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Abstract

The instability of two superposed homogeneous streamiidsfia discussed under gravitational force and
uniform magnetic field in porous medium. The two streams aseing in opposite directions with equal
velocities parallel to the horizontal plane. The soluti@s lheen obtained through the normal mode tech-
nigue, and the most general dispersion relation has beaimebtas 20th-order equation for the growth rate
with quite complicated cdicients. Solving numerically the dispersion relation fopagpriate boundary
conditions with high Alfvén and sound velocities, it is falithat fluid velocities and porosity of porous
medium have stabilizingffects, and Alfvén and sound velocities have destabiliziteres, while medium
permeability has a slightly stabilizingtect, and the dynamic viscosities have slightly destabijzTect.
The limiting cases of non-porous medium have also beenedudi both streaming and stationary fluids.
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1. INTRODUCTION

The Kelvin-Helmholtz instability of the boundary layer teten two fluids in relative motion is of great
interest in many astrophysical and geophysical situaticarsging from the interaction of the solar wind
with the magnetospheric bound&hand cometary taild, to the dynamics of jets in nuclei extragalactic
radio sourcé$* and young stellar objedts Many studies have therefore been devoted to understanding
the behavior of this instability under the influence offeiient physical ingredients, typical of thefférent
environmentél. Starting from the classical results for the incompressiaise, which can be summarized

in Chandrasekhar’s bobk the efects of compressibility have been introduced both in the ydrody-
namical situatiol$!, and in the magnetohydrodynamic da¥&. The dfect of a finite thickness of the
shear layer has been discussed byRhy
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The gravitational instability problem is of central impamte in understanding the process of forma-
tion of stars, planets, comets, asteroids and other astsagth objects. Initially Jeafs! considered the
gravitational instability of non-viscous ideal fluid andbsied that the system becomes unstable for all per-
turbations of wave numbers less thein= [47Gp/C?]Y/2, whereC is the velocity of sound in the medium
of densityp andG is the gravitational constant. Since then, several rekesstave studied this problem
under varying assumptions of hydrodynamics and hydrontaggned comprehensive account of these in-
vestigations has been given by ChandraséKhiarhis monograph on hydrodynamic and hydromagnetic
stability. Chandrasekh@f®!, Chandrasekhar and Fettfi considered the stability of an infinite homoge-
neous and static medium under uniform magnetic field ancdbumifotation. He found the critical wave
numberk® given byk* = [(4nGp — 4Q?)/(M? + C?)]*/2, whereM = [(uH?/(4np)]*/? is the Alfvén velocity
of the medium. Then, Segn@&f! or Radwan and Elaz&8! attempted this problem in filerent cases under
uniform magnetic field and using linear perturbation theyfd that the magnetic field has a strong stabiliz-
ing effect on the system. Singh and Khia?€% discussed the instability of two semi-infinite homogeneous
streams of infinite conductivity in absence and presencaiédium magnetic field, respectively. They found
the critical wave number in some limiting cases of interébie Jeans’ instability problems have been stud-
ied by several researchers under the separate or simultsgfects of diferent physical parameté&ss2l,

In all such investigations, carried out separately undeyimg assumptions, it was found that the condi-
tion of instability has been determined by the Jeans coitewith some modifications, introduced by the
inclusion of the various parameters.

Flows through porous media has been a subject of great atterethe last several decades. This
interest was motivated by numerous engineering applicgtio various disciplines, such as geophysical,
thermal and insulation engineering,the modelling of pdcighere bed, the cooling of electronic systems,
groundwater hydrology, chemical catalytic reactors, @ecgprocesses, grain storage devices, fiber and
granular insulation, petroleum reservoirs, coal comlnssground water pollution and filtration processes,
to name just a few of these applicatiéds Several other applications of the problems of flow throufh
porous media in geophysics may be found in the the works olid#", Ingham and Pd@!, Nield and
Bejari®®l, and Vafal?”). When considering flow in a porous medium, however, one nidress some addi-
tional complexities, which are principally due to the irstetions between the fluids and the porous material.
Kelvin-Helmholtz instability for flow in porous media hadratted little attention in the scientific litera-
ture. Raghaven and Mard$&hhave studied the Kelvin-Helmholtz instability for flow in ymus media for
Darcy-type flow. they used linear stability analysis to @& characteristic equation for the growth rate
of the disturbance and then solved this equation numeyicaliey conclude that Kelvin-Helmholtz insta-
bility is possible only if the heavier fluid is overlying thiglht one (statically unstable situation). Sharma
and Spand¥’ investigated the instability of the plane interface betwégo uniforms,superposed, and
streaming fluids through porous media. A linear theory ofvifeHelmholtz instability for parallel flow in
porous media was introduced by B&Lfor Darcian and non-Darcian flows. In both cases, he found tha
the velocities should exceed some critical value for thealn$ty to manifest itself.

