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Abstract: Missing data occur in many longitudinal studies. When da-
ta are nonignorably missing, it is necessary to incorporate the missing da-
ta mechanism into the observed data likelihood function. A full likelihood
analysis of nonignorable missing data is complicated algebraically, and often
requires intensive computation, especially when there are many follow-up
times. To avoid such computational difficulties, pseudo-likelihood methods
have been proposed in the literature under minimal parametric assumptions.
However, like the classical maximum likelihood estimators, these pseudo-
likelihood estimators are also sensitive to potential outliers in the data. In
this article, we propose and explore a robust method in the framework of
a pseudo-likelihood function that is derived under the working assumption
that the longitudinal responses are independent over time. The performance
of the proposed robust method is investigated in simulations. The method is
also illustrated in an example using actual data on CD4 counts from clinical
trials of HIV-infected patients.
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1. INTRODUCTION

In many longitudinal studies, individuals are measured repeatedly over a fixed set
of assessment times. For example, longitudinal data are often collected in AIDS,
cancer, and cardiovascular clinical trials as well as in observational studies. Here
we focus on the case where the response over time is binary, and we are interested
in modeling the marginal means of the binary responses. Methods for analyzing
binary longitudinal data have been extensively studied in the literature (e.g., Le
Cessie & Van Houwelingen, 1994; Liang & Zeger, 1986; Meester & MacKay, 1994;
Molenberghs & Lesaffre, 1994; Prentice, 1988; and many others). In the absence of a
suitable likelihood function to work with, often longitudinal data are analyzed using
a multivariate analogue of the quasi-likelihood function (Wedderburn, 1974). The
development of the “quasi-score equations”, however, requires correct specification
of the correlation matrix of the repeated responses over time. Liang and Zeger
(1986) suggested a simplified “working” correlation matrix, and argued that the
estimators obtained by solving their proposed “generalized estimating equations”
(GEEs) are consistent even under a misspecified correlation structure.

The modeling of binary longitudinal data is often complicated by the fact that
the response variable is not always observed at all assessment times. If missingness
does not depend on the values of the data, missing or observed, then the data
are called missing completely at random (MCAR). Any method that yields valid
inferences in the absence of missing data would also yield valid inferences when data
are missing completely at random and the analysis is based on the available data.
A less restrictive assumption than MCAR is that missingness depends only on the
observed values of the variables, but not on the values that are missing. In this case,
data are called missing at random (MAR). Many authors considered extensions
of the aforementioned quasi-likelihood approaches to the analysis of incomplete
longitudinal data under the MAR assumption. Robins et al. (1995) proposed
a weighted generalized estimating equation (WGEE) approach based on “inverse
probability weights” (IPW) for analyzing longitudinal data under the assumption
of MAR.

Note that missingness in the longitudinal data often depends on the unobserved
value of the response variable at that time. In such cases, the missing data mechanis-
m is called nonignorable (Little & Rubin, 2002). As an example, here we consider
a data set from two clinical trials of HIV-infected patients, initially analyzed by
Gallant et al. (1992) and Kahn et al. (1992). In this experiment, 431 patients
were diagnosed with AIDS or AIDS-related complex, and the study was designed
to compare two therapeutic treatments, zidovudine (Azt) and didanosine (Ddi).
The response is a binary CD4 cell count variable, measured at baseline (week 0),
and every week for up to 5 weeks from baseline. The interest is on the effect of
treatment on changes in CD4 cell count over time. As in many longitudinal stud-
ies, here the analysis is complicated by missing response data over time. Although
measurements on CD4 cell counts were taken from all 431 patients at baseline,
but incomplete measurements were taken from only 383 patients (88.95%) at week
1, 345 patients (80.0%) at week 2, 324 patients (75.2%) at week 3, 306 patients
(71.0%) at week 4, and only 285 patients (66.1%) at week 5. The missing data
pattern is also non-monotone, that is, some patients’ responses are missing at one
visit, but observed at the next visit. There are 109 (25.3%) patients who missed
at least one visit, but returned for a later visit. A decline in CD4 count normally

129



Robust Inference for Incomplete Binary Longitudinal Data

indicates disease progression, and patients with low CD4 counts are more likely to
make all scheduled visits, as compared to patients with normal CD4 counts. This
would imply that missingness in the CD4 cell counts depends on the unobserved
outcome and so is “nonignorable”.

Statistical analyses with missing data based on the likelihood approach were
considered by many authors (e.g., Brown, 1990; Dantan et al., 2008; Diggle & Ken-
ward, 1994; Ibrahim et al., 1999, 2001; and Sinha et al., 2010, 2011). Ibrahim et
al. (1999) propose an EM algorithm for maximum likelihood estimation in gener-
alized linear models for data with nonignorable missing covariates. Ibrahim et al.
(2001) extended the EM method to the analysis of generalized linear mixed models
with nonignorable missing responses. Recently, Sinha et al. (2010) investigates a
multivariate logistic regression model for analyzing multiple binary outcomes with
incomplete covariate data where auxiliary information is available. The auxiliary
data are extraneous to the regression model of interest but predictive of the covariate
with missing data.

A full likelihood analysis of longitudinal data under nonignorable missingness of-
ten requires intensive computation, especially when there are many follow-up times.
To overcome this problem, a pseudo-likelihood approach was proposed by Troxel et
al. (1998) under minimal parametric assumptions. This pseudo-likelihood approach
was developed under the working assumption that the longitudinal outcomes are
independent over time, and yields asymptotically unbiased estimators of the regres-
sion parameters when the marginal model for the response at each time-point and
the model for missingness have been correctly specified.

