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Abstract: This paper reviews the option pricing model and its application,
on the basis of former studies, we assume that the interest rate satisfy a given
Vasicek stochastic differential equation, using option pricing by martingale
method to study the stochastic interest rate model of European option pricing
and obtain its pricing formula. Finally, we compare the differences between
the standard European option pricing formula and European option pricing
formula under stochastic interest rate.

Key words: Option pricing; Stochastic interest rates; Vasicek model;
Brownian motions

Fang, H. (2012). European Option Pricing Formula Under Stochastic Interest
Rate. Progress in Applied Mathematics, 4 (1), 14–21. Available from http://
www.cscanada.net/index.php/pam/article/view/j.pam.1925252820120401.Z0619 DOI:
10.3968/j.pam.1925252820120401.Z0619

1. INTRODUCTION

Black, Scholes (1973) and Merton [2](1973) showed in their seminal papers that a
derivative security can be priced by creating a replicating portfolio, i. e., a portfolio
of primitive securities which matches the payoff of the derivative at maturity. Since
both the replication portfolio and the derivative offer the same payoff at maturity,
they must have the same price at any exercise time. Deviations from this equality
lead to arbitrage possibilities. Hence, the pricing by duplication procedure inhibits
arbitrage by construction. Since then the field of financial engineering has grown
phenomenally. The BlackCScholesCMerton risk neutrality formulation of the option
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pricing theory is attractive because the pricing formula of a derivative deduced from
their model is a function of several directly observable parameters (except one, which
is the volatility parameter). The derivative can be priced as if the market price of
the underlying assets risk is zero.

Detemple [8] (2005) reviewed the valuation of American options. Several semi-
analytical approximations for American option prices have been proposed in the
literature (Barone Adesi & Whaley [1], 1987; Broadie & Detemple [5], 1996; Bunch
& Johnson [6], 2000). Although these approaches are fast and accurate, they
can not easily be extended beyond the Black-Scholes model. It has been firmly
established that the Black-Scholes model is not consistent with quoted option
prices. The literature advocates the introduction of stochastic volatility or jump
store produce the implied volatility smile observed in the market. The introduction
of an additional stochastic volatility factor enormously complicates the pricing of
American options. Presently, this can only be done by means of numerical schemes,
which involve solving integral equations(Kim [16], 1990; Huang, Subrahmanyam &
Yu [13], 1996; Sullivan [20], 2000; Detemple & Tian [9], 2002), performing Monte
Carlo simulations(Broadie & Glasserman [4], 1997; Longstaff & Schwartz [17], 2001;
Rogers [19], 2002; Haugh & Kogan [12], 2004), or discrete the partial differential
equation(Brennan & Schwartz [3], 1977; Clarke & Parrott [7], 1999; Ikonen &
Toivanen [15], 2007). The early exercise premium of the American put option
depends on the cost of carry determined by interest rates. Consequently, the
volatility of interest rates does affect the decision to exercise this option at any
point in time. This fact is recognized in the literature dealing with models with
stochastic interest rates (Ho, Stapleton & Subrahmanyam [11], 1997; Menkveld &
Vorst [18], 2001; Detemple & Tian [9], 2002). This literature, however, considers
only two-factor extensions of the Black-Scholes model assuming that the volatility
of the underlying asset is constant.

In this paper, we assume that the interest rate subject to a given Vasicek
stochastic differential equations, by using martingale method to study the stochastic
interest rate model of European option pricing and obtain the pricing formula.

The paper is organized as follows. In Section 2 we describe the assumptions of the
option model, using martingale method, by solving a second order parabolic partial
differential equation, we obtain the European option pricing formula. In Section 3
we compare the differences between the standard European option pricing formulas
and European option pricing formula under stochastic interest rate.

