
Progress in Applied Mathematics
Vol. 3, No. 1, 2012, pp. 1-15
DOI: 10.3968/j.pam.1925252820120301.1665

ISSN 1923-8444 [Print]
ISSN 1925-2528 [Online]

www.cscanada.net
www.cscanada.org

Magnetogravitational Vortex-Sheet Instability of Two Superposed
Conducting Fluids in Porous Medium Under Strong

Magnetic Field

M. F. El-Sayed1,∗; D. F. Hussein2

1Department of Mathematics, Faculty of Education, Ain ShamsUniversity, Heliopolis, Roxy, Cairo, Egypt
2Department of Physics, Faculty of Education, Ain Shams University, Heliopolis, Roxy, Cairo, Egypt
∗Corresponding author.
Address: Department of Mathematics, College of Science, Qassim University, P. O. Box 6644, Buraidah 51452, Saudi Arabia
Email: mfahmye@yahoo.com

Received September 10, 2011; accepted January 11, 2012

Abstract
The instability of two superposed homogeneous streaming fluids is discussed under gravitational force and
uniform magnetic field in porous medium. The two streams are moving in opposite directions with equal
velocities parallel to the horizontal plane. The solution has been obtained through the normal mode tech-
nique, and the most general dispersion relation has been obtained as 20th-order equation for the growth rate
with quite complicated coefficients. Solving numerically the dispersion relation for appropriate boundary
conditions with high Alfvén and sound velocities, it is found that fluid velocities and porosity of porous
medium have stabilizing effects, and Alfvén and sound velocities have destabilizing effects, while medium
permeability has a slightly stabilizing effect, and the dynamic viscosities have slightly destabilizing effect.
The limiting cases of non-porous medium have also been studied for both streaming and stationary fluids.
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1. INTRODUCTION

The Kelvin-Helmholtz instability of the boundary layer between two fluids in relative motion is of great
interest in many astrophysical and geophysical situations, ranging from the interaction of the solar wind
with the magnetospheric boundary[1] and cometary tails[2] , to the dynamics of jets in nuclei extragalactic
radio sources[3,4] and young stellar objects[5]. Many studies have therefore been devoted to understanding
the behavior of this instability under the influence of different physical ingredients, typical of the different
environments[6]. Starting from the classical results for the incompressible case, which can be summarized
in Chandrasekhar’s book[7], the effects of compressibility have been introduced both in the pure hydrody-
namical situation[8,9], and in the magnetohydrodynamic case[10,11]. The effect of a finite thickness of the
shear layer has been discussed by Ray[12].
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The gravitational instability problem is of central importance in understanding the process of forma-
tion of stars, planets, comets, asteroids and other astrophysical objects. Initially Jeans[13] considered the
gravitational instability of non-viscous ideal fluid and showed that the system becomes unstable for all per-
turbations of wave numbers less thank∗ = [4πGρ/C2]1/2, whereC is the velocity of sound in the medium
of densityρ andG is the gravitational constant. Since then, several researchers have studied this problem
under varying assumptions of hydrodynamics and hydromagnetics. A comprehensive account of these in-
vestigations has been given by Chandrasekhar[7] in his monograph on hydrodynamic and hydromagnetic
stability. Chandrasekhar[14,15], Chandrasekhar and Fermi[16] considered the stability of an infinite homoge-
neous and static medium under uniform magnetic field and uniform rotation. He found the critical wave
numberk∗ given byk∗ = [(4πGρ − 4Ω2)/(M2 +C2)]1/2, whereM = [(µH2/(4πρ)]1/2 is the Alfvén velocity
of the medium. Then, Segnar[17] or Radwan and Elazab[18] attempted this problem in different cases under
uniform magnetic field and using linear perturbation they found that the magnetic field has a strong stabiliz-
ing effect on the system. Singh and Khare[19,20] discussed the instability of two semi-infinite homogeneous
streams of infinite conductivity in absence and presence of uniform magnetic field, respectively. They found
the critical wave number in some limiting cases of interest.The Jeans’ instability problems have been stud-
ied by several researchers under the separate or simultaneous effects of different physical parameters[21−32].
In all such investigations, carried out separately under varying assumptions, it was found that the condi-
tion of instability has been determined by the Jeans criterion with some modifications, introduced by the
inclusion of the various parameters.