It is well-known that the ordinary maximum likelihood and maximum pseudo-
likelihood estimators are sensitive to potential outliers in the data. To bound the
influence of outliers, robust methods were studied by a number of authors (e.g., Can-
toni & Ronchetti, 2001; Preisser & Qaqish, 1999; Sinha, 2004). Most of these robust
methods focused on the estimation in generalized linear models in a complete-data
setting. Sinha (2004) proposed a robust method for analyzing clustered correlated
data in the framework of maximum likelihood approach for generalized linear mixed
models. Also, Sinha (2008) proposed a robust method for fitting generalized linear
models with nonignorable missing covariates.

In this paper, we focus on a robust analysis of longitudinal binary data with
nonignorable missing responses. As mentioned earlier, a full likelihood analysis of
nonignorable missing data typically involves intensive computation. Here our goal
is to adopt a suitable method which is computationally feasible and also provides
robust estimators in the presence of potential outliers in the data. In this note,
we consider a robust method in the framework of the pseudo-likelihood of Troxel
et al. (1998). The proposed method requires much less computation as compared
to the full likelihood analysis of binary longitudinal data. Note that in the case of
binary data, although no outliers are desired in the binary outcomes, outliers are
still important in the residual sense; standardized residuals could be unbounded for
a binary model. The proposed robust method is useful for bounding the influence
of both outliers in the residuals and leverage points in the design space.

The paper is organized as follows. Section 2 introduces the model and notation
for analyzing longitudinal data. Section 3 introduces the proposed robust method
and studies the asymptotic properties of the robust estimators. Section 4 provides
an illustrative example to describe the computational issues of the robust estimation.
Section 5 investigates the empirical properties of the robust estimators based on a
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simulation study. Section 6 presents an application of the proposed method using
the CD4 cell count data introduced earlier. Section 7 concludes the paper with
some discussion.

2. MODEL AND NOTATION

Suppose N individuals, i = 1, . . . , N , are observed at a fixed set of T time-points,
t = 1, . . . , T . Let yi represent a T × 1 vector of repeated responses, (yi1, . . . , yiT ),
for the ith individual. Also, let xit represent a p× 1 vector of covariates associated
with the response yit for individual i at time t. We assume that all the covariates
are fully observed.

The marginal distribution of yit is assumed to be Bernoulli with the probability
of success

pit = E(yit|xit,β) = P (yit = 1|xit,β) =
exp(xtitβ)

1 + exp(xtitβ)
. (1)

Here our goal is to draw inferences about the regression parameters β, whereas
the within-subject association among the repeated outcomes is regarded as a nui-
sance characteristic of the data. The association between a pair of binary outcomes
is typically measured in terms of marginal correlations or marginal odds ratios.
Marginal correlations can be used to derive a multivariate Bahadur (1961) model,
whereas marginal odds ratios can be used to derive a multivariate Plackett (1965)
distribution.

We focus on the case where individuals in a longitudinal study are not observed
at all T follow-up times on account of some stochastic missing data mechanism.
We introduce T binary random variables, vit, (t = 1, . . . , T ), with vit equal to 1 if
the response yit is observed, and 0 if yit is missing. We assume that the marginal
distribution of the binary random variable vit is Bernoulli, with the probability of
being observed,

πit = P (vit = 1|xit, yit, τ ) =
exp(τ0 + τ t1xit + τ2yit)

1 + exp(τ0 + τ t1xit + τ2yit)
. (2)

Note that if τ2 6= 0, then the missing data mechanism is nonignorable since the
probability of missingness depends on possibly unobserved data yit. In the next
section, we briefly review the pseudo-likelihood approach of Troxel et al. (1998) for
analyzing incomplete binary longitudinal data, and then introduce our proposed
robust method in the framework of this pseudo-likelihood function.

3. ESTIMATORS

3.1. Independent Pseudo-Likelihood (IPL) Estimator

Troxel et al. (1998) proposed a pseudo-likelihood under the working assump-
tion that the repeated responses are independent over time. To describe this, let
fy,v(yit, vit|xit,β, τ ) be the marginal distribution of (yit, vit) at time t, which can
be expressed as

fy,v(yit, vit|xit,β, τ ) = fy(yit|xit,β)fv(vit|xit, yit, τ ), (3)
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where fy(yit|xit,β) is Bernoulli with probability of success pit as given in (1), and
fv(vit|xit, yit, τ ) is Bernoulli with probability of being observed as given in (2).
Then treating the repeated observations at different follow-up times as independent,
Troxel et al. (1998) defined the pseudo-likelihood of θ = (βt, τ t)t by

L(θ) =

N∏
i=1

T∏
t=1

{fy(yit|xit,β)fv(vit|xit, yit, τ )}vit
{

1∑
yit=0

fy(yit|xit,β)fv(vit|xit, yit, τ )

}1−vit

(4)

The logarithm of the pseudo-likelihood function may be obtained as

logL(θ) =

N∑
i=1

T∑
t=1

vit {log fy(yit|xit,β) + log fv(vit|xit, yit, τ )}

+

N∑
i=1

T∑
t=1

(1− vit) log

{
1∑

yit=0

fy(yit|xit,β)fv(vit|xit, yit, τ )

}
.

(5)

An estimator of θ may be obtained by maximizing the pseudo-likelihood function
(4) or the log-pseudo-likelihood function (5).