2. EUROPEAN OPTION PRICING FORMULA

The standard BS model makes the following assumptions: the market is frictionless
(i. e., no transaction costs or taxes and no penalties for short selling); the market
operates continuously, the risk-free interest rate r is a known constant; the asset
price Xt follows Geometrical Brownian Motion (GBM) with constant volatility σ >
0 and pays no dividends; options and derivatives are European (i. e., no early
exercise) and expire at time T with a payoff that depends only on XT ; the market
is arbitrage free.

Under the assumption of GBM, the asset price Xt satisfies a stochastic
differential equation (sde) of the form

dXt = Xt(µdt+ σdBt), X0 = x0
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where µ is the growth rate of the asset. The term Bt is a standard Brownian motion
under a measure P (called the real-world measure).
Theorem 1 (Itôs Lemma) Let Xt satisfy the sde

dXt = α(xt)dt+ β(x, t)dBt

where x = Xt and let V (x, t) be any C2,1 function. Then V (Xt, t) satisfies the sde

dV =

[
Vt + αVx +

1

2
β2Vxx

]
dt+ βVxdBt

where subscripts on V denote partial derivatives. It is sometimes more instructive
to write this last sde in the equivalent form

dV =

[
Vt +

1

2
β2Vxx

]
dt+ VxdXt

To solve sde, the main method is use Itôs Lemma. For example, the sde (1)
for GBM can be solved by taking Yt(Xt) = log(Xtx0

). The sde for Yt then becomes

dYt = (µ− 1
2σ

2)dt+ σdBt, and this is readily integrated to give the representation

Xt
d
= x0 exp{(µ− 1

2
σ2)t}+ σ

√
tZ, Z ∼ N(0, 1)

Now, lets deduce the euro-options pricing formula under stochastic interest rate.
Assume the asset price Xt satisfies GBM

dXt

Xt
= rtdt+ σ1(rt, t)dB

1
t (1)

The interest rate is given by Vasicek Model [21]

drt = a(θ − rt)dt+ σ2(rt, t)dB
2
t (2)

where {B1
t : t ≥ 0}, {B2

t : t ≥ 0} are standard Brown motions,

cov(dB1
t , dB

2
t ) = ρdt, (|ρ| < 1) (3)

Let Vt = V (Xt, rt, t) denote the price of the call European option,
Vt = (Xt −K)+, K is the strike price.

Now, we need to find the option price. Using ∆– hedging technical we derive
function V (Xt, rt, t) satisfy the appropriate sde, and obtain the portfolio∏

t

= Vt −∆1tXt −∆2tPt

Choose ∆1t share of stock and ∆2t share of zero-coupon, the portfolio
∏
t is

risk-free in the period [t, t + dt]. Its also mean if choose appropriate ∆1t and ∆2t,
then we can get

d
∏
t

= dVt −∆1tdXt −∆2tdPt (4)

which is risk-free, and then

d
∏
t

= rt
∏
t

dt = rt [Vt −∆1tXt −∆2tPt] dt (5)
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Here Pt = P (rt, t;T ) is the price of zero-coupon, and satisfies a stochastic
differential equation (sde) of the form

dPt

Pt
= rtdt−XV (t)σdBt (Vasicek Model)

or
dPt

Pt
= rtdt−XC(t)σ

√
rtdBt (C-I-R Model).

By Itôs Lemma, (4) can be written as

d
∏
t

=

[
∂V

∂t
+

1

2
σ2
1X

2 ∂
2V

∂X2
+ σ1σ2ρX

∂2V

∂X∂r
+

1

2
σ2
2

∂2V

∂r2

]
dt+

(
∂V

∂X
−∆1t

)
dXt

+

(
∂V

∂r
−∆2t

∂P

∂r

)
drt −∆2t

(
∂P

∂t
+

1

2
σ2
2

∂2P

∂r2

)
dt

(6)

The third term of the right equation can be substitute as

−∆2t

(
rP − a(θ − r ∂P

∂r
)

)
dt (7)

