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Abstract
This paper presents a formal mathematical model for managing problems of stochastic demands; con-
fronting many industries in the society today. We consider atwo- stage supply chain where the upstream
manufacturer (stage2) must always fill exogenous demands from the downstream manufacturer (stage1)
using two types of expediting : Overtime production and outsourcing.
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1. INTRODUCTION

A supply chain, typically, consists of suppliers, manufacturing centre, warehouses, distribution centre and
retailers as well as raw materials, work-in-process inventory and finished products that flow between the
facilities. In traditional supply chain situations, downstream facilities make decisions about their order
quantities without regard to the actual inventory available upstream. If the upstream facilities do not have
enough inventories on hand to fill the orders, it is often assumed that the downstream facility will take what
it can get and backorder the rest or outsource elsewhere. In order to avoid these shortages, the upstream
facilities have traditionally set their inventory levels high enough so that the likelihood of not meeting
downstream demand is low. Every manufacturer usually maintains a reasonable inventory of goods to
ensure smooth operations. Inventory is a necessary evil-too little of it causes costly interruptions, too much
results in idle capital. The inventory problem determines the inventory level that balances the two extreme
cases. An important factor in the formulation and solution of an inventory model is that the demand (per
unit time) of an item may be deterministic (known with certainty) or stochastic (described by a probability
distribution).
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2. REVIEW OF RELATED LITERATURE

The term supply chain management arose in the late 1980s and came into widespread use in the 1990s.
Prior to that time, businesses used terms such as “logistics” and “operations management” instead. The
supply chain management literature offers many variations on the same theme. The most common definition
[Houlihan (1985), Stevens (1989), Lee and Billington (1993), and Lamming (1996)] is asystem of suppliers,
manufacturers, distributors, retailers, and customers where materials flow downstream from suppliers to
customers, and information flows in both directions.

The year 1958 may be considered the inception of stochastic inventory control, with the publication of
studies in the mathematical theory of inventory and production Arrow, K., J, Karlin and Scarf, H. (1958).
Almost all current articles in the field can trace their ideasback to this excellent text.The entire supply chain
success is dependent on a good inventory system.

Lately, several articles are continually being published in this area. M.E. Seliaman and Ab Rahman
Amad (2008) developed a model that dealt with different inventory coordination mechanisms between the
chain members in a three-stage, non-serial supply chain system. Their assumption is that demand is stochas-
tic at the retailer’s end. Pablo, A., Miranda, Rodrigo, A.G.(2009) proposed a sequential heuristic approach
to optimize inventory service levels in a two-stage supply chain. Their proposed approach deals with service
level and inventory decisions; simultaneously, with network design decisions and incorporates unfulfilled
demand costs in a previous inventory location model.

R.M. Hill, M.Seifbarghy and D.K. Smith(2007) considered a single-item two-echelon, continuous-
review inventory model where a number of retailers have their stock replenished from a central warehouse.
The warehouse in turn replenishes stock from an external supplier. S.S. Alireza, M.E. Kurz and J. Ashay-
eri(2010) addressed specific inventory management decisions with transportation cost consideration in a
multi-level environment. They developed two models-namely decentralized ordering and centralized or-
dering model to investigate the effect of collective ordering by retailers on the total inventory cost of the
system.

Xueipng Li∗, Yuerong Chen (2010), studied a single-product inventory system which involves a sup-
plier, a retailer, and differentiated customers. Inventory control, in recent times,is contracted to a vendor.
Vendor-managed inventory (VMI) is emerging as a significantdevelopment in the trend towards collabo-
ration and information sharing in supply chain management.Biredra, K.M., Sirinivsan, R.(2004) provide
a new explanation for the reasons retailers might be interested in VMI. Optimal policies for a capacitated
two-stage inventory system was investigated by Rodney,P.P, and Roma, K.(2004). Their paper demon-
strates optimal policies for capacitated serial multi-echelon production/inventory systems. Discrete-time
inventory model with stochastic demands with a constant lead time and lost sales was considered by Paul
Zipkins(2008).

With standard assumptions of single-location system, linear production costs, holding costs, penalty
cost and full backlogging, a base-stock policy is optimal for linear-ordering case (or no ordering cost), (Kar-
lin,1958), an (s,S) policy is optimal for the linear-plus-fixed-ordering costcase (or a fixed ordering/setup
cost), Scarf(1960); Iglehart,(1963), and an (R, nQ) policy is optimal for the batch ordering case (Veinott,
1965). Detailed results of an (s,S) policy explicitly for discrete demand can be found in Veinott and Wag-
ner (1965), and Zheng and Federgruen (1991). Scarf proved that in general, (s,S) policies are optimal
for inventory control problems with setup costs for production. Veinott proved same result. Both authors
considered inventory problems over a finite horizon. Zheng generalized the results of Scarf and Veinott in
his article over the infinite horizon in a novel way.