On the other hand, magnetohydrodynamics (or MHD for sheitt)é macroscopic theory of electrically
conducting fluids move in a magnetic field, providing a powkaind practical theoretical framework for
describing both laboratory and astrophysical plasmasa@pé is a hot ionized gas containing free electrons
and ions). The simplest example of an electrically condigdfiuid is a liquid metal, for example, mercury
or liquid sodiunt*Yl. However, the major use of MHD is in plasma physics. It is byrmeans obvious that
plasmas can be regarded as fluids since the mean free pattd@lfsions between the electrons and ions
are macroscopically lofffl. For the importance of studying magnetohydrodynamic fléwsugh porous
media see the excellent investigations of Geindreau an@hlt#3*4, and Zakaria et df®!.

In this paper, we have studied the hydromagnetic instgloifitwo superposed homogeneous conducting
fluids streaming in opposite directions with equal horizabrelocities under gravitational force and high
Alfvén and sound velocities in porous medium. The perttiologpropagation is taken simultaneously along
and perpendicular to streaming motion in the horizontafiace. The most general dispersion relation has
been obtained as 20th-order equation for the growth rate quitte complicated cdkcients. Solving nu-
mericaly the dispersion relation for appropriate boundanyditions with high Alfvén and sound velocities.
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The stability criteria are obtained for the problem and désed analytically and numerically. The obtained
results are listed in the conclusions section with the maiirigs of various physical parameters including
in the analysis.

2. FORMULATION OF THE PROBLEM

We consider two infinitely conducting semi infinite homogeune streams separated by the plane 0.
The upper regiorz > 0 is of densityp,, dynamic viscosity,, pressureP,, and the lower regioz < 0
is of densityp,, dynamic viscosity,, pressureP,. The streams are moving along the positive direction
of x-axis with velocitiesv, andV, in the upper and lower regions, respectively. A uniform neigrfield
H = (H, 0, 0) acts in the direction of streaming motion, i.e. puwsitilirection ofx-axis. C, andC, are
the velocities of sound in the regioms> 0 andz < 0, respectivelyg is the porosity of the medium, and
k, is the medium permeability. The analysis is carried out tyngwave propagation in the horizontal
planez = 0. By retaining the first-order terms in the perturbed quasti we can obtain the linearized
perturbation equations from the governing equations ofanot

Following Chandrasekh@l, the linearized perturbation equation of the problem inaegular compo-
nents form are

whereU, = (ur, Vv, W), dpr, 6Py, d¢r andh, = (hy, hy, hy), denote, respectively, the perturbations in
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velocity vector, density, pressure, gravitational pasdrend magnetic field, there the subscript= 1,2
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indicate the equations in the two regians 0 andz < 0, respectively. The equations in both the streams
are similar.

Let us discuss the stability of the streams for horizontaleyaropagation of the perturbation. Thus we
take the perturbation of the form

¥(2) expli (kox+ kyy) + nt] (11)
wherek,, ky are the real numbers denoting horizontal wave numbers tidifation propagation along and
perpendicular to streaming motion, respectivealys the growth rate of the disturbance an(z) is some
function ofz; andk given byk = k2 + k§ being the wavenumber of perturbation propagation.