From (5), the pseudo-score equations for the regression parameters β take the
form

0 =
∂ logL(θ)

∂β
≡ Sβ(θ) ≡

N∑
i=1

Si,β(θ)

=

N∑
i=1

T∑
t=1

vit
∂ log fy(yit|xit,β)

∂β
+

N∑
i=1

T∑
t=1

(1− vit)Ey|v
{
∂ log fy(yit|xit,β)

∂β

∣∣∣∣ vit}

=

N∑
i=1

T∑
t=1

vit(yit − pit)xit +

N∑
i=1

T∑
t=1

(1− vit)Ey|v{(yit − pit)xit|vit},

(6)

where Ey|v represents the expectation with respect to the conditional distribution
of the response yit given the value of the missing data indicator vit.

Similarly, the pseudo-score equations for the parameters τ of the missing data
model (2) may be obtained as

0 =
∂ logL(θ)

∂τ
≡ Sτ (θ) ≡

N∑
i=1

Si,τ (θ)

=

N∑
i=1

T∑
t=1

vit
∂ log fv|y(vit|xit, yit, τ )

∂τ

+

N∑
i=1

T∑
t=1

(1− vit)Ey|v
{
∂ log fv|y(vit|xit, yit, τ )

∂τ

∣∣∣∣ vit}

=

N∑
i=1

T∑
t=1

vit(vit − πit)zit +

N∑
i=1

T∑
t=1

(1− vit)Ey|v{(vit − πit)zit|vit},

(7)
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where zit = (xtit, yit)
t.

Equations (6) and (7) are solved simultaneously for the “independent pseudo-

likelihood” (IPL) estimators θ̃ = (β̃
t
, τ̃ t)t of the model parameters θ = (βt, τ t)t.

3.1.1. Standard Errors of IPL Estimators

We can write the pseudo-score functions for β and τ in matrix form as

∂

∂θ
S(θ) ≡ ∂

∂θ

{
Sβ(θ)t, Sτ (θ)t

}t
=


∂Sβ(θ)

∂β

∂Sτ (θ)

∂β
∂Sβ(θ)

∂τ

∂Sτ (θ)

∂τ

 ,

where

∂Sβ(θ)

∂β
= −

N∑
i=1

T∑
t=1

pit(1− pit)xitxtit

+

N∑
i=1

T∑
t=1

(1− vit)
[
Ey|v{(yit − pit)2|vit} − {Ey|v[(yit − pit)|vit]}2

]
xitx

t
it,

(8)

∂Sτ (θ)

∂τ
= −

N∑
i=1

T∑
t=1

πit(1− πit)zitztit

+

N∑
i=1

T∑
t=1

(1− vit)Ey|v{(vit − πit)2zitztit|vit}

−
N∑
i=1

T∑
t=1

(1− vit)Ey|v{(vit − πit)zit|vit}Ey|v{(vit − πit)zit|vit}t,

(9)

and

∂Sβ(θ)

∂τ
=
∂Sτ (θ)

∂βt

=

N∑
i=1

T∑
t=1

(1− vit)Ey|v{(yit − pit)(vit − πit)xitztit|vit}

−
N∑
i=1

T∑
t=1

(1− vit)Ey|v{(yit − pit)xit|vit}Ey|v{(vit − πit)zit|vit}t.

(10)

To estimate the asymptotic variance-covariance matrix of the IPL estimators,
we can use a sandwich-type variance-covariance matrix in the form

Var(θ̃) ≈
{
∂S(θ)

∂θ

}−1{ N∑
i=1

Si(θ)Sti (θ)

}{
∂S(θ)

∂θ

}−1
, (11)

where
Si(θ) =

{
Si,β(θ)t, Si,τ (θ)t

}t
.

An estimate of the variance of θ̃ is obtained by evaluating the right-hand side
of (11) at the IPL estimate θ̃.
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3.2. Proposed Robust Pseudo-Likelihood (RPL) Estimator

Note that in the case of binary longitudinal data, as the response y is binary, outliers
can arise in the data only through the covariates x. We focus on the case where
the covariates are continuous, but the method can be generalized for discrete or a
mixture of discrete and continuous measurements.

From (6) and (7), it is clear that the pseudo-score functions for β and τ are
proportional to the covariates x, so the influence of an outlier on the ordinary IPL
estimators is unbounded. In other words, the IPL estimators are not robust against
outliers. To obtain robust estimators of the model parameters β and τ , we propose
to solve the estimating equations

N∑
i=1

Ψβ,i(yi,vi|β, τ ) = 0, (12)

N∑
i=1

Ψτ,i(yi,vi|β, τ ) = 0, (13)

where

Ψβ,i(yi,vi|β, τ ) =

T∑
t=1

vit {ψc(rit)− Ey{ψc(rit)}}σitwitxit

+

T∑
t=1

(1− vit)Ey|v [{ψc(rit)− Ey{ψc(rit)}} |vit]σitwitxit

(14)

and

Ψτ,i(yi,vi|β, τ ) =

T∑
t=1

vit
{
ψc(r

∗
it)− Ev|y{ψc(r∗it)}

}
σ∗itw

∗
itzit

+

T∑
t=1

(1− vit)Ey|v
[{
ψc(r

∗
it)− Ev|y{ψc(r∗it)}

}
σ∗itw

∗
itzit|vit

] (15)

with rit = (yit−pit)/σit, σ2
it = var(yit), r

∗
it = (vit−πit)/σ∗it, and σ∗2it = var(vit). The

function ψc is considered as the Huber’s psi function, ψc(r) = max{−c,min(r, c)},
which is used to bound the influence of any outliers in the residuals when estimating
the model parameters.