In order to eliminate the risk, let

∂V

∂X
= ∆1t,∆2t =

∂V

∂t
/
∂P

∂r

considering (7) and (2), we obtain

∂V

∂t
+

1

2
σ2
1X

2 ∂
2V

∂X2
+ σ1σ2ρX

∂2V

∂X∂r
+

1

2
σ2
2

∂2V

∂r2
+ rX

∂V

∂X

+ a(θ − r)∂V
∂r
− rV = 0,

(
r ∈ R, X ∈ R+, t ∈ [0, T ]

) (8)

as

t = T, V (X, t, T ) = (X −K)+, (r ∈ R, X ∈ R+) (9)

Since the martingale method option pricing theory [10], there exists a martingale
measure Q, such that

Vt = EQ
(
e−

∫ T
t
rτdτ (XT −K)

+|r(t) = rt, X(t) = Xt

)
(10)

To transform the account unit valuation, we use zero-coupon Pt = P (rt, t;T ) as
a new account unit, and a corresponding price system introduced

X̂t =
Xt

Pt
,V̂t =

Vt
Pt

(11)

Then the equivalent martingale measure exists, such that (10) can be rewritten
as

Vt = EQ
U
(
V̂t|r(t) = rt, X(t) = Xt

)
= EQ

U

((
XT

PT
−K

)+
∣∣∣∣∣P (t) = Pt, X(t) = Xt

)

= EQ
U

((
X̂T −K

)+
|P (t) = Pt, X(t) = Xt

) (12)
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In the last equation, we use the fact PT = 1.
Equation (12) indicates at the time T , function V̂t can be transformed only

depends on Xt. In the Vasicek model, zero-coupon price processes satisfies

stochastic differential equation,
dPt

Pt
= rtdt−M(t)σdBt, so,

d lnPt =

[
rt −

1

2
σ2
2X

2
V (t)

]
dt− σ2XV (t)dB2

t

According to (1),

d lnXt =

[
rt −

1

2
σ2
1

]
dt+ σ1dB

2
t

As for X̂t = Xt
Pt

, such that

d ln X̂t = d lnXt − d lnPt =
1

2

[
σ2
2X

2
V (t)− σ2

1

]
dt+ σ1dB

1
t + σ2X(t)dB2

t

This formula indicates that for the Vasicek model, the stochastic differential
equations of X̂t is no longer significant contain with Xt and rt , so we can put (12)
rewritten as

V̂t = EQ
U ((

X̂T −K
)+∣∣∣∣ X̂(t) = Xt

)
This shows that for the new price system {X̂t, V̂t}, V̂t = V̂ (X̂t, t) holds.
To solve problem (8) and (9), we draw a new transformation of independent

variables,

y =
X

P (r, t;T )
(13)

and a new unknown function denotes as

V̂ (y, t) =
V (X, r, t)

P (r, t;T )
(14)

According to primarily computations,

∂V

∂t
= V̂

∂P

∂t
+ P

∂V̂

∂t
− y ∂V̂

∂y

∂P

∂t

∂V

∂r
= V̂

∂P

∂r
− y ∂V̂

∂y

∂P

∂r

∂V

∂X
=
∂V̂

∂y

∂2V

∂r2
= V̂

∂2P

∂r2
− y ∂V̂

∂y

∂2P

∂r2
− y2 ∂

2V̂

∂y2
1

P

(
∂P

∂r

)2

∂2V

∂r∂X
= −y ∂

2V̂

∂y2
1

P

∂P

∂r

∂2V

∂X2
=

1

P

∂2V̂

∂y2
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Substitute them into (8), and divided by P (r, t;T ), such that

∂V̂

∂t
+

1

2

[
σ2
1

X2

P 2
− 2σ1σ2ρ

X

P

∂P

∂r
+

1

2
σ2
2y

2

(
1

P

∂P

∂r

)2
]
∂2V̂

∂y2

+
1

P

[
∂P

∂t
+
σ2
2

2

∂2P

∂r2
+ a(θ − r)∂P

∂r
− rX

y

]
y
∂V̂

∂y

+
1

P

[
∂P

∂t
+
σ2
2

2

∂2P

∂r2
+ a(θ − r)∂P

∂r
− rP

]
V̂ = 0

Considering transformation (13) and the function P (r, t;T ) satisfies the following
second order parabolic pdes Cauchy problem

∂P
∂t +

σ2

2

∂2P

∂r2
+ a(θ − r)

∂P

∂r
− rP = 0, (r ∈ R, t ∈ [0, T ])

P (r, T ) = 1.