Using Eq. (11), then the linearized perturbation Egs. (D)€an be written in the form

(pf‘zr’ + ‘i) U= —iked Py + iKeor 0 (12)

& kK
Pror M, . . teH 1. .
( ;2’ + E)vrz —iky6P; + ikyordgp + % [||<x(hy)r —iky (hx),] (13)
H _

(25 + 5 we=-DoP: + 1 Do~ 222 [0 (), = () 14)

av0pr=—pr (it + ikyvr + D) (15)

ar (h)r=—H (ikyv + Dw) (16)

o (hy),=H (ika) (17)

oy (hg),=H (ikuwr) (18)

ik (); + ik, (hy) + D (hy), =0 (19)

(D? - K?) ¢ = —4rGopy (20)

6P, =C?6p; (21)

whereD = d/dzando; = en + iksV;. Solving these equations, we obtain

pror K\ O 2 12 - c? 2 _ 12\
( &2 ! kl) 4nGpy (D k )5¢r "~ 4nG (D k) 0r
H
+pr (D7 = K2) o6 - 2= (D7 - ) (hy), (22)
and
__Hl o e e
(0 =1+ | o (071,

2(PrOor M - Cr2 2 2

+kx( 2 +E) {4,TG (® _k)6¢f+.0r5¢r}} (23)

Substituting from Eq. (23) into Eq. (22), and simplifyingethesulting equation, we have a fourth-order
differential equation idg, as

(D? - K?)(D? - af) 6¢ = O (24)
where

o?L? - 4nGpy (o7 Lr + KEM?)

a,z =k + (25)
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in which

H2
L=or+ 2 M=t 1212 (26)
ke pr 4rpy

andM; are the Alfvén velocities in the two regions. On further giification by considering the case of
high values foM? andC?, we can writew, (using the binomial theorem) in the following form

o2L2 - 47Gp; (o L, + K2M?
arzk{1+ T ook + G r)} 27)

2k2 [(MZ + C?) o Ly + K2M2C?]

3. BOUNDARY CONDITIONS AND SOLUTIONS

The solution of the dferential equation (24) are to be bounded in the two regiohts [€ads to the solutions
é¢, in the regiorz > 0, andsg, in the regiorz < 0 as

6¢, = A1 exp(k2) + Brexp(-ai12), z> 0 (28)
¢, = Ao expka) + Byexplazz), z< 0 (29)

Where(;x1 anda; are non-negative quantitie&;, A, B; andB; are the arbitrary constants, to be determined
by the following boundary conditions of the problem.
(1) The perturbed gravitational potenti®l is continuous at the interfaee= 0, i.e.

0p, =0¢, at z=0
this gives
A1+Bl—A2—Bg=O (30)
(2) The normal derivative of the perturbed potential is condus at the interface= 0, i.e.
D(6¢,) =D (0¢2) at z=0
this gives

kA]_ + 1B + kAz + By = 0 (31)

(3) The total perturbed pressure is continuous at the exterf= 0, i.e.

ueH ueH
5P, + eﬂ (hx)1=6P2+:—7r(hx)2 at z=0

4
Consequently
anGoIEME (M2 +C3) Ly + KEMZCE) (-K) anGoIGMZ | 4mGpkEME
0'1L1 0'1L1 1 0'1L1 0'2L2 2
{(M2 + C2) s, + KEMZC2} (3-#) 4rGpok2M2 5 0o -
- a2 — X2 -
ool 2 oalo 2

(4) Normal displacement of any point is unique at the inafa= 0; i.e.

Wi W,
—=— at z=0
o1 o2
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Consequently, we get

K o (M2+C3)oly + kEMECE (o2 -10) B +
o1l o1l1  47Gpioily (0'1L1 + kiMf) '
as (M% + Cg) ool + k§M§C§ @ (az 3 kz) B, =0
oolo 47TGp20'2L2 (0’2L2 + kng) 2

(33)

Note that, in the limiting case of non-porous medium, i.e.ewky — o orL, = o (r = 1, 2),
Egs. (24)-(26), and the boundary conditions (30)-(33)ucedto the same equations obtained earlier by
Singh and Kharé%, and their results are, therefore, recovered. They otdatineir dispersion relation,
and they not discussed the stability analysis for this gartispersion relation, but discussed the stability
conditions only for some of its limiting cases. Here, in thregent work, we shall obtain the general
dispersion relation for the considered system includirgefect of porous medium, and discuss tlieets
of various parameters on the stability of the system duedaotitained dispersion relation in its general
form in presence (or absence) of porous medium and fluid itelsc