The weights wit = w(xit) and w∗it = w(zit) are used to downweight any leverage
points in the design space. Here we choose the weight function w as a function of
the Mahalanobis distance dx in the form

w(x) = w(x, cx,Sx) = min

{
1,

(
b0
dx

)γ0/2}
(16)

where dx = (x− cx)TS−1x (x− cx), the tuning constants γ0 ≥ 1 and b0 is chosen as
the 95th percentile of the chi-squared distribution with degrees of freedom equal to
the dimension of x, and cx and Sx are some robust estimators of the location and
scale parameters for the distribution of x, such as the minimum volume ellipsoid
(MVE) estimators of Rousseeuw and van Zomeren (1990). Note that the choice
ψc(r) = r and w(x) = 1 leads to the ordinary pseudo-likelihood (IPL) estimators
of the model parameters.
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3.2.1. Newton-Raphson Method for RPL Estimators

The proposed RPL estimators of β and τ are obtained by solving the estimating
equations (12) and (13) simultaneously using an iterative method. We focus on
the iterative Newton-Raphson method and the scoring technique for solving these
equations. The iterative equations for the RPL estimators of β may be expressed
in the form

β(m+1) = β(m) −

{
N∑
i=1

Ψ̇β,i(yi,vi|β(m), τ )

}−1 N∑
i=1

Ψβ,i(yi,vi|β(m), τ ), (17)

for m = 0, 1, 2, . . ., where

Ψ̇β,i(yi,vi|β, τ ) =

T∑
t=1

vit

[
∂

∂ηit
{ψc(rit)− Ey{ψc(rit)}}

]
σitwitxitx

t
it

+

T∑
t=1

(1− vit)Ey|v
[

∂

∂ηit
{ψc(rit)− Ey{ψc(rit)}}

∣∣∣∣ vit]σitwitxitxtit.
Similarly, the iterative equations for the RPL estimators of τ can be expressed

in the form

τ (m+1) = τ (m) −

{
N∑
i=1

Ψ̇τ,i(yi,vi|β, τ (m))

}−1 N∑
i=1

Ψτ,i(yi,vi|β, τ (m)), (18)

for m = 0, 1, 2, . . ., where

Ψ̇τ,i(yi,vi|β, τ ) =

T∑
t=1

vit

[
∂

∂ηit

{
ψc(r

∗
it)− Ev|y{ψc(r∗it)}

}]
σ∗itw

∗
itzitz

t
it

+

T∑
t=1

(1− vit)Ey|v
[

∂

∂ηit

{
ψc(r

∗
it)− Ev|y{ψc(r∗it)}

}
σ∗itw

∗
itzitz

t
it

∣∣∣∣ vit] .
The complete algorithm for these robust estimators of β and τ is described as

follows:

1. Choose initial values β(0) and τ (0). These initial values can be chosen as the
ordinary IPL estimates of β and τ . Set m = 0.

2. (a) Calculate β(m+1) and τ (m+1) from the iterative equations (17) and (18),
respectively.

(b) Set m = m+ 1.

3. Continue step 2 until a convergence is achieved. Declare the estimates at
convergence to be the RPL estimates β̂ and τ̂ .

3.2.2. Asymptotics for RPL Estimators

A sketch of the development of the asymptotic distributions of the RPL estimators is
given here. Recall the estimating equations (12) and (13) for the robust estimators
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of β and τ . These equations can be reexpressed in the form

GN (y,v|θ) =
1

N

N∑
i=1

Ψi(yi,vi|θ) = 0, (19)

where Ψi(yi,vi|θ) = {Ψβ,i(yi,vi|β, τ )t,Ψτ,i(yi,vi|β, τ )t}t. Let θ̂N = (β̂
t

N , τ̂
t
N )t

denote the robust estimators obtained by solving (19). Assume that the “true”
values θ0 of θ are obtained by solving the equations

ḠN (θ) =
1

N

N∑
i=1

E {Ψi(yi,vi|θ)} = 0 (20)

with respect to θ. By the Mean Value Theorem, we can write

GN (y,v|θ̂N ) = GN (y,v|θ0) + G′N (y,v|θ̃)(θ̂N − θ0), (21)

where vector θ̃ lies on the segment connecting θ̂N and θ0, and G′N (y,v|θ̃) is the

derivative of GN (y,v|θ) with respect to θ evaluated at θ̃. From (21), we can write

√
N(θ̂N − θ0) =

{
−G′N (y,v|θ̃)

}−1 {√
NGN (y,v|θ0)

}
. (22)

Now, the asymptotic normality of θ̂N will follow if G′N (y,v|θ̃) in (22) converges

appropriately, and if the vector
√
NGN (y,v|θ0) has the central limit property. Un-

der appropriate regularity conditions as described in Sinha (2004) (see also White,

1982), it can be shown that θ̂N → θ0 a.s. and ‖ G′N (y,v|θ̃)− Ḡ′N (θ0) ‖→ 0 a.s. as

N →∞. Also, we can show that
√
NGN (y,v|θ0) is asymptotically N{0,QN (θ0)},

where QN (θ0) = var
{√

NGN (y,v|θ0)
}

. Then from (22), we can argue that

√
NQN (θ0)−1/2MN (θ0)(θ̂N − θ0) ∼̇ N(0, I), (23)

where MN (θ) = −ḠN (θ) = −E{G′N (y,v|θ)}. The asymptotic variance-covariance

matrix of the robust estimators θ̂N may be obtained from

VN (θ0) = M−1N (θ0)QN (θ0)M−1N (θ0). (24)

The computational aspects of this variance-covariance matrix are discussed in
an illustrative example in the next section.