Flows through porous media has been a subject of great interest for the last several decades. This
interest was motivated by numerous engineering applications in various disciplines, such as geophysical,
thermal and insulation engineering,the modelling of packed sphere bed, the cooling of electronic systems,
groundwater hydrology, chemical catalytic reactors, ceramic processes, grain storage devices, fiber and
granular insulation, petroleum reservoirs, coal combustors, ground water pollution and filtration processes,
to name just a few of these applications[33]. Several other applications of the problems of flow throufh
porous media in geophysics may be found in the the works of Dullien[34], Ingham and Pop[35], Nield and
Bejan[36], and Vafai[37]. When considering flow in a porous medium, however, one must address some addi-
tional complexities, which are principally due to the interactions between the fluids and the porous material.
Kelvin-Helmholtz instability for flow in porous media has attracted little attention in the scientific litera-
ture. Raghaven and Mardsen[38] have studied the Kelvin-Helmholtz instability for flow in porous media for
Darcy-type flow. they used linear stability analysis to obtain a characteristic equation for the growth rate
of the disturbance and then solved this equation numerically. They conclude that Kelvin-Helmholtz insta-
bility is possible only if the heavier fluid is overlying the light one (statically unstable situation). Sharma
and Spanos[39] investigated the instability of the plane interface between two uniforms,superposed, and
streaming fluids through porous media. A linear theory of Kelvin-Helmholtz instability for parallel flow in
porous media was introduced by Bau[40] for Darcian and non-Darcian flows. In both cases, he found that
the velocities should exceed some critical value for the instability to manifest itself.

On the other hand, magnetohydrodynamics (or MHD for short) is the macroscopic theory of electrically
conducting fluids move in a magnetic field, providing a powerful and practical theoretical framework for
describing both laboratory and astrophysical plasmas (a plasma is a hot ionized gas containing free electrons
and ions). The simplest example of an electrically conducting fluid is a liquid metal, for example, mercury
or liquid sodium[41]. However, the major use of MHD is in plasma physics. It is by nomeans obvious that
plasmas can be regarded as fluids since the mean free paths forcollisions between the electrons and ions
are macroscopically long[42]. For the importance of studying magnetohydrodynamic flows through porous
media see the excellent investigations of Geindreau and Auriault[43,44], and Zakaria et al.[45].

In this paper, we have studied the hydromagnetic instability of two superposed homogeneous conducting
fluids streaming in opposite directions with equal horizontal velocities under gravitational force and high
Alfvén and sound velocities in porous medium. The perturbation propagation is taken simultaneously along
and perpendicular to streaming motion in the horizontal interface. The most general dispersion relation has
been obtained as 20th-order equation for the growth rate with quite complicated coefficients. Solving nu-
mericaly the dispersion relation for appropriate boundaryconditions with high Alfvén and sound velocities.
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The stability criteria are obtained for the problem and discussed analytically and numerically. The obtained
results are listed in the conclusions section with the main findings of various physical parameters including
in the analysis.

2. FORMULATION OF THE PROBLEM

We consider two infinitely conducting semi infinite homogeneous streams separated by the planez = 0.
The upper regionz > 0 is of densityρ1, dynamic viscosityµ1, pressureP1, and the lower regionz < 0
is of densityρ2, dynamic viscosityµ2, pressureP2. The streams are moving along the positive direction
of x-axis with velocitiesV1 andV2 in the upper and lower regions, respectively. A uniform magnetic field
H = (H, 0, 0) acts in the direction of streaming motion, i.e. positive direction ofx-axis. C1 andC2 are
the velocities of sound in the regionsz > 0 andz < 0, respectively,ε is the porosity of the medium, and
k1 is the medium permeability. The analysis is carried out by taking wave propagation in the horizontal
planez = 0. By retaining the first-order terms in the perturbed quantities, we can obtain the linearized
perturbation equations from the governing equations of motion.