4. DISPERSION RELATION

Writing the above linear equations (30)-(33) in matrix fomre have

a, &, &, a4, A 0
& 3, &; &, B1 — 0
& &, &; &, A 0
a, a, a, 8a, B, 0
Symbolically as|a;; | [X;| = [0], i = j = 1,2, 3, 4, where
X1 = A1, Xz =By, X3 = Ag, X4 = By
a,=lLa,=1a,=-1a,=-1
a,=ka,=a, a,=k a,=a,
47er1k§Mf
T ol
(M2+C3)oils +KEM2C2 4xGpyk2M2
%o = o1l (al_ )+ o1l
AnGpoki M3
a, = - (M% + Cg) ool + K M%Cg (ag B 2) + 4nGpok§ M%
ools oolo
a - k
“oilk
N (M2 +C3)oriLy + KEMZC2 ws(c2 )
o1la AnGpio1L, (0’1L1 + k)z(Mf)
a - K
43 0'2L2

(34)
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(M2 + C2) opLz + K2M2C3

as 2K
a = + az 2= k
o ol AnGpoooLy (0'2 Lo + kiM%) ( i )

For the non-trivial solution of Eq. (34), the determinantiod matrix[ai,-] must vanish, i.e.

|laj| =0 (35)
This determinant can be reduced to the form
bi1 b bis
bp1 by bpz |=0 (36)
b3; bz bss

where
213 - 4nGpy (oL + K2M2)
©2k| (M2 + C2) ol + k2MECE)

bi1=a1-

byo = 2k

312 — 4nGp (ool p + KEMZ)
2k[(M2 + C3) or5L2 + KZM2CE]
b1 = o1L1 — 4nGp1

47TGk§(p1M%O'2L2 + 02 Mga'lLl)
22 =

b13=a2+k=2k+

0’10’2L1L2
4nGp1keM?
byg = it Sk o1l1 + 4nGp,
O’lL]_
b o1l1 [U%L%—4ﬂ'Gp1 (0’1L1+k§|\/|§)]
31 =
8kGp1 (1L + KEM2) (M2 + C2) oy Ly + KZM2C2]
bay = K(ozL2 — o1L1)
% foglep K1)
k kO'2L2

o1l ! 47Gp, (O'2L2 + kng)
0oLz |32 - 4nGpy (oL + KEM2)|
" 8kGp2 (craLz + KEM2) (M3 + C2) sl + KEM2CE]

By expanding the determinant in Eq. (36), we obtain the masiegal case of dispersion relation
described by

201 (O’lLl + kiMf) {8”Gk2;02 (0'2|-2 + kng) [(Mzz + Cg) oolo
+KEMSCE] + 2kor105La Lo (M3 + C3) oralz + KEMC|
+o10ol1l) [U%LE — 4rGp, (0'2|-2 + kng)]}

x {rGIE (p1MZoraLz + paM30ri Ly ) |05 LE — 4nGp (o1 Ly + KEMS)]
—KPor10aL1Ls (o1 Ly - 4nGpr) [ (M2 + CF) oLy + KEMZCE |}
+2k%pz (0r2Lz + KEM3) [(MZ + C3) oL, + KEM3C2][47Gp1 ki M?
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—o102L1Lo + 4nGpoori L] {0'50'2 LiLo[o%L2 — 4nGpy (0'1L1 + kiMf)]

—21Gpy (07212 — or1Ly) (o1l + KEMZ) [(MZ + CF) ool + KEMECE]}

+27Gpao1ly (0'2|-2 + kng) {2k2P1 (02l = o1L1) (011 — 4nGp1)

x (oraLy + KEMZ) [(M2 + C2) o1 Ly + KEMZCE |

—k)2(0'1L1 (lefa'ng + pzM%O’lLl) + O'ELi — 47Gp, (0’1L1 + kil\/lf)}

x {4 | (M3 + C3) 0oLz + KEMZC2| + 0313 — 4nGpa(orals

+kEM2)} =0 (37)

Suppose that the two streams be moving in opposite directiath equal velocities parallel to the
x-axis, i.e.V, = Vi andV, = -Vi. In this case

o, =n+ikyV and o, = n-ikV (38)