4. ILLUSTRATIVE EXAMPLE

Here we describe the computational issues of the proposed robust estimator using a
simple example. Suppose in a clinical study, yit represents a binary response from
individual i at time t. To describe the success probability pit as a function of time
t and a baseline covariate xi for individual i, consider a marginal logistic regression
model in the form

yit ∼ Bernoulli(pit), i = 1, . . . , N, t = 1, . . . , T,

ηit = logit(pit) = β0 + β1xi + β2(t− 1). (25)

136



Sinha, S.K./Progress in Applied Mathematics, 4 (2), 2012

Define vit = 1 if the response yit is observed and vit = 0 if yit is missing. Assume
that the marginal distribution of the binary random variable vit is Bernoulli, with
the probability of being observed,

πit = P (vit = 1|yit, xi, τ ) =
exp(τ0 + τ1xi + τ2yit)

1 + exp(τ0 + τ1xi + τ2yit)
(26)

Here the parameters of interest are the regression coefficients β = (β0, β1, β2)t,
with τ = (τ0, τ1, τ2)t being considered as nuisance parameters of the missing data
model.

For the robust estimators of the regression parameters β, the iterative equations
(17) can be expressed in the form

β(m+1) = β(m) +

(
N∑
i=1

Xt
iWiDiXi

)−1 N∑
i=1

Xt
iWidi, (27)

where the second term on the right side is evaluated at β(m) and τ (m), Xi is the
design matrix for subject i, and Wi is a diagonal matrix with diagonal elements
σitwit, t = 1, . . . , T . Also, di is a T × 1 vector with elements

dit = vitd̃it + (1− vit)Ey|v(d̃it|vit), (28)

where d̃it = ψc(rit)−Ey{ψc(rit)} and Di is a diagonal matrix with diagonal elements

Dit = −vit
∂d̃it
∂ηit

− (1− vit)Ey|v

(
∂d̃it
∂ηit

∣∣∣∣∣ vit
)
, (29)

for t = 1, . . . , T . To calculate Dit in (29), it can be shown that

∂

∂ηit
ψc(rit) = −

√
pit(1− pit)ψ′c(rit)− (1/2− pit)ψ′c(rit)rit.

Also, it can be shown that

∂

∂ηit
Ey{ψc(rit)} = Ey

{
∂

∂ηit
ψc(rit)

}
+
√
pit(1− pit)Ey{ritψc(rit)}

= −
√
pit(1− pit)Ey{ψ′c(rit)} − (1/2− pit)Ey{ψ′c(rit)rit}

+
√
pit(1− pit)Ey{ritψc(rit)}.

Then we have,

∂d̃it
∂ηit

=
∂

∂ηit
{ψc(rit)− Ey[ψc(rit)]}

=−
√
pit(1− pit){ψ′c(rit)− Ey[ψ′c(rit)]} − (1/2− pit){ritψ′c(rit)− Ey[ritψ

′
c(rit)]}

−
√
pit(1− pit)Ey[ritψc(rit)].

(30)

For the robust estimators of the nuisance parameters τ , the iterative equations
(18) can be expressed in the form

τ (m+1) = τ (m) +

[
N∑
i=1

{ZtiViW
∗
iD
∗
iZi + Ey|v(Z

t
iV̄iW

∗
iD
∗
iZi)}

]−1
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×
N∑
i=1

{ZtiViW
∗
i d
∗
i + Ey|v(Z

t
iV̄iW

∗
i d
∗
i )}, (31)

where Zi is a design matrix with rows zit, Vi and V̄i are diagonal matrices with
diagonal elements vit and 1−vit respectively, W∗

i is a diagonal matrix with diagonal
elements σ∗itw

∗
it, d

∗
i is a vector with elements d∗it = ψc(r

∗
it)− Ev|y{ψc(r∗it)} and D∗i

is a diagonal matrix with diagonal elements D∗it = −∂d∗it/∂η∗it with η∗it = ztitτ . The
derivatives in D∗it can be obtained using similar arguments as shown in (28)–(30).

Equations (27) and (31) are solved iteratively until convergence for the RPL

estimators θ̂ = (β̂
t
, τ̂ t)t. An approximate variance-covariance matrix of θ̂ may be

obtained from (24) as

Var(θ̂) ≈M−1(θ̂)Q(θ̂)M−1(θ̂), (32)

where the matrices M(θ) and Q(θ) may be partitioned as:

M(θ) =

(
Mββ Mβτ

Mτβ Mττ

)
,

and

Q(θ) =

(
Qββ Qβτ
Qτβ Qττ

)
,

with

Mββ = −
N∑
i=1

T∑
t=1

Ditσitwitxit x
t
it

+

N∑
i=1

T∑
t=1

(1− vit)Ey|v{d̃it(yit − pit)|vit}σitwitxit xtit

−
N∑
i=1

T∑
t=1

(1− vit)Ey|v(d̃it|vit)Ey|v{(yit − pit)|vit}σitwitxit xtit,

Mβτ =

N∑
i=1

T∑
t=1

(1− vit)Ey|v{d∗itσ∗itw∗it(yit − pit)zit|vit}xtit

−
N∑
i=1

T∑
t=1

(1− vit)Ey|v(d∗itσ∗itw∗itzit|vit)Ey|v{(yit − pit)|vit}xtit,

Mτβ =

N∑
i=1

T∑
t=1

(1− vit)σitwit xitEy|v{d̃it(vit − πit)ztit|vit}

−
N∑
i=1

T∑
t=1

(1− vit)σitwit xitEy|v{d̃it|vit}Ey|v{(vit − πit)ztit|vit},

Mττ = −
N∑
i=1

T∑
t=1

vitD
∗
itσ
∗
itw
∗
itzit z

t
it
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−
N∑
i=1

T∑
t=1

(1− vit)Ey|v(D∗itσ∗itw∗itzit ztit|vit)

+

N∑
i=1

T∑
t=1

(1− vit)Ey|v{d∗it(vit − πit)σ∗itw∗itzit ztit|vit}

−
N∑
i=1

T∑
t=1

(1− vit)Ey|v{d∗itσ∗itw∗itzit|vit}Ey|v{(vit − πit)ztit|vit}.

