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1. INTRODUCTION

Quantale was proposed by C. J. Mulvey in 1986 for studying the foundations of
quantum logic and for studying non-commutation C*-algebras. The term quantale
was coined as a combination of “quantum logic” and “locale” by C. J. Mulvey
in [1]. The systematic introduction of quantale theory came from the book [2],
which written by K. I. Rosenthal in 1990. Since quantale theory provides a powerful
tool in studying noncommutative structures, it has a wide applications, especially in
studying noncommutative C*-algebra theory [3], the ideal theory of commutative
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ring [4], linear logic [5] and so on. So, the quantale theory has aroused great
interests of many scholar and experts, a great deal of new ideas and applications of
quantale have been proposed in twenty years [6–32]. The study of the paper [32] was
introduced convergence and cauchy structure on locales, and given characterization
of Hausdorff property in locale by uniqueness of limit. In paper [33], a new
definition of convergence of filters on locale was introduced. Some characteriztions
of compactness and description of cauchy completeness are obtained.

Quantale can be regard as the non-commutative generalization of frame. The
natural question arising in this context is the following: How to introduce
convergence structure, separation Axioms, and another topological properties in
quantales? In the paper, we have introduced a new definition of convergence of
filters on quantales. We obtained a series of results of topological properties of
quantales, which generalize some results of locales.

2. PRELIMINARIES

Definition 2.1 [3] A quantale is a complete lattice Q with an associative binary
operation “&” satisfying:

a&(
∨
i∈I

bi) =
∨
i∈I

(a&bi) and (
∨
i∈I

bi)&a =
∨
i∈I

(bi&a),

for all a, bi ∈ Q, where I is a set, 0 and 1 denote the smallest element and the
greatest element of Q, respectively.

A quantale Q is said to be unital if there is an element u ∈ Q such that u&a =
a&u = a for all a ∈ Q.

Definition 2.2 [3] Let Q be a quantale and a ∈ Q.
(1) a is right-sided if and only if a&1 ≤ a.
(2) a is left-sided if and only if 1&a ≤ a.
(3) a is two-sided if and only if a is both right and left side.
(4) a is idempotent if and only if a&a = a.
Definition 2.3 [3] A quantale Q is commutative if and only if a&b = b&a for

all a, b ∈ Q.
Definition 2.4 [3] Let Q and P be quantales. A function f : Q −→ P is a

homomorphism of quantale if f preserves arbitrary sups and the operation “&”.
If Q and P are unital, then f is unital homomorphism if in addition to being a
homomorphism, it satisfies f(uQ) = uP , where uQ and uP are units of Q and P ,
respectively.

Definition 2.5 Let Q be a quantales. A non-empty subset I of Q said to be
ideal if it satisfies the following conditions:

(i) 1 6∈ I;
(ii) a ∨ b ∈ I for all a, b ∈ I;
(iii) x&r ∈ I and r&x ∈ I for all x ∈ Q, r ∈ I;
(iv) I is a down-set.
The set of all ideals of Q is denoted by Id(Q). Let I be a ideal of Q, then I is

said to be prime if a, b ∈ I and a&b ∈ I imply a ∈ I or b ∈ I. The set of prime
ideal of Q is denoted by PId(Q).

Definition 2.6 Let Q be a quantales. A non-empty subset F of Q said to be
filter if it satisfies the following conditions:

(i) 0 6∈ F ;
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(ii) a ∈ F, b ∈ Q, a ≤ b imply b ∈ F ;
(iii) a, b ∈ Q imply a&b ∈ F .
The set of all filters of Q is denoted by Fil(Q). The filter F of Q is said to be

prime if a∨ b ∈ F imply a ∈ F or b ∈ F . The set of all prime filters of Q is denoted
by PFil(Q).

Definition 2.7 Let Q be a quantale, 2 = {0, 1} is a quantale by taking x&y = 0
with x = 0 or y = 0 and 1&1 = 1. A point of Q is a onto homomorphism of quantale
from Q to 2. We shall denote the all points of Q by Pt(Q).