Substituting forl,, o, (r = 1, 2) from Egs. (26) and (38), respectively, into Eq. (37) wethe following
20th-order equation for the growth rate

20 19 18 17 16 15 14 13
BN+ Bon™ + B3N + B4’ + BsnT + BeNT + f7NTT + Bgn
12 11 10 9 8 7 6 5
+B9N~ + B1oN™" + F11N7 + B120° + B13N° + B14N’ + B15N° + BigN
4 3 2
+B17N" + B1gn” + B1oN“ + Boon + P21 =0 (39)

where the cofiicientsp; — 821 are quite complicated. These ¢beents are not given here as they are
quite lengthy expressions involving the wave number, aedorameters characterizing thféeets of the
porosity of porous medium, medium permeability, streamialpcity Alfvén and sound velocities, fluid
densities, fluid viscosities, and gravitational constant.

5. STABILITY DISCUSSION

If we simplify equation (39) and setting= 0, we can get the critical wave numbdérwhen the instability
sets in. However this equation is very complicated to be leahich its most general form fde*, and so it
is not possible to obtain an analytical expression. Let s$lyficonsider the case of non-porous medium
in which the perturbation propagates along the streamingom@positive direction ofk-axis) with wave
numberk,, and perpendicular to the streaming motion (positive diibacof y-axis) with wave numbeky,
In this case, we have

o2=02=0%=-kV?, n=0 (40)
If we put the above values given by equation (40) into theatisipn relation (39), and using the values
e =1andk; — oo, and simplify the resulting equation, we get

ay n [¢%) -0
p1(0? + KEMZ)  pa(0? + kZMD)

(41)

wherea? can be obtained from equation (25) as

o — 4nGp;, (02 + K2M?
a? =K+ dl . r), r=12 (42)
(MZ + C2) 02 + kZM2C?

On further simplification of equation (41) with the help ofuadjon (42), we get

05 (0’2 + k)z(l\/lg)2 [(M% + Cg) o’ + kngCg] [(a’2 + kZMf) o’ + (0’2 + kiMf) (Crzk2 - 47TGp1)]
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2
= p2 (02 + KEMZ)"[ (M2 + C2) o2 + KEMZC2| [0 + k2MZ) o2 + (02 + kEMZ) (C3K? — 4nGp2)]  (43)

which reduces to the form

K K
=+ ﬁz =1 (44)
A1 AZ
where
A2 47Gp1pz [p2AS(V2 = M3) - prAS(VZ — M2)] s)
1
[03A5(V2 — ME)(CE - V2) - pRAY(V2 - ME)(CS - V2)]
a2 _ AnGpipa(V2 - ME(VE - M) |[P2A3(V2 = M3) - p AS(V2 — M2) |
2 _
A3 [P5(V2 = MB)? = (V2 — ME)?]
(46)
in which
A = (M? +C?) V2 - MZC? (47)

We observe that the perturbation propagating along bottaxieex andy with wave numberg, andky,
respectively, and magnetic field acting along #axis, leads to the value of the critical wave numker
lying on elliptic orbit in the first quadrant given by equati@t4), whose axes aig = 0 andk, = 0. This
result agrees with the result found by Singh and KR&eThe stability of the system depends on streaming
velocity, magnetic field, densities and velocity of soundhaf two medium.

Let us secondly consider the instability of two superposediom of densitiep; andp, in the case
of non-porous medium in which streaming motion is abseat\ihenV = 0, the perturbation propagates
along the streaming motion (positive direction»eéxis) with wave numbeky, and perpendicular to the
streaming motion (positive direction gfaxis) with wave numbeky, In this Rayleigh-Taylor case, we have

o2=05=0, n=0 (48)
Putting this value in the dispersion relation (41), and ewbdf the fact
p1MZ = p,M3 = uH?/(4r) (49)
Therefore, using equations (48) and (49), then equationrétiices to
a1 +a2=0 (50)
sinceas, a, are non-negative, hence, this gives
a1=a2=0 (52)
From equation (42) in case of marginal state, the criticalenaumbek* is given by

C2k'? — 4nGp; = 0 (52)

. 4nGp, M2
K =./k§+k§=[ Crzpr] =12 (53)

This shows that the critical wave number lies on the circpédh in the first quadrant given by equation (53),
and the stability is urféected by the magnetic field. The stability criteria here mtisegles the two-media
systen, The two fluids become independent of each other.