Also,

Qββ =

N∑
i=1

(
T∑
t=1

ditwitσitxit

)(
T∑
t=1

ditwitσitx
t
it

)
,

Qβτ =

N∑
i=1

(
T∑
t=1

ditwitσitxit

)[
T∑
t=1

{vitd∗itσ∗itw∗itzit + (1− vit)Ey|v(d∗itσ∗itw∗itzit|vit)}

]t
,

Qττ =

N∑
i=1

[
T∑
t=1

{vitd∗itσ∗itw∗itzit + (1− vit)Ey|v(d∗itσ∗itw∗itzit|vit)}

]

×

[
T∑
t=1

{vitd∗itσ∗itw∗itzit + (1− vit)Ey|v(d∗itσ∗itw∗itzit|vit)}

]t
,

and Qτβ = Qtβτ .
We carried out a simulation study to investigate the empirical properties of the

RPL estimators based on the above example. The simulation results are discussed
in the next section.

5. SIMULATION STUDY

To explore the performance of the proposed RPL estimators, we ran two sets of
simulations. In the first set, the estimators were studied for the case when no
outliers were considered in the data. In the second set, they were studied in the
presence of design outliers.

For each simulation run, we generated a series of 1000 data sets, each of size N =
200, using a Bahadur (1961) type multivariate binary model for three longitudinal
outcomes, yi1, yi2 and yi3, with joint probabilities

P (yi1, yi2, yi3|xi,β,α) =

{
3∏
t=1

pyitit (1− pit)1−yit
}{

1 +
∑
st

αstziszit + α123zi1zi2zi3

}
(33)

where zit = (yit − pit)/
√
pit(1− pit); αst = corr(yis, yit) = E[ziszit|xi]; α123 =

E[zi1zi2zi3|xi]; and logit(pit) = β0 + β1xi + β2(t − 1), for t = 1, 2, 3. We consider
α = (α12, α13, α23, α123)t as the vector of association parameters. The regression
coefficients were fixed at β0 = 0.5, β1 = 0.25 and β2 = −0.25. The values of the
covariate x were assumed to follow a N(2, 1) distribution. The data were generated
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under three correlation structures: 1) Uncorrelated; 2) an exchangeable correlation
structure, with αst = α and α123 = 0; and 3) a serial correlation structure, with
αst = α|t−s| and α123 = 0, for t, s = 1, 2, 3. Note that here we use the Bahadur
(1961) model just to generate data with correlated binary responses. The Bahadur
representation is attractive in that the marginal means of the binary responses can
be easily derived from the multivariate binary distribution. However, a serious
drawback is that the correlations among the binary responses are constrained by
the marginal means in a complicated manner. In our robust approach, we estimate
the model parameters by treating the observations independent.

Without loss of generality, we assumed that all individuals were observed at
the first time-point, but incomplete data were obtained at the second and third
time-points according to the probability of being observed,

πit = P (vit = 1|xi, yit, τ0, τ1, τ2) =
exp(τ0 + τ1xi + τ2yit)

1 + exp(τ0 + τ1xi + τ2yit)
, (34)

for t = 2, 3. The parameters of this missing data model were fixed at τ0 = −2,
τ1 = 1 and τ2 = 1 for which roughly 38% missing data occurred at each of the
second and third time-points.
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Figure 1
Scatter Plots of Longitudinal Binary Outcomes, y1, y2 and
y3, Against Covariate x, with no Outliers

Figure 1 exhibits representative scatter plots of the longitudinal binary outcomes,
y1, y2 and y3, over three observation times (t = 1, 2, 3), against the covariate x
when the data are generated from the multivariate binary model (33) under an
exchangeable correlation structure with α = 0.4. As expected, the missing data
occurred at the second and third observation times for lower values of x and y.

The proposed RPL estimates of the regression parameters (β0, β1, β2) and the
nuisance parameters (τ0, τ1, τ2) of the missing data model were obtained from the
iterative equations (27) and (31) using the tuning constants c = 1.2 for the Huber’s
psi function ψc(r), and γ0 = 2 for the weight function w as defined in (16). Typically,
these tuning constants are chosen so as to provide a certain level efficiency at the
underlying distributions. However, it is difficult to obtain an optimal set of values for
the tuning constants analytically due to the complex nature of the robust estimators
under incomplete binary data. We explore different sets of tuning constants for the
RPL estimators and finally chose the values c = 1.2 and γ0 = 2 for which the RPL
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estimators of the regression parameters provided roughly 95% efficiency over the
ordinary pseudo-likelihood (IPL) estimators under correctly specified models. Note
that for the choice c = ∞ and γ0 = 0, the RPL estimators lead to the non-robust
IPL estimators.