Definition 2.8 Let Q be a quantale, I ∈ Id(Q), p ∈ Pt(Q).
(1) The point p is called a cluster point of I iff I ⊆ Pt(Q).
(2) Ideal I is converges to p iff p is a cluster point of I and xT ∈ I for all

x ∈ p−1(1).
(3) The point p is a strongly limit point of I if p is a cluster point of I and

∀ x ∈ p−1(1), there exists a ∈ I such that a ∨ x = 1.

3. FILTER-CONVERGENCE IN QUANTALES

Definition 3.1 Let Q be a quantale. A set A ⊆ Q is called cover if ∨A = 1.
Definition 3.2 Let Q be a quantale. A filter F in O is said to be weak

convergence if ∨{xT | x ∈ F} 6= 1. F is called convergence if for each cover A
of Q such that F ∩A 6= ∅.

Example 3.3 (1) Let Q = {0, a, b, 1} be a quantale. The order relation and
“&” on Q satisfies the following Figure 1 and Diagram 1.

@
@

�
�

�
�

@
@
• •

•

•

1

0

a b

Figure 1

& 0 a b 1

0 0 0 0 0

a 0 a 0 a

b 0 0 b b

1 0 a b 1

Diagram 1

It is easy to show that F1 = {a, 1}, F2 = {b, 1}, F3 = {1} are the filters of Q.
since

0T = 1, aT = b, bT = a, 1T = 0,

then

∨{aT , 1T } = b 6= 1, ∨{bT , 1T } = a 6= 1, ∨{1T } = 0 6= 1.

Hence F1, F2, F3 are weak convergence filters of Q.
We can easy to prove that

A1 = {1}, A2 = {a, 1}, A3 = {b, 1}, A4 = {0, a, b, 1}, A5 = {a, b, 1}

are all the covers of Q. By

Fi ∩Aj 6= ∅, i = 1, 2, 3, j = 1, 2, 3, 4, 5.

Thus F1, F2, F3 are convergence filters of Q.
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(2) Let Q = ([0, 1],∧) be a quantale, x ∈ Q, but x 6= 0. It is easy to show that
Fx =↑ x is a filter of Q. ∀ y ∈ Fx. By yT = 0, we know that

∨{yT | y ∈ Fx} = 0 6= 1.

Thus Fx is not only a weal convergence filter, but also a convergence filter.
(3) Let Q = {0, a, b, c, d, 1} be a quantale, the relation relation and “&” given

by following Figure 2 and Diagram 2.
We can show that F1 = {b, c, 1} and F2 = {a, 1} are the filters of Q, they are

not only weak convergence filters, but also convergence filters.
It is easy verify that every convergence filters is weak convergence filters. Is

there a weak convergence filter which is a convergence filter? Next, we will discuss
this question.

CN: Let X be a nonempty subset of Q, for any nonempty finite subset F of X
such that x1&x1& · · · · · ·&xn 6= 0, where xi ∈ F , i = 1, 2 · · · , n.

Lemma 3.4 Let Q be a commutative and idempotent quantale, F be a maximal
filter of Q. Then F is the maximal subset satisfies CN.

Proof. Let F ′ satisfies CN with F ⊆ F ′ ⊆ Q. Put

F =↑ {x1&x1& · · · · · ·&xn | xi ∈ F, i = 1, 2 · · · , n, n ∈ N+}.

Then F is filter of Q, and F ′ ⊆ F . Thus F ⊆ F . Since F is the maximal filter of
Q, so F = F , which implies F = F ′.

Theorem 3.5 Let Q be a commutative and idempotent quantale, F ∈ Fil(Q).
If Q is the maximal filter, then F is convergence filter iff F is weak convergence
filter.

Proof. Let F is a convergence filter of Q, suppose ∨{xT | x ∈ F} = 1, i. e., the set
{xT | x ∈ F} be a cover of Q. Thus there exists x ∈ F such that xT ∈ F . Therefore
x&xT ∈ F , i.e., 0 ∈ F , which is a contradiction. Hence F is a weak convergence
filter.