Thus, we have
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Numerical solutions, in the presence of porous medium, mag to the values which are related to the
instability criterion for physical problem. In order to diuthe dfects of various physical parameters on
the growth rate instability, we have performed numericédwations of the dispersion relation (39), using
Mathematica 9, to locate the roots of the growth ratgaint the wave number k for various values of the
parameters included in the analysis. These calculatianprasented in Figs. (1)-(6) to show the variation
of the growth rate with wave number of the considered systerifferent values of Alfvén velocities, fluid
viscosities, sound velocities, medium permeability,astmang velocity, and the porosity of porous medium,
respectively.

600

AN
“ON M;= 100, M= 200
550
\\ ----- M= 200 , My= 300
\ \
500 Y - - - M= 300, My= 400
\
n \
\ \
450
\ ~
oSN
\ TSP Y Loy ]
400 N -
L P —— _— -
0.5 1 1.5 2 2.5 3

Figure 1

Variation of growth rate n with wave number k for various values of the Alfven velocitiesM; and
M in the systemp; = 0.01, p, = 0.02,k; = 0.5, G = 6.6 X 1071, V = 100, = 0.3, u; = 0.1,
une = 0.2, C; = 100, C, = 150, for the cases M; = 100, M, = 200), (M; = 200, M, = 300)
and (M1 = 300, M, = 400)

Fig. (1) shows the variation of the negative real part of glovaten with the wave numbek for
various values of Alfvén velocitiell; andM,. It is clear from this figure that, for any wave number value,
the negative Re) increases by increasing the Alfvén velocities, whichi¢gates that the Alfvén velocities
for the mediumM; and M, have stabilizing ffects. It is seen also from Fig. (1) that, for fixed values of
Mz andM, the negative R&l) decreases by increasing the wave nynibidt a fixed critical wave number
value after which the negative Rg(increases for higher wave number values, which indicdtasthe
system is unstable for small wave number values and therstalse afterwards. Note that this critical
wave number values decrease by increasing the Alfvén itielod1; and M, values.
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Figure 2

Variation of growth rate n with wave number k for various values of the fluid viscositiesu; and i,
in the systenp; = 0.01, p, = 0.02, k; = 0.5, M; = 100, M, = 150, G = 6.6 x 1071, V = 100,
e = 0.3, C1 = 200, C,; = 250, for the cases ft1 = 0.01, u» = 0.1), (u1 = 0.1, up, = 0.2) and
(u1 = 0.5, up = 0.6)
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Fig. (2) shows the variation of the negative real part of ghomaten with the wave numbék for various
values of dynamic viscositigs, anduy. It is clear from this figure that, for any wave number values t
negative Raf) decreases by increasing the dynamic viscosities, whatibates that the dynamic viscosities
11 andu, have destabilizingféects. It is seen also from Fig. (2) that, for fixed valuegipfind,, the
negative Raf) increases linearly by increasing the wave nunigerhich indicates that the system is stable
for all wave number values.
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Figure 3

Variation of growth rate n with wave number k for various values of the sound velocitie€”; and C>
in the systemp; = 0.01, p» = 0.02, k; = 0.5, M; = 100, M, = 150, G = 6.6 x 107!, V = 100,
e = 0.3, p1 = 0.1, up = 0.2, for the cases C; = 100, C, = 150), (C1 = 150, C> = 200) and
(C1 = 200, C, = 250)

Fig. (3) shows the variation of the negative real part of glovaten with the wave numbek for
various values of sound velociti€ andC,. It is clear from this figure that, for any wave number value,
the negative Re&l) decreases by increasing the sound velocities, which ateficthat the sound velocities
C; andC; have destabilizingféects. It is seen also from Fig. (3) that, for fixed value€pfandC,, the
negative Raf) decreases by increasing the wave nynitéra fixed critical wave number value after which
the negative Rl increases for higher wave number values, which indichit@sthe system is unstable for
small wave number values and then it is stable afterwardste Mt this critical wave number values
decreases by increasing the sound velocflieandC, values.