Following Chandrasekhar[7], the linearized perturbation equation of the problem in rectangular compo-
nents form are
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whereUr = (ur, vr, wr), δρr, δPr, δϕr andhr = (hx, hy, hz)r denote, respectively, the perturbations in
velocity vector, density, pressure, gravitational potential and magnetic field, there the subscriptr = 1, 2
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indicate the equations in the two regionsz > 0 andz < 0 , respectively. The equations in both the streams
are similar.

Let us discuss the stability of the streams for horizontal wave propagation of the perturbation. Thus we
take the perturbation of the form

ψ(z) exp[i
(

kxx + kyy
)

+ nt] (11)

wherekx, ky are the real numbers denoting horizontal wave numbers of perturbation propagation along and
perpendicular to streaming motion, respectively,n is the growth rate of the disturbance andψ (z) is some

function ofz ; andk given byk =
√

k2
x + k2

y being the wavenumber of perturbation propagation.

Using Eq. (11), then the linearized perturbation Eqs. (1)-(10) can be written in the form
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Substituting from Eq. (23) into Eq. (22), and simplifying the resulting equation, we have a fourth-order
differential equation inδφr as
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in which

Lr = σr +
µr

k1

ε

ρr
, M2

r =
µeH2

4πρr
, r = 1, 2 (26)

andMr are the Alfvén velocities in the two regions. On further simplification by considering the case of
high values forM2

r andC2
r , we can writeαr (using the binomial theorem) in the following form
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3. BOUNDARY CONDITIONS AND SOLUTIONS

The solution of the differential equation (24) are to be bounded in the two regions. This leads to the solutions
δφ1 in the regionz > 0, andδφ2 in the regionz < 0 as

δφ1 = A1 exp(−kz) + B1 exp(−α1z), z > 0 (28)

δφ2 = A2 exp(kz) + B2 exp(α2z), z < 0 (29)

whereα
1

andα2 are non-negative quantities,A1, A2, B1 andB2 are the arbitrary constants, to be determined
by the following boundary conditions of the problem.
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(4) Normal displacement of any point is unique at the interfacez = 0; i.e.
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Consequently, we get
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Note that, in the limiting case of non-porous medium, i.e. when k1 → ∞ or Lr = σr (r = 1, 2),
Eqs. (24)-(26), and the boundary conditions (30)-(33), reduce to the same equations obtained earlier by
Singh and Khare[20], and their results are, therefore, recovered. They obtained their dispersion relation,
and they not discussed the stability analysis for this general dispersion relation, but discussed the stability
conditions only for some of its limiting cases. Here, in the present work, we shall obtain the general
dispersion relation for the considered system including the effect of porous medium, and discuss the effects
of various parameters on the stability of the system due to the obtained dispersion relation in its general
form in presence (or absence) of porous medium and fluid velocities.

4. DISPERSION RELATION

Writing the above linear equations (30)-(33) in matrix form, we have
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Symbolically as
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X1 = A1, X2 = B1, X3 = A2, X4 = B2

a11 = 1, a12 = 1, a13 = −1, a14 = −1,

a21 = k, a22 = α1, a23 = k, a24 = α2,

a31 =
4πGρ1k2

x M2
1

σ1L1

a32 =

(

M2
1 +C2

1

)

σ1L1 + k2
x M2

1C2
1

σ1L1

(

α2
1 − k2

)

+
4πGρ1k2

x M2
1

σ1L1

a33 = −
4πGρ2k2

x M2
2

σ2L2

a34 = −

















(

M2
2 + C2

2

)

σ2L2 + k2
x M2

2C2
2

σ2L2

(

α2
2 − k2

)

+
4πGρ2k2

x M2
2

σ2L2

















a41 =
k

σ1L1

a42 =
α1

σ1L1
+

(

M2
1 +C2

1

)

σ1L1 + k2
x M2

1C2
1

4πGρ1σ1L1

(

σ1L1 + k2
x M2

1

)α1

(

α2
1 − k2

)

a43 =
k

σ2L2

6



M. F. El-Sayed; D. F. Hussein/Progress in Applied Mathematics Vol.3 No.1, 2012
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For the non-trivial solution of Eq. (34), the determinant ofthe matrix
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σ1L1 + k2
x M2