Conversely, let F be a weak convergence filter, and A is any cover of Q. Suppose

F ∩A = ∅, i.e.,∀ a ∈ A, a ∈ Q \ F.

Since F is a maximal filter. By Lemma 5.4 we know that for any a ∈ A, there is a
a′ ∈ F such that a′&a = 0. Thus a ≤ a′T . Therefore, ∨{xT | x ∈ F} ≥ ∨A = 1,
which is a contradiction. Hence F be a convergence filter of Q.

Definition 3.6 Let Q be a quantale, n be a nature number, F be a filter of
Q. Filter F is said to n-convergence iff for any cover A of Q with |A| ≤ n, which
implies F ∩A 6= ∅. Filter F is called finite convergence iff for any finite cover A, we
have F ∩ A 6= ∅. The quantale Q is called n-completeness iff every n-convergence
filter of Q is convergence filter.

Definition 3.7 Let Q be a quantale. A element a ∈ Q is compact iff for every
S ⊆ Q with a ≤ ∨S, there is a finite subset F ⊆ S with a ≤ ∨F . Quantale Q is
called compacted iff the greatest element 1 is compact.

Theorem 3.8 Let Q be a quantale. Then the following are true:
(1) Q is 1-completeness iff for any filter of Q is convergence;
(2) If m ≤ n, then n-completeness quantale are m-completeness quantale;
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(3) If Q is two sided and 1&1 = 1, then Q is compact iff for any finite convergence
filter of Q is convergence.

Proof. (1), (2) are clear.
(3) “⇐ ” is clear.
“⇒ ”. Let S ⊆ Q with 0 ∈ S, and for any finite subset F ⊆ S such that ∨F 6= 1.

By Zorn lemma we know that there exists a maximal subset S′ such that S ⊆ S′,
for any finite subset F ⊆ S, ∨F 6= 1. Put F ∗ = Q \ S′. Next, we will show that F ∗

is a finite convergence filter of Q.
Firstly, it is obvious that 0 ∈ S ⊆ S′, then 0 ∈ Q \ F ∗.
Secondly, ∀ a ∈ F ∗, b ∈ Q. If a ≤ b, then there exists finite elements

a1, a2, · · · · · · , an ∈ S′ such that

a ∨ a1 ∨ a2 ∨ · · · · · · ∨ an = 1.

Thus

b ∨ a1 ∨ a2 ∨ · · · · · · ∨ an = 1, i.e., b ∈ F ∗.

A last, ∀ a, b ∈ F ∗, then there exists finite elements

a1, a2, · · · · · · , an ∈ S′, b1, b2, · · · · · · , bn ∈ S′

such that

a ∨ a1 ∨ a2 ∨ · · · · · · ∨ an = 1, b ∨ b1 ∨ b2 ∨ · · · · · · ∨ bn = 1.

Thus

(a ∨ a1 ∨ a2 ∨ · · · · · · ∨ an)&(b ∨ b1 ∨ b2 ∨ · · · · · · ∨ bn) = 1&1 = 1.

Since Q is two sides quantale, so

(a ∨ a1 ∨ a2 ∨ · · · · · · ∨ an)&(b ∨ b1 ∨ b2 ∨ · · · · · · ∨ bn)

≤(a&b) ∨ a1 ∨ a2 ∨ · · · · · · ∨ b1 ∨ b2 ∨ · · · · · · ∨ bn.

Hence

(a&b) ∨ a1 ∨ a2 ∨ · · · · · · ∨ b1 ∨ b2 ∨ · · · · · · ∨ bn = 1,

which implies a&b ∈ F ∗. Therefore, F ∗is a filter of Q.
Let A is a cover of Q, then ∨A = 1. By S′ is a maximal subset, then there

exists a ∈ A such that a ∈ F ∗. Thus F ∗ is a finite convergence filter. Hence F ∗

is a convergence filter, i. e., ∨S′ 6= 1. Since S ⊆ S′, ∨S 6= 1. Therefore Q is
compact.