700
600 k1= 0.5

500
400
300 f-cem ) ki=1.0
200
100 k=40 T ]

Figure 4

Variation of growth rate n with wave number k for various values of the medium permeabilityk; in
the systenp; = 0.01, p, = 0.02, M; = 100, M, = 150, G = 6.6 x 107!, V = 100, ¢ = 0.3,
u, = 0.8, up = 0.9, C; = 200, C> = 250, for the casesk; = 0.5,1 and 4

Fig. (4) shows the variation of the negative real part of ghoraten with the wave numbéek for various
values of medium permeabili. It is clear from this figure that, for any wave number valle, hegative

11



M. F. El-Sayed; D. F. HussefRrogress in Applied Mathematics Vol.3 No.1, 2012

Re(n) increases by increasing the medium permeability, whidlicetes that the medium permeability

has a stabilizing féect. It is seen also from Fig. (4) that, for fixed valuekgfthe negative R&l increases
linearly by increasing the wave numblemwhich indicates that the system is stable for all wave number
values.
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560
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Figure 5

Variation of growth rate n with wave number k for various values of the stream velocityV in the
systenp; = 0.01, p, = 0.02, k; = 0.5, M; = 100, M, = 150, G = 6.6 x 107}, ¢ = 0.3,
pn1 = 0.1, up = 0.2, C; = 100, C> = 150, for the casesV = 100, 120 and 150

Fig. (5) shows the variation of the negative real part of ghomaten with the wave numbék for various
values of streaming velocity. It is clear from this figure that, for wave number valdes 0.75, the
negative Raf) increases by increasing the streaming velocity, whiclicatés that the streaming velocity
for the mediumV has a stabilizing fect. Note that, for very small wave number values & < 0.75,
the obtained curves are coincide, and this means that thensiing velocity has nofiect on the stability
of the considered system in this wave numbers range. It is @lse from Fig. (5) that, for fixed value of
V, the negative Rel) decreases by increasing the wave nynibeéll a fixed critical wave number value
after which the negative Re)increases for higher wave number values, which indicdi@sthe system is
unstable for small wave number values and then it is stabdevedirds. Note that this critical wave number
values increases by increasing the streaming velocityegalu
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Figure 6

Variation of growth rate n with wave number k for various values of the medium porositye in the
systenp; = 0.01, p, = 0.02, k; = 0.5, M; = 100, M, = 150, G = 6.6 x 107, V = 100,
pn1 = 0.1, up = 0.2, C; = 100, C, = 150, for the cases = 0.3,0.4 and 0.5

Fig. (6) shows the variation of the negative real part of glovaten with the wave numbek for
various values of the porosity of porous medigmit is clear from this figure that, for any wave number
value, the negative Re) increases by increasing the porosity of porous mediumchvimdicates that the
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the porosity of porous mediumhas a stabilizing fect. It is seen also from Fig. (6) that, for fixed values
of &, the negative Re decreases by increasing the wave nunkadt a fixed critical wave number value
after which the negative Re)increases for higher wave number values, which indicdi@sthe system is
unstable for small wave number values and then it is stabdevedirds. Note that this critical wave number
values decreases by increasing the porosity of porous mmedualues.

6. CONCLUSIONS

In this paper, we have studied the hydromagnetic instglofitwo superposed homogeneous conducting
fluids streaming in opposite directions with equal horizbwelocities under gravitational force and high
Alfvén and sound velocities in porous medium. The perttioogpropagation is taken simultaneously along
and perpendicular to streaming motion in the horizont&lrface. The obtained results can be summarized
as follows:

(1) The Alfvén and sound velocities have destabilizifiges.
(2) The fluid velocities and porosity of porous medium haab#izing efects.

(3) The medium permeability has a slightly stabilizirfipet, while the dynamic viscosities have slightly
destabilizing &ect.

(4) The growth rate varies linearly with wave number foifelients values of medium permeability or
dynamic viscosities.

(5) Finally, the limiting cases of non-porous medium hawodbeen studied for both streaming and
stationary fluids, and show that the critical wave numbeirgylyn elliptic orbit and a circular path in the
first quadrant, respectively.
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