1C2
1

]

b32 =
k(σ2L2 − σ1L1)
σ1σ2L1L2

b33 =
k

σ1L1
+

kσ2L2

4πGρ2

(

σ2L2 + k2
x M2

2

)

+
σ2L2

[

σ2
2L2

2 − 4πGρ2

(

σ2L2 + k2
x M2

2

)]

8πkGρ2

(

σ2L2 + k2
x M2

2

) [(

M2
2 +C2

2

)

σ2L2 + k2
x M2

2C2
2

]

By expanding the determinant in Eq. (36), we obtain the most general case of dispersion relation
described by

2ρ1

(

σ1L1 + k2
x M2

1

) {

8πGk2ρ2

(

σ2L2 + k2
x M2

2

)

[
(

M2
2
+C2

2

)

σ2L2

+k2
x M2

2C2
2] + 2k2σ1σ2L1L2

[(

M2
2 +C2

2

)

σ2L2 + k2
x M2

2C2
2

]

+σ1σ2L1L2

[

σ2
2L2

2 − 4πGρ2

(

σ2L2 + k2
x M2

2

)]}

×
{

πGk2
x

(

ρ1M2
1σ2L2 + ρ2M2

2σ1L1

) [

σ2
1L2

1 − 4πGρ1

(

σ1L1 + k2
x M2

1

)]

−k2σ1σ2L1L2 (σ1L1 − 4πGρ1)
[(

M2
1 +C2

1

)

σ1L1 + k2
x M2

1C2
1

]}

+2k2ρ2

(

σ2L2 + k2
x M2

2

)

[
(

M2
2 +C2

2

)

σ2L2 + k2
x M2

2C2
2][4πGρ1k2

x M2
1
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−σ1σ2L1L2 + 4πGρ2σ1L1]
{

σ2
1σ2L2

1L2[σ2
1L2

1 − 4πGρ1

(

σ1L1 + k2
x M2

1

)

]

−2πGρ1 (σ2L2 − σ1L1)
(

σ1L1 + k2
x M2

1

)

[
(

M2
2 +C2

2

)

σ2L2 + k2
x M2

2C2
2]
}

+2πGρ2σ1L1

(

σ2L2 + k2
x M2

2

) {

2k2ρ1 (σ2L2 − σ1L1) (σ1L1 − 4πGρ1)

×
(

σ1L1 + k2
x M2

1

) [(

M2
1 + C2

1

)

σ1L1 + k2
x M2

1C2
1

]

−k2
xσ1L1

(

ρ1M2
1σ2L2 + ρ2M2

2σ1L1

)

+ σ2
1L2

1 − 4πGρ1

(

σ1L1 + k2
x M2

1

)}

×
{

4k2
[(

M2
2 +C2

2

)

σ2L2 + k2
x M2

2C2
2

]

+ σ2
2L2

2 − 4πGρ2(σ2L2

+k2
x M2

2)
}

= 0 (37)

Suppose that the two streams be moving in opposite directions with equal velocities parallel to the
x-axis, i.e.V1 = V i andV2 = −V i. In this case

σ1 = n + ikxV and σ2 = n − ikxV (38)

Substituting forLr, σr (r = 1, 2) from Eqs. (26) and (38), respectively, into Eq. (37) we get the following
20th-order equation for the growth raten,

β1n20+ β2n19+ β3n18 + β4n17+ β5n16+ β6n15+ β7n14+ β8n13

+β9n12 + β10n
11 + β11n

10 + β12n
9 + β13n

8 + β14n
7 + β15n6 + β16n5

+β17n4 + β18n
3 + β19n

2 + β20n + β21 = 0 (39)

where the coefficientsβ1 − β21 are quite complicated. These coefficients are not given here as they are
quite lengthy expressions involving the wave number, and the parameters characterizing the effects of the
porosity of porous medium, medium permeability, streamingvelocity Alfvén and sound velocities, fluid
densities, fluid viscosities, and gravitational constant.