(15)

Then, we immediately find that function V̂ (y, t) satisfies the equation

∂V̂

∂r
+

1

2
σ̂2(t)y2

∂2V̂

∂y2
= 0

and the definitely solution condition is

V̂ (y, T ) =
V (X, r, T )

P (r, T ;T )
= (y −K)+

where K is the options strike price,

σ̂(t) =
√
σ2
1 + 2ρσ1σ2X(t) + σ2

2X
2(t), X(t) = − 1

Pt

∂P

∂r

The solution of problem (15) can be expressed by the general Black-Scholes
formula

V̂ (y, t) = yN(d1)−KN(d2) (16)

d1 =
ln y

K + 1
2

∫ T
t
σ̂2(τ)dτ√∫ T

t
σ̂2(τ)dτ

(17)

d2 = d1 −

√∫ T

t

σ̂2(τ)dτ (18)

Reverse to the original variables X, r, t and unknown function V by the
transformation (13) and (14), then (16) and (17) become

V (X, r, t) = P (r, t;T )V̂

(
X

P (r, t;T )
, t

)
= XN(d∗1)−KP (r, t;T )N(d∗2) (19)

d∗1 =
ln X

K − lnP (r, t;T ) + 1
2

∫ T
t
σ̂2(τ)dτ√∫ T

t
σ̂2(τ)dτ

(20)
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d∗2 = d∗1 −

√∫ T

t

σ̂2(τ)dτ (21)

This formula was first proposed by Merton in 1973, when he was not received
the random model of short-term interest rate r, but directly starting from the
zero-coupon Pt, assuming Pt to meet the geometric Brownian motion, under the
martingale measure, it is described by the following Stochastic differential equations,

dPt
P

= rdt+ σP dB
1
t (22)

where {B1
t : t ≥ 0} is standard Brown motion, σP is the zero-coupons (bonds)

volatility. Thus, European call option pricing formula is

V (X,P, t) = XN(d∗1)−KPN(d∗2) (23)

which

d∗1 =
ln X

K − lnP + 1
2

∫ T
t
σ̂2(τ)dτ√∫ T

t
σ̂2(τ)dτ

d∗2 = d∗1 −

√∫ T

t

σ̂2(τ)dτ

σ̂2(τ) = σ2
1 + σ2

P − 2ρσ1σP

(24)

3. CONCLUSION

Compared with the standard European option pricing formula and European option
under stochastic interest rate, there are only two differences: one is zero-coupon
replaced by e−r(T−t); another is that using σ̂ instead of stock price volatility σ1F.
Except that the pricing formulas is exactly the same form.

Analysis from the actual markets, σP � σ1 means zero-coupons (bonds)
volatility is far smaller than stock markets volatility, but in general σP = σP (t),
σP (t) is monotonic decreasing, and lim

t→T
σP (t) = 0. σ̂ and σ1 in fact has the minor

difference. Because in general, stock prices and bond prices are positively correlated,
then ρ > 0. Therefore, if σP < 2ρσ1, by Equation (24) we know σ̂ < σ1 holds.
Therefore under stochastic interest rates, the price of an option but have slightly
decreased.

If a short-term interest rate model is given, only for the Vasicek model and
Hull-White model [14], European option pricing formula has a simple form of the
Merton formula (23). For C-I-R model, the corresponding zero-coupon stochastic
model, the fluctuations in the rate of entry also including

√
rt, so it can not write

(22), so by pricing unit conversion of lower dimension than Number of purposes,
such as lost that possible style of (24).
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