Definition 3.9 Let Q be a quantale, j : Q −→ Q is a quantale nuclei. The
quotient quantale Qj is called retract quotient of Q if for any cover A of Qj implies
j−1(A) is a cover of Q.

Theorem 3.10 Let Q be a n-completeness quantale, j : Q −→ Q is a quantale
nuclei. Then the following are true:

(1) If F is a n-convergence filter of Qj , then j−1(F ) is a convergence filter of Q;
(2) If Qj is a retract quotient of Q, then Qj is a n-completenss quotient;
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Proof. (1) Let A be a cover of Q with |A| ≤ n. We will show that j−1(F ) is a filter
of Q.

Firstly, 0 ∈ Q \ j−1(F ) is clear. Otherwise, if 0 ∈ j−1(F ), then j(0) ∈ F , which
is a contradiction with F is a n-convergence filter. Secondly, if a ∈ j−1(F ) and
a ≤ b, then j(b) ∈ F by F is a up-set. Hence b ∈ j−1(F ). Therefore, j−1(F ) is a
up-set. At last, ∀ x, y ∈ j−1(F ), then j(x), j(y) ∈ F , and j(x&y) = j(j(x)&j(y)) =
j(x)&jj(y) ∈ F . Hence, x&y ∈ j−1(F ).

We shall show that j−1(F ) is a convergence filter of Q. Since j(A1) ⊆ Qj = j(Q),
and j : Q −→ Qj be a surjective homomorphism of quantale, then

j(

Q∨
A1) = j(1) = 1Qj .

Thus
Qj∨
{j(x) | x ∈ A1} = j(

Q∨
A1) = 1Qj

.

Therefore {j(x) | x ∈ A1} is a cover of Qj with | j(A1) |≤ n. By F be a n-
convergence filter of Qj . We know j(A1) ∩ F 6= ∅, then there exists x1 ∈ A1, such
that j(x1) ∈ F , i.e., x1 ∈ j−1(F ). Thus j−1(F ) ∩ A1 6= ∅. Hence j−1(F ) be a
n-convergence filter of Q. Since Q be a n-completeness quantale, then j−1(F ) is a
convergence filter of Q.

(2) Let F1 is a n-convergence filter of Qj , A is a cover of Qj , i.e.,
Qj∨

A = 1Qj .
Since Qj be a retract quotient of Q, then j−1(A) = {a ∈ Q | j(a) ∈ A} is a cover of
Q. By (1) we know j−1(F1) is a n-convergence filter of Q. Thus j−1(A)∩j−1(F1) 6=
∅, i.e., there is x ∈ Q such that j(x) ∈ A ∩ F1. Hence A ∩ F1 6= ∅. Thus F1 is a
convergence filter of Qj . Therefore, Qj is n-completeness.

Theorem 3.11 Let Q and P are n-completeness quantales. Then be Q × P a
n-completeness quantales.

Proof. Let F be a n-convergent filter of Q × P and A be a cover of Q × P , p1, p2
are projective from Q×P to Q and P , respectively. We shall prove that p1(F ) and
p2(F ) are n-convergence filters of Q and P , respectively.

It is easy prove that p1(F ) and p2(F ) are filters. Next, we will check that p1(F )
and p2(F ) n-convergence filters.

Let A1 = {a1, a2, · · · · · · , an} is a finite cover of Q. Define q1 : Q −→ Q × P
such that x 7−→ (x, 1P ). Then q1(A1) is a cover of Q × P , and | q1(A1) |≤ n is
obvious. Since F is a n-convergence filter of Q × P , then F ∩ q1(A1) 6= ∅. Thus
there exists (x1, x2) ∈ F ∩ q1(A1). Hence x1 ∈ A1 ∩ p1(F ) 6= ∅. Therefore p1(F )
is a n-convergent filter of Q. Similarly, we can prove that p2(F ) is a n-convergent
filter of P .