5. STABILITY DISCUSSION

If we simplify equation (39) and settingn = 0, we can get the critical wave numberk∗ when the instability
sets in. However this equation is very complicated to be handled in its most general form fork∗, and so it
is not possible to obtain an analytical expression. Let us firstly consider the case of non-porous medium
in which the perturbation propagates along the streaming motion (positive direction ofx-axis) with wave
numberkx, and perpendicular to the streaming motion (positive direction of y-axis) with wave numberky,
In this case, we have

σ2
1 = σ

2
2 = σ

2(= −k2
xV 2), n = 0 (40)

If we put the above values given by equation (40) into the dispersion relation (39), and using the values
ε = 1 andk1 → ∞, and simplify the resulting equation, we get

α1

ρ1(σ2 + k2
x M2

1)
+

α2

ρ2(σ2 + k2
x M2

2)
= 0 (41)

whereα2
r can be obtained from equation (25) as

α2
r = k2 +

σ4 − 4πGρr

(

σ2 + k2
x M2

r

)

(

M2
r +C2

r
)

σ2 + k2
x M2

r C2
r

, r = 1, 2 (42)

On further simplification of equation (41) with the help of equation (42), we get

ρ2
2

(

σ2 + k2
x M2

2

)2 [(

M2
2 +C2

2

)

σ2 + k2
x M2

2C2
2

]

[
(

σ2 + k2M2
1

)

σ2 +
(

σ2 + k2
x M2

1

) (

C2
r k2 − 4πGρ1

)

]
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= ρ2
1

(

σ2 + k2
x M2

1

)2 [(

M2
1 +C2

1

)

σ2 + k2
x M2

1C2
1

]

[
(

σ2 + k2M2
1

)

σ2 +
(

σ2 + k2
x M2

2

) (

C2
2k2 − 4πGρ2

)

] (43)

which reduces to the form
k2

x

Λ2
1

+
k2

y

Λ2
2

= 1 (44)

where

Λ2
1 =

4πGρ1ρ2

[

ρ2A2
2(V2 − M2

2) − ρ1A2
1(V2 − M2

1)
]

[

ρ2
2A2

2(V2 − M2
2)(C2

1 − V2) − ρ2
1A2

1(V2 − M2
1)(C2

2 − V2)
] (45)

Λ2
2 =

4πGρ1ρ2(V2 − M2
1)(V2 − M2

2)
[

ρ2A2
2(V2 − M2

2) − ρ1A2
1(V2 − M2

1)
]

A2
1A2

2

[

ρ2
2(V2 − M2

2)2 − ρ2
1(V2 − M2

1)2
]

(46)

in which
A2

r =
(

M2
r +C2

r

)

V2 − M2
r C2

r (47)

We observe that the perturbation propagating along both theaxesx andy with wave numberskx andky,
respectively, and magnetic field acting along thex-axis, leads to the value of the critical wave numberk∗

lying on elliptic orbit in the first quadrant given by equation (44), whose axes arekx = 0 andky = 0. This
result agrees with the result found by Singh and Khare[20]. The stability of the system depends on streaming
velocity, magnetic field, densities and velocity of sound ofthe two medium.

Let us secondly consider the instability of two superposed medium of densitiesρ1 andρ2 in the case
of non-porous medium in which streaming motion is absent, i.e. whenV = 0, the perturbation propagates
along the streaming motion (positive direction ofx-axis) with wave numberkx, and perpendicular to the
streaming motion (positive direction ofy-axis) with wave numberky, In this Rayleigh-Taylor case, we have

σ2
1 = σ

2
2 = 0, n = 0 (48)

Putting this value in the dispersion relation (41), and in view of the fact

ρ1M2
1 = ρ2M2

2 = µH2/(4π) (49)

Therefore, using equations (48) and (49), then equation (41) reduces to

α1 + α2 = 0 (50)

sinceα1, α2 are non-negative, hence, this gives

α1 = α2 = 0 (51)

From equation (42) in case of marginal state, the critical wave numberk∗ is given by

C2
r k∗2 − 4πGρr = 0 (52)

Thus, we have

k∗ =
√

k2
x + k2

x =

[

4πGρr

C2
r

]1/2

, r = 1, 2 (53)