Table 1
Empirical Biases of RPL and IPL Estimators for Data with
no Outliers

Parameter
True

Independent
Exchangeable Serial

value α = 0.2 α = 0.4 α = 0.2 α = 0.4

Robust method (RPL)
β0 0.50 0.0184 0.0095 0.0004 –0.0057 0.0048
β1 0.25 –0.0037 0.0012 0.0063 0.0079 0.0007
β2 –0.25 0.0060 0.0036 –0.0029 –0.0121 0.0088
Classical method (IPL)
β0 0.50 0.0194 0.0093 0.0017 0.0027 0.0008
β1 0.25 –0.0035 0.0014 0.0059 0.0044 0.0033
β2 –0.25 0.0070 0.0026 –0.0017 –0.0093 0.0061

Table 1 presents the empirical biases of both the RPL and IPL estimators un-
der different correlation structures. It is clear from the table that both methods
provide roughly unbiased estimators of the regression parameters β0, β1 and β2.
Tables 2 presents the empirical mean squared errors of the RPL and IPL estima-
tors. The RPL method appears to lose small efficiency in terms of slightly larger
mean squared errors of the regression estimators. For example, under the correctly
specified “independent” model, the RPL estimator of β1 is 92.2% as efficient as the
corresponding IPL estimator; under the exchangeable correlation with α = 0.2, the
efficiency of the RPL estimator of β1 is 96.6%. Also, under the serial correlation
with α = 0.4, the efficiency of the RPL estimator of β1 is 93.4%. We would expect
to lose such small efficiencies from the robust method when there are, in fact, no
outliers in the data. However, our focus is on the robust analysis of data in the pres-
ence of outliers. In the next step, we investigate the performance of the estimators
under outliers.

We ran the second set of simulations by contaminating the data with a small
proportion of outliers. As before, a series of 1000 data sets, each of size N =
200, were generated from the multivariate binary model (33). The values of the
binary random variable vit were generated from the missing data model (34). Note
that in the case of binary responses, outliers in the data can arise only through
the design points x. After generating each data set, we created a few outliers by
randomly moving a small proportion of the design points from the bulk of the data.
Specifically, to create these outliers, we randomly replaced 5% of the x values in the
original data by x + 5. This type of contamination generally produces mean-shift
outliers in the data. Figure 2 exhibits representative scatter plots of the longitudinal
binary outcomes, y1, y2 and y3, over three observation times (t = 1, 2, 3), against
the covariate x when data are contaminated with design outliers. In these plots,
the outliers are indicated by the large values of the covariate x for which the values
of y are 0.
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Table 2
Empirical Mean Squared Errors of RPL and IPL Estimators
for Data with no Outliers

Parameter
True

Independent
Exchangeable Serial

value α = 0.2 α = 0.4 α = 0.2 α = 0.4

Robust method (RPL)
β0 0.50 0.1045 0.1071 0.1200 0.1075 0.1282
β1 0.25 0.0180 0.0205 0.0246 0.0210 0.0244
β2 –0.25 0.0431 0.0367 0.0319 0.0428 0.0387
Classical method (IPL)
β0 0.50 0.0967 0.1036 0.1127 0.1020 0.1179
β1 0.25 0.0166 0.0198 0.0229 0.0199 0.0228
β2 –0.25 0.0405 0.0338 0.0299 0.0410 0.0362
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Figure 2
Scatter Plots of Longitudinal Binary Outcomes, y1, y2 and
y3, Against Covariate x for Data Contaminated with Design
Outliers

Table 3
Empirical Biases of RPL and IPL Estimators for Data with
Outliers

Parameter
True

Independent
Exchangeable Serial

value α = 0.2 α = 0.4 α = 0.2 α = 0.4

Robust method (RPL)
β0 0.50 0.0948 0.0910 0.0948 0.0873 0.0839
β1 0.25 –0.0436 –0.0429 –0.0446 –0.0395 –0.0389
β2 –0.25 0.0404 0.0407 0.0253 0.0440 0.0387
Classical method (IPL)
β0 0.50 0.2725 0.2746 0.2676 0.2678 0.2639
β1 0.25 –0.1401 –0.1417 –0.1376 –0.1371 –0.1353
β2 –0.25 0.0775 0.0781 0.0668 0.0804 0.0734
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Table 3 presents the empirical biases of the RPL and IPL estimators for data
under design outliers. It is clear from the table that the ordinary IPL estimators
of the regression parameters generally produce much larger biases, as compared to
the RPL estimators. For example, under independence, the RPL estimator of β1
produces a small bias of −0.0436, whereas the IPL estimator of β1 produces a much
larger bias of −0.1401. Also, as clear from Table 4, the empirical mean squared
errors of the IPL estimators are almost uniformly larger than those of the RPL
estimators. For example, under independence, the RPL estimator of β1 has a mean
squared error of 0.0195, whereas the IPL estimator of β1 has a larger mean squared
error of 0.0288. This demonstrates the usefulness of the proposed robust method
in bounding the influence of potential outliers in the data.

Table 4
Empirical Mean Squared Errors of RPL and IPL Estimators
for Data with Outliers

Parameter
True

Independent
Exchangeable Serial

value α = 0.2 α = 0.4 α = 0.2 α = 0.4

Robust method (RPL)
β0 0.50 0.1109 0.1216 0.1348 0.1196 0.1227
β1 0.25 0.0195 0.0220 0.0254 0.0214 0.0224
β2 –0.25 0.0437 0.0350 0.0290 0.0451 0.0393
Classical method (IPL)
β0 0.50 0.1468 0.1552 0.1608 0.1500 0.1524
β1 0.25 0.0288 0.0311 0.0314 0.0295 0.0305
β2 –0.25 0.0416 0.0346 0.0284 0.0430 0.0356

6. APPLICATION: ANALYSIS OF AIDS DATA

Here we present an analysis of the CD4 count data from the AIDS clinical trials
described in the Introduction. The parameters are estimated by using the proposed
robust approach, and Troxel et al.’s (1998) independent pseudo-likelihood approach
under the assumption of nonignorable missingness.