Next, we shall prove that F is a convergent filter of Q× P .
Firstly, It is easy prove that p1(F ) and p2(F ) are cover of Q and P , respectively.

p1(F ) and p2(F ) are n-convergent filters by proof of above. Since Q and P are
n-completeness quantales, then p1(F ) ∩ p1(A) 6= ∅, p2(F ) ∩ p2(A) 6= ∅, i. e., there
exists x0 ∈ p1(F ) ∩ p1(A), y0 ∈ p2(F ) ∩ p2(A). Thus (x0, y0) ∈ F ∩ A. Therefore
Q× P is a completeness quantale.

Theorem 3.12 Let {Qi}i∈I be a family n-completeness quantales. Then
∏
i∈I

Qi

is n-completeness quantale.
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4. HAUSDORFF PROPERTIES OF QUANTALE

Definition 4.1 A quantale Q is called Hausdorff quantale or T2 quantale if for any
ideal of Q has one limit point at most.

Remark 4.2 Q is a Huasdorff quantale iff for any ideal I of Q, there exist unique
prime element r of Q such that I ⊆↓ r.

Definition 4.3 Let Q be a quantale, a, b ∈ Q, b is said to be well inside of a if
there exist c ∈ Q with b&c = 0 and c ∨ a = 1. We shall denote this by a � b.

Definition 4.4 A quantale Q is called T ∗2 quantale if for any r ∈ Pr(Q), we
have r = ∨{x ∈ Q | x � r}.

It is easy show that every regular quantale is T ∗2 quantale.
Definition 4.5 Let Q be a quantale, Q is said to be T ∗∗2 quantale if for any

r1, r2 ∈ Pr(Q) with r1 6= r2, there exists a, b ∈ Q such that a 6≤ r1, b 6≤ r2 and
a&b = 0.

Example 4.6 (1) Let Q be a quantale, the order relation and binary operation
& on Q as following Figure 2 and Diagram 2.

@
@

�
�

�
�

@
@
• •

•

•

•

1

0

a cb

Figure 2

& 0 a b c 1

0 0 0 0 0 0

a 0 b c a 1

b 0 c a b 1

c 0 a b c 1

1 0 1 1 1 1

Diagram 2

Define p : Q −→ 2, such that

p(x) =

{
1, x ∈ {a, b, c, 1},
0, x = 0.

for all x ∈ Q. We shall show that p is the unique limit point of I = {0}. I = {0}
is the only ideal of Q. Thus Q is a T2 quantale. Since Pr(Q) = {0}, by Definition
6.5, we know that Q be a T ∗∗2 quantale.

(2) Let Q = {0, a, b, 1} with 0 ≤ a, b ≤ 1, a and b are non-comparability. Then
(Q,∧) is a quantale.

It is easy check that Pr(Q) = {a, b} and

0 � 1, a � 1, b � 1, 1 � 1, 0 � a, a � a, 0 � b, b � b, 0 � 0.

Hence
∨ ⇓ a = ∨{0, a} = a, ∨ ⇓ b = ∨{0, b} = b.

Therefore, Q is T ∗2 quantale.
Theorem 4.7 Let Q be a quantale. Then Q is T2 iff Q is T ∗∗2 .

Proof. Let Q is a T2 quantale. Suppose r1, r2 ∈ Pr(Q) with r1 6= r2. ∀ a, b ∈ Q
such that a ≤ r1 or b ≤ r2 or a&b 6= 0. Put I =↓ (r1 ∧ r2). It is easy show that I
is a ideal of Q.

Let pr1 and pr2 are points correspond with r1 and r2, respectively. Next, we
shall prove pr1 and pr2 are limit points of I.
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Since
r1 = ∨p−1r1 (0), r2 = ∨p−1r2 (0), ∀ x ∈ I, x ≤ r1 ∧ r2,

then pr1(x) ≤ pr1(r1) = 0, which implies that x ∈ p−1r1 (0). Similarly, x ∈ p−1r2 (0).
Thus I ⊆ p−1r1 (0) ∩ p−1r2 (0). Therefore, pr1 and pr2 are the cluster points of I.

For any y ∈ p−1r1 (1). Since y&yT = 0, but y 6≤ r1, then yT ≤ r1. Similarly,
yT ≤ r2. Thus yT ≤ r1 ∧ r2. Hence, yT ∈ I. Therefore pr1 is a limit point of I.
Similarly, pr2 is a limit point of I. By Q is T2 quantale and remark 6.2. we know
r1 = r2, which is a contradiction.