This shows that the critical wave number lies on the circularpath in the first quadrant given by equation (53),
and the stability is unaffected by the magnetic field. The stability criteria here disentangles the two-media
systen, The two fluids become independent of each other.
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Numerical solutions, in the presence of porous medium, may lead to the values which are related to the
instability criterion for physical problem. In order to study the effects of various physical parameters on
the growth rate instability, we have performed numerical calculations of the dispersion relation (39), using
Mathematica 9, to locate the roots of the growth raten againt the wave number k for various values of the
parameters included in the analysis. These calculations are presented in Figs. (1)-(6) to show the variation
of the growth rate with wave number of the considered system for different values of Alfvén velocities, fluid
viscosities, sound velocities, medium permeability, streaming velocity, and the porosity of porous medium,
respectively.

Figure 1
Variation of growth rate n with wave number k for various values of the Alfvén velocitiesM1 and
M2 in the systemρ1 = 0.01, ρ2 = 0.02, k1 = 0.5, G = 6.6×10

−11, V = 100, ε = 0.3, µ1 = 0.1,
µ2 = 0.2, C1 = 100, C2 = 150, for the cases (M1 = 100, M2 = 200), (M1 = 200, M2 = 300)
and (M1 = 300, M2 = 400)

Fig. (1) shows the variation of the negative real part of growth raten with the wave numberk for
various values of Alfvén velocitiesM1 andM2. It is clear from this figure that, for any wave number value,
the negative Re(n) increases by increasing the Alfvén velocities, which indicates that the Alfvén velocities
for the mediumM1 andM2 have stabilizing effects. It is seen also from Fig. (1) that, for fixed values of
M1 andM2, the negative Re(n) decreases by increasing the wave nymberk till a fixed critical wave number
value after which the negative Re(n) increases for higher wave number values, which indicates that the
system is unstable for small wave number values and then it isstable afterwards. Note that this critical
wave number values decrease by increasing the Alfvén velocities M1 andM2 values.

Figure 2
Variation of growth rate n with wave number k for various values of the fluid viscositiesµ1 and µ2

in the systemρ1 = 0.01, ρ2 = 0.02, k1 = 0.5, M1 = 100, M2 = 150, G = 6.6 × 10
−11, V = 100,

ε = 0.3, C1 = 200, C2 = 250, for the cases (µ1 = 0.01, µ2 = 0.1), (µ1 = 0.1, µ2 = 0.2) and
(µ1 = 0.5, µ2 = 0.6)

10
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Fig. (2) shows the variation of the negative real part of growth raten with the wave numberk for various
values of dynamic viscositiesµ1 andµ2. It is clear from this figure that, for any wave number value, the
negative Re(n) decreases by increasing the dynamic viscosities, which indicates that the dynamic viscosities
µ1 andµ2 have destabilizing effects. It is seen also from Fig. (2) that, for fixed values ofµ1 andµ2, the
negative Re(n) increases linearly by increasing the wave numberk, which indicates that the system is stable
for all wave number values.

Figure 3
Variation of growth rate n with wave number k for various values of the sound velocitiesC1 and C2

in the systemρ1 = 0.01, ρ2 = 0.02, k1 = 0.5, M1 = 100,M2 = 150, G = 6.6×10
−11, V = 100,

ε = 0.3, µ1 = 0.1, µ2 = 0.2, for the cases (C1 = 100, C2 = 150), (C1 = 150, C2 = 200) and
(C1 = 200, C2 = 250)

Fig. (3) shows the variation of the negative real part of growth raten with the wave numberk for
various values of sound velocitiesC1 andC2. It is clear from this figure that, for any wave number value,
the negative Re(n) decreases by increasing the sound velocities, which indicates that the sound velocities
C1 andC2 have destabilizing effects. It is seen also from Fig. (3) that, for fixed values ofC1 andC2, the
negative Re(n) decreases by increasing the wave nymberk till a fixed critical wave number value after which
the negative Re(n) increases for higher wave number values, which indicates that the system is unstable for
small wave number values and then it is stable afterwards. Note that this critical wave number values
decreases by increasing the sound velocitiesC1 andC2 values.

