One Conclusion on the Essential Singularity of Analytic Function

ZENG Lijiang1,*

1Research Centre of Area Economy, Zunyi Normal College, Zunyi 563099, GuiZhou, China
*Corresponding author.
Address: Research Centre of Area Economy, Zunyi Normal College, No: 830, Shanghai Road, Zunyi 563099, Guizhou Province, China.

Supported by Natural Science Foundation (13116339) of China; Natural Science Foundation ([2012]2069) of Science and Technology Department of Guizhou; Natural Science Foundation ([2012]712) of Education Department of Guizhou; Science Research item (2010028) of Zunyi Normal College.

Received December 30, 2011; accepted March 31, 2012

Abstract
In the article, the isolated singularity, removable singularity, zero, pole, essential singularity and other concepts and properties were used; Two lemmas on the isolated singularity were proved first, and to use these lemmas, one property of essential singularity was proved then.

Key words
Analytic function; Isolated singularity; Essential singularity; Laurent expansion

1. INTRODUCTION
The deep research shows that theory of complex function has extensive application in physics, engineering, and other subject[1–6].

As the important research content, in the article, the isolated singularity, removable singularity, zero, pole, essential singularity and other concepts and properties[7–8] were used; Two lemmas on the isolated singularity were proved first, and to use these lemmas, one property of essential singularity was proved then.

2. THE PROOF OF LEMMAS; PREPARATION

Lemma 1 Let \(f \) be analytic on a region \(A \) and have an isolated singularity[1–6] at \(z_0 \).

(i) \(z_0 \) is a removable singularity[9–10] iff any one of the following conditions holds: (1) \(f \) is bounded in a deleted neighborhood[11–14] of \(z_0 \); (2) \(\lim_{z \to z_0} f(z) \) exists; or (3) \(\lim_{z \to z_0} (z - z_0)f(z) = 0 \). (Note that it is not immediately evident that these three conditions are equivalent but the assertion is that they are and that each is equivalent to the condition that \(f \) has a removable singularity.

(ii)\(z_0 \) is a simple pole iff \(\lim_{z \to z_0} (z - z_0)f(z) \) exists and is unequal to zero. This limit equals the residue of \(f \) at \(z_0 \).
(iii) z_0 is a pole of order $\leq k$ (or possibly a removable singular) iff any one of the following conditions holds: (1) There is a constant $M > 0$ and an integer $k \geq 1$ such that $f(z) \leq \frac{M}{|z-z_0|^k}$ in a deleted neighborhood of z_0; (2) $\lim \limits_{z \to z_0} it(z - z_0)^k f(z) = 0$; or (3) $\lim \limits_{z \to z_0} it(z - z_0)^{k+1} f(z)$ exists.

(iv) z_0 is a pole of order $k \geq 1$ iff there is an analytic function φ defined on a neighborhood U of z_0 such that $U \setminus \{z_0\} \subset A$ such that $\varphi(z_0) \neq 0$, and such that

$$f(z) = \frac{\varphi(z)}{(z-z_0)^k} \text{ for } z \in U, \; z \neq z_0.$$

Proof. (i) If z_0 is a removable singularity, then in a deleted neighborhood of z_0 we have $f(z) = \sum \limits_{n=0}^{\infty} a_n(z-z_0)^n$. Since this series represents an analytic function in an undeleted neighborhood of z_0, obviously conditions (1), (2), and (3) hold. Conditions (1) and (2) each obviously implies condition (3), so it remains to be shown that (3) implies that z_0 is a removable singularity for f. We must prove that each b_k in the Laurent expansion

$$f(z) = \sum \limits_{n=0}^{\infty} a_n(z-z_0)^n$$

has a pole of order k. Let b_k be the z_0 be given. By condition (3) can choose $r>0$ with $r < 1$ such that γ_r is a circle whose interior (except for z_0) lies in A. Let $\varepsilon > 0$ be given. Then we can choose b_k such that $\varphi(\zeta) \neq 0$ in A.

Then

$$|b_k| \leq \frac{1}{2\pi} \int_{\gamma_r} |f(\zeta)||(z-z_0)^{k-1}d\zeta| \leq \frac{1}{2\pi} \int_{\gamma_r} |\zeta|d\zeta = \frac{\varepsilon}{2\pi} k-1 \leq \varepsilon$$

Thus $|b_k| \leq \varepsilon$. Since ε was arbitrary, $b_k=0$. We shall use (iii) to prove (ii). so (iii) is proved next.

