dt
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so that,

I1 + I2 =
1

s2

∫ x

x−s/2
(a− t)

s

2
+ s(x+ τ)− s2

8
dt

I3 + I4 =
1

s2

∫ x−s/2

x−s
−
s

2
(a− t)− s(x+ τ) +

s2

8
dt

and

R(τ) =
1

s2

∫ x

x−s

(
−
s

2
(a− t)− s(x+ τ) +

s2

8

)
dt

=
1

s

∫ x

x−s

(
−

1

2
(a− t)− (x+ τ) +

s

8

)
dt

=
1

s

∫ x

x−s

(
1

2
t−

1

2
a− x− τ +

s

8

)
dt

= −8(4a+ 4x+ s+ 8τ)

Apparently, R′(τ) = −64, R′′(τ) = 0.
So, the Zero density of W (s, x) [10] is 0.

3. WAVELET EXPRESS

If let ϕ(t) =
√

2
∑
k

ϕ(2x− k), then wavelet express of x(t) [2] can be written as

x(t) = 2
−
J

2
∑
n∈Z

CJnϕ(2−J t− n) +
∑
j≤J

2
−
j

2
∑
n∈Z

djnψ(2−jt− n)

where

CJn =

∫
R

x(t)ϕ(2−J t− n)dt, djn =

∫
R

x(t)ψ(2−jt− n)dt.

Thus, the relational density of djn is

E(djnd
k
m) = E

∫
R

x(t)ψ(2−jt− n)dt

∫
R

x(s)ψ
(
2−ks−m

)
ds

=

∫∫
R2

E (x(t)x(s))ψ
(
2−jt− n

)
ψ
(
2−ks−m

)
dtds

=

∫∫
|t−s|>a

(a− |t− s|)σ2ψ
(
2−jt− n

)
ψ
(
2−ks−m

)
dtds
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