Figure 4
Variation of growth rate n with wave number k for various values of the medium permeabilityk1 in
the systemρ1 = 0.01, ρ2 = 0.02, M1 = 100, M2 = 150, G = 6.6 × 10

−11, V = 100, ε = 0.3,
µ1 = 0.8, µ2 = 0.9, C1 = 200, C2 = 250, for the casesk1 = 0.5, 1 and 4

Fig. (4) shows the variation of the negative real part of growth raten with the wave numberk for various
values of medium permeabilityk1. It is clear from this figure that, for any wave number value, the negative
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Re(n) increases by increasing the medium permeability, which indicates that the medium permeabilityk1

has a stabilizing effect. It is seen also from Fig. (4) that, for fixed value ofk1, the negative Re(n) increases
linearly by increasing the wave numberk which indicates that the system is stable for all wave number
values.

Figure 5
Variation of growth rate n with wave number k for various values of the stream velocityV in the
systemρ1 = 0.01, ρ2 = 0.02, k1 = 0.5, M1 = 100, M2 = 150, G = 6.6 × 10

−11, ε = 0.3,
µ1 = 0.1, µ2 = 0.2, C1 = 100, C2 = 150, for the casesV = 100, 120 and 150

Fig. (5) shows the variation of the negative real part of growth raten with the wave numberk for various
values of streaming velocityV. It is clear from this figure that, for wave number valuesk ≥ 0.75, the
negative Re(n) increases by increasing the streaming velocity, which indicates that the streaming velocity
for the mediumV has a stabilizing effect. Note that, for very small wave number values 0< k < 0.75,
the obtained curves are coincide, and this means that the streaming velocity has no effect on the stability
of the considered system in this wave numbers range. It is seen also from Fig. (5) that, for fixed value of
V, the negative Re(n) decreases by increasing the wave nymberk till a fixed critical wave number value
after which the negative Re(n) increases for higher wave number values, which indicates that the system is
unstable for small wave number values and then it is stable afterwards. Note that this critical wave number
values increases by increasing the streaming velocity values.

Figure 6
Variation of growth rate n with wave number k for various values of the medium porosityε in the
systemρ1 = 0.01, ρ2 = 0.02, k1 = 0.5, M1 = 100, M2 = 150, G = 6.6 × 10

−11, V = 100,
µ1 = 0.1, µ2 = 0.2, C1 = 100, C2 = 150, for the casesε = 0.3, 0.4 and 0.5

Fig. (6) shows the variation of the negative real part of growth raten with the wave numberk for
various values of the porosity of porous mediumε. It is clear from this figure that, for any wave number
value, the negative Re(n) increases by increasing the porosity of porous medium, which indicates that the
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the porosity of porous mediumε has a stabilizing effect. It is seen also from Fig. (6) that, for fixed values
of ε, the negative Re(n) decreases by increasing the wave numberk till a fixed critical wave number value
after which the negative Re(n) increases for higher wave number values, which indicates that the system is
unstable for small wave number values and then it is stable afterwards. Note that this critical wave number
values decreases by increasing the porosity of porous medium ε values.

6. CONCLUSIONS

In this paper, we have studied the hydromagnetic instability of two superposed homogeneous conducting
fluids streaming in opposite directions with equal horizontal velocities under gravitational force and high
Alfvén and sound velocities in porous medium. The perturbation propagation is taken simultaneously along
and perpendicular to streaming motion in the horizontal interface. The obtained results can be summarized
as follows:

(1) The Alfvén and sound velocities have destabilizing effects.
(2) The fluid velocities and porosity of porous medium have stabilizing effects.
(3) The medium permeability has a slightly stabilizing effect, while the dynamic viscosities have slightly

destabilizing effect.
(4) The growth rate varies linearly with wave number for differents values of medium permeability or

dynamic viscosities.
(5) Finally, the limiting cases of non-porous medium have also been studied for both streaming and

stationary fluids, and show that the critical wave numbers lying on elliptic orbit and a circular path in the
first quadrant, respectively.
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