Our study involves 431 patients who were diagnosed with AIDS or AIDS-related
complex. All patients were observed at the baseline period t = 0. Among the
predictors considered in the study, “Azt” is defined to be 1 if a patient is random-
ized to treatment Azt, and 0 if he/she is randomized to treatment Ddi; “Age” is
defined to be 1 if the patient is 35 or older at baseline period, and 0 otherwise; and
“BaseCD4” is defined as BaseCD4 =

√
baseline CD4 count/10. Note that since the

covariates Azt and Age are both binary, any outliers in the data can arise only
through the covariate BaseCD4. Figure 3 displays the histogram of the observed
values of BaseCD4 and the corresponding scatter plot of weights w used in our
robust analysis. The right tail area of the histogram indicates some extreme values
in BaseCD4, which are downweighted by the weight function w, as shown in the
scatter plot on the right panel.
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Figure 3
Histogram of Baseline CD4 Counts (BaseCD4) and
Corresponding Scatter Plot of Weights w Used in Robust
Analysis. Design Outliers Are Indicated by Small Weights

In this study, the response of interest is normal CD4 cell count (> 200 cells per
cubic millimeter) versus abnormal CD4 cell count (≤ 200) measured at every week
for up to 5 weeks from baseline (t=1, . . . , 5); the outcome is defined as yit = 1
if the CD4 count exceeds 200 and 0 otherwise. The cutoff of 200 cells per cubic
millimeter was chosen because of its strong predictive value for the development of
opportunistic infections, and has been adopted as a standard threshold of clinical
importance. The main question of scientific interest is the effect of treatment on
changes in CD4 cell count sufficiency over time.

We model the “success probability”, pit = P (yit = 1), as a function of the
covariates using the logistic regression:

logit(pit) = β0 + β1BaseCD4i + β2Agei + β3Azti + β4t,

for t = 1, ..., 5. We also model the probability of being observed at each follow-up
time assuming that CD4 count is nonignorably missing since sicker patients may be
more likely to come in for a further GP visit, e.g., sicker patients may have been
hospitalized. We consider the missing data model:

logit(πit) = logit{P (vit = 1|xit, yit, τ )}
= τ0 + τ1BaseCD4i + τ2Agei + τ3Azti + τ4t+ τ5yit,

for t = 1, ..., 5. Table 5 reports the RPL and IPL estimates of the model parameters
with their approximate standard errors and corresponding z values. The RPL
and IPL estimates appear to be generally close to each other for the regression
parameters. However, the standard errors of the two sets of estimators are different
to some extent. For example, the RPL estimator of the intercept term β0 has a
standard error of 1.2048, whereas the IPL estimator has a standard error of 0.9014;
for β1, the RPL and MPL methods provide standard errors of 0.7714 and 0.6073,
respectively. The smaller standard errors from the IPL method may be justified by
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the fact that when there are outliers in the data in one direction (that is, when the
outlying residuals are either all positives or all negatives), an ordinary non-robust
method generally underestimates the standard errors.

From the robust analysis of the data, the CD4 counts appear to decrease over
time. But there is no evidence of treatment effects, which indicates that the effects
of the two treatments Azt and Ddi are not significantly different. The estimates of
the parameters of the missing data model from the two methods are similar. The
probability of a response decreases over time under both methods. This probability,
however, increases when possibly unobserved response y increases from 0 to 1.

Table 5
Analysis of AIDS Data

Variable
RPL IPL

Estimate
Std
error

z value Estimate
Std
error

z value

Regression model
Intercept (β0) –10.3243 1.2048 –8.570 –9.6419 0.9014 –10.696
BaseCD4 (β1) 6.5015 0.7714 8.428 6.2027 0.6073 10.213
Age (β2) 1.4716 0.4028 3.654 1.0772 0.3663 2.941
Azt (β3) 0.1351 0.4128 0.327 0.4751 0.3491 1.361
Time (β4) –0.2254 0.0794 –2.840 –0.2330 0.0749 –3.110

Missing data model
Intercept (τ0) 1.4484 0.2493 5.810 1.4415 0.2487 5.795
BaseCD4 (τ1) 1.0552 0.3095 3.409 1.0796 0.3140 3.438
Age (τ2) –0.2596 0.1685 –1.541 –0.1835 0.1638 –1.120
Azt (τ3) –0.0960 0.1737 –0.553 –0.0956 0.1692 –0.565
Time (τ4) –0.3107 0.0345 –8.995 –0.3196 0.0352 –9.075
y (τ5) 1.3475 1.6650 0.809 0.3581 0.8467 0.423

We also investigate the residuals from the robust fit to identify any outliers
in the data. Figure 4 displays scatter plots of the standardized residuals (yit −
p̂it)/

√
p̂it(1− p̂it) for the observed data at the time-points t = 1, . . . , 5. These

plots show some large residuals at each time-point, which may have influenced the
ordinary IPL estimates and their standard errors.
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Figure 4
Standardized Residuals from the Robust Analysis of AIDS
Data
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7. DISCUSSION

We have developed the proposed RPL method to provide protection against outliers
in the data. We have briefly studied the asymptotic properties of the RPL estima-
tors. The empirical properties of these estimators were studied in simulations. The
simulation results indicate that the RPL method is almost as efficient as the IPL
method for data with no outliers. But the gain in efficiency from this robust method
is generally large when data are contaminated with outliers.

In the case of binary longitudinal data, no outliers are desired in the binary
responses. But still outliers can arise in the standardized residuals as these can be
arbitrarily large even for a binary model. The proposed robust method can be used
to bound the influence of both outliers in the residuals and leverage points in the
design space.

Note that for data with nonignorable missing responses, we assumed an indepen-
dent binary logistic model to describe the missing data mechanism. It is, however,
not clear how the robust estimators would behave under a misspecified missing data
model. A sensitivity analysis could be performed to investigate the effects model
misspecification. Work remains to be done in this direction.
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