(iii) This proof follows immediately by applying (i) to the function $(z-z_0)^k f(z)$, which is analytic on A. (One can easily obtained the details of the proof) (ii) If z_0 is a simple pole, then in a deleted neighborhood of z_0 we have

$$f(z) = \frac{b_1}{z-z_0} + \sum \limits_{n=0}^{\infty} a_n(z-z_0)^n = \frac{b_1}{z-z_0} + h(z)$$

where h is analytic at z_0 and where $b_1 \neq 0$ by the Laurent expansion. Hence

$$\lim \limits_{z \to z_0} it(z-z_0) f(z) = \lim \limits_{z \to z_0} it(b_1 + (z-z_0) h(z)) = b_1.$$

On the other hand, suppose that $\lim \limits_{\gamma \to z_0} \frac{it(z-z_0)}{f(z)}$ exists and is unequal to zero. Thus $\lim \limits_{z \to z_0} it(z-z_0)^2 f(z) = 0$. By the result obtained in (iii), this says that

$$f(z) = \frac{b_1}{z-z_0} + \sum \limits_{n=0}^{\infty} a_n(z-z_0)^n = \frac{b_1}{z-z_0} + h(z)$$

for some constant b_1, and analytic function h. where b_1 may or may not be zero. But then $\lim \limits_{z \to z_0} f(z) = b_1 + (z-z_0) h(z)$, so $\lim \limits_{z \to z_0} it(z-z_0) f(z) = b_1$. Thus, in fact, $b_1 \neq 0$, and therefore f has a simple pole at z_0.

(iv) z_0 is a pole of order $k \geq 1$ iff

$$f(z) = \frac{b_k}{(z-z_0)^k} + \frac{b_{k-1}}{(z-z_0)^{k-1}} + \cdots + \frac{b_1}{(z-z_0)} + \sum \limits_{n=0}^{\infty} a_n(z-z_0)^n$$

$$= \frac{1}{(z-z_0)^k} \left\{ b_k + b_{k-1}(z-z_0) + \cdots + b_1(z-z_0)^{k-1} + \sum \limits_{n=0}^{\infty} a_n(z-z_0)^{n+k} \right\}, \quad (b_k \neq 0)$$

(If $b_k \neq 0$). This expansion is valid in a deleted neighborhood of z_0. \varphi(z) = b_k + b_{k-1}(z-z_0) + \cdots + b_1(z-z_0)^{k-1} + \sum \limits_{n=0}^{\infty} a_n(z-z_0)^{n+k}$. Then $\varphi(z)$ is analytic in the corresponding undeleted neighborhood (since it is a convergent power series) and $\varphi(z_0) = b_k \neq 0$. Conversely, given such a φ, we can retrace these steps to show that
Theorem 1 Let f be analytic on a region A and let $z_0 \in A$. We say that f has a zero of order k at z_0 if $f(z_0) = 0, \ldots, f^{(k-1)}(z_0) = 0$, $f^{(k)}(z_0) \neq 0$.

From the Taylor expansion

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!}(z - z_0)^n$$

we see that f has a zero of order k if, in a neighborhood of z_0, we can write $f(z) = (z - z_0)^k g(z)$ where $g(z)$ is analytic at z_0 and $g(z_0) = \frac{f^{(k)}(z_0)}{k!} \neq 0$. Thus from Lemma 1(iv), let $\varphi(z) = g(z)^{-1}$ we get the following.

Lemma 2 If f is analytic in a neighborhood of z_0, then f has a zero of order k at z_0 if $\frac{1}{f(z)}$ has a pole of order k at z_0. If h is analytic and $h(z_0) \neq 0$, then $\frac{h(z)}{f(z)}$ also has a pole of order k.

Obviously, if z_0 is a zero of f and f is not identically equal to zero in a neighborhood of z_0, then z_0 has some finite order k. (Otherwise the Taylor series would be identically zero.)

Definition 1 In practical problems we usually are dealing with a pole. It is not hard to show that if $f(z)$ has a pole (of finite order k) at z_0, then $\left| f(z) \right| \to \infty$ as $z \to z_0$. However, in case of an essential singularity, $|f|$ will not, in general, approach ∞, as $z \to z_0$. In fact, we have the following result.

3. FINAL THEOREM AND ITS PROOF

Theorem 1 Let f have an essential singularity at z_0 and let U be any (arbitrarily small) deleted neighborhood of z_0. Then, for all $w \in C$, except perhaps one value, the equation $f(z) = w$ has infinitely many solutions z in U.

Theorem 1 actually belongs in a more advanced course. However, we can easily prove a simple version.

Theorem 2 Let f have an essential singularity at z_0 and let $w \in C$. Then there exist $z_1, z_2, z_3, \ldots, z_n \to z_0$, such that $f(z) \to w$.

Proof If the assertion were false, there would be a deleted neighborhood U of z_0 and an $\varepsilon > 0$ such that $|f(z) - w| \geq \varepsilon$ for all $z \in U$. Let $g(z) = \frac{1}{f(z) - w}$. Thus on U, g is analytic, and since $g(z)$ is bounded on $U(|g(z)| \leq \varepsilon^{-1}) \in C$ is removable singularity by Lemma 1(i). Let k be the order of the zero of g at z_0 (set $k = 0$ if $g(z_0) = 0$). (The order must be finite because otherwise, as mentioned previously, by the Taylor Theorem, g would be zero in a neighborhood of z_0, whereas g is 0 nowhere on U.) Thus $f(z) = w + \frac{1}{g(z)}$ is either analytic (if $k=0$) or has a pole of order k by Lemma 2. This conclusion contradicts our assumption that f has an essential singularity.

4. ACKNOWLEDGMENTS

This work was supported by Natural Science Foundation (13116339) of China; Natural Science Foundation ([2012]2069) of Science and Technology Department of Guizhou; Natural Science Foundation ([2012]712) of Education Department of Guizhou; Science Research item (2010028) of Zunyi Normal College.

REFERENCES