Conversely, suppose I is a ideal of Q, pr1 and pr2 are the limit points of I with
pr1 6= pr2 , let r1 and r2 are prime elements of Q corresspend with pr1 and pr2 ,
respectively. Then I ⊆ p−1r1 (0) ∩ p−1r2 (0). Since r1 6= r2, Q is a T ∗∗ quantale, then
there exist a, b ∈ Q such that

a1 6≤ r1, b1 6≤ r2, a1&b1 = 0.

By a1 6≤ r1, we know that a1 ∈ p−1r1 (1), but pr1 be a limit point of I. Thus aT1 ∈ I.
Since a1&b1 = 0, then b1 ≤ aT1 . Therefore, b1 ∈ I, which is a contradiction with
b1 6≤ r2.

Theorem 4.8 Let Q is a communicative quantale. If Q be a T ∗2 quantale, then
Q is a T ∗∗2 quantale.

Proof. Suppose is not T ∗∗2 quantale, then there exists r1, r2 ∈ pr(Q) with r1 6= r2,
∀ a, b ∈ Q, such that a ≤ r1 or b ≤ r2 or a&b 6= 0. ∀ x ∈ Q, if x � r1 and
x 6≤ r2, then for any y ∈ Q with x&y = 0, we kown y ≤ r1 by the hypothesis. Thus
xT ∨ r1 ≤ r1 6= 1, which is a contradiction with x � r1. This implies that if x � r1,
then x ≤ r2. Therefore

r1 = ∨{x ∈ Q | x � r1} ≤ r2.

Similarly, we know r2 ≤ r1. Thus r1 = r2, which is a contradiction.

Definition 4.9 Let Q be a quanatel, a, b ∈ Q with a 6= 1. Define b �1 a iff b ≤ a
and bT 6≤ a.

Definition 4.10 A quantale Q is called T ′2 quantale if for any x ∈ Q, x = ∨{y ∈
Q | y �1 x}.

Example 4.11 (1) Let Q be a quantale, with a binary operation “&” defined
by ∀ x, y ∈ Q, x&y = 0. Let a, b ∈ Q such that a 6= 1 and b ≤ a. Since

bT = ∨{c ∈ Q | b&c = 0} = 1 6≤ a,

then b �1 a. Hence ∀ x ∈ Q. If x 6= 1, we have

∨{y ∈ Q | y �1 x} = ∨ ↓ x = x.

Therefore Q is a T ′2 quantale.
(2) Let X be a non-empty set, P (X) is the powerset of X. It is easy check that

(P (X),∩) be a quantale. Let A,B ∈ P (X) such that A 6= 1 and B ≤ A. Since
BT = ∨{C ∈ P (Q) | B ∩ C = ∅} = B′ 6⊆ A, then (P (X),∩) is a T ′2 quantale.

Theorem 4.12 Let Q is a idempotent and right-sided spatial quantale, Q is a
T ′2 quantale. Then Q is a T ∗2 quantale.
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Proof. Let Q is a T ∗2 quantale, then for any r ∈ Pr(Q), we have r = ∨{a ∈ Q |
a �1 r}. ∀ a ∈ Q, if a �1 r, then r ∨ aT = 1. Assume b = r ∨ aT 6= 1. Since Q is a
T ∗2 quantale, then b = ∨{d ∈ Q | d �1 b}. Let d ∈ Q with d �1 b. If d 6≤ r, then

dT ≤ r ≤ bbyd&dT = 0 < randr ∈ Pr(Q),

which is a contradiction with d �1 b. Hence d ≤ r. Therefore

∨{d ∈ Q | d �1 b} ≤ r 6= b,

which is a contradiction. Hence r ∨ aT = 1. Thus

a&aT = 0, aT ∨ r = 1, i.e., a � r.

Hence r = ∨{x ∈ Q | x � r}. This means that Q is a T ∗2 quantale.
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