Yun Zhou, Xiaobo Zhao (2010) worked on periodic review inventory system that serves two demand
classes with different priorities. Unsatisfied demands in the high-priorityclass are lost, whereas those in
the low-priority class are backlogged. They formulated theproblem as a dynamic programming model
and characterize the structure of the optimal replenishment policy. B.Q. Rieksts, éA.Ventura(2010) paper
discusses inventory models over an infinite planning horizon with constant demand rate and two modes of
transportation.
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In this work, we consider problems over an infinite horizon hence we rely heavily on the results from
Zheng. However, one area where our assumptions differ from Zheng’s are that he assumes that backorders
are allowed; we modify this assumption in line with Eric, L.Huggins (2002, 2007). Huggins considered
a problem with stochastic demand where the downstream facility’s supply requests are always met by the
upstream facility and backordering are not allowed at the upstream stage, hence the need for expediting
using overtime production and premium freight. We shall, again digress away from Huggins in work. We
replace his premium freight with outsourcing and add the value of information sharing into our models of
the two-stage supply chains.

3. STATEMENT OF THE PROBLEM

We consider a periodic review two-stage supply chain situation where an upstream manufacturer (stage2)
must always meet the supply requests from the downstream supplier (stage1). If we assume each period
to be a day, for convenience, such that each day stage1 and stage2, each, produces up to chosen inventory
levels, and at the end of the day, stage1places an exogenous demand on stage2 for raw materials. If stage2
cannot meet this demand from the current inventory and regular production then there exists a shortage
which must be filled using overtime production. At the end of overtime production, the part that could not
be produced is outsourced.

4. MATHEMATICAL FORMULATIONS

Our ultimate goal in this research is to find the optimal policy that minimizes the expected total discounted
cost over the infinite horizon for the two - stage supply chainmanagement. We define the variables of our
models as follows:
Indices: k, indexes discrete time.,π, stationary policies,π = {µ, µ, . . .}.
Parameters
α: discount factor
Π: set of all admissible policiesπ
pi(·): the probability that an order will be placed
XK : state of the system at time k and summarizes the past information needed for future optimization.
Zk: the control variable to be selected at time kYk: Random parameter also called disturbance.Dk: Exoge-
nous demandN: The horizon or number of times control is applied.
r(Xk): Penalty cost for holding stock.
cZk: the unit cost of orderingZk.
Our stock shall evolve according to the discrete-time equation:

Xk+1 = Xk + Zk − Dk (1)

for all k,Xk ∈ S,Zk ∈ C,Yk ∈ D whereS andC are non empty sets andD is a countable set.
The cost per stageg : S ×C × D 7→ R is given, and defined as:

g(Xk,Zk,Yk) = r(Xk) + cZk. (2)

We denote byΠ, the set of all admissible policies , that is, the set of all sequences of functions

π = {µ0, µ1, . . .}, whereµk : S 7→ C, µk(Xk) ∈ Z(Xk) ∀ Xk ∈ S, k ≥ 0

have identical statistics and are characterized by probabilities P(· | Xk,Zk) defined onD, whereP(Yk|Xk,Zk)
is the probability of the occurrence ofYk, when the current state and control areXk andZk respectively, but
not on values of prior disturbancesYk−1, 1, . . . ,Y0. We define our stationary policy as an admissible policy
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of the formπ = {µ, µ, . . .} and its corresponding cost function is denoted by J We shall refer to{µ, µ, . . .} as
the stationary policyµ. Hence we say thatµ is optimal if

Jµ(X) = J∗(X) ∀ statesX (3)

Finally, we minimize the optimal cost function over an infinite horizon as follows:

Minimize lim
N→∞

EDk{

N−1∑

k=0

αkg(Xk,Zk,Yk)}. (4)

Subject tog(Xk,Zk,Yk) ≥ 0 ∀ (Xk,Zk,Yk) ∈ S ×C × D

Zk ≥ 0, k ≥ 0, . . . ,N − 1

Xk ⊂ S, Zk ⊂ C, Yk ⊂ D andg : S ×C × D 7→ R is the cost per stage,

whereD is a countable set, controlZk is constraint to take values in a given nonempty subsetZ(Xk) ∈ C
which depend on the current stateXk[Zk ∈ Z(Xk) ∀ Xk ∈ S],Zk, k ≥ 0 to determine the optimal inventory
control policies.

5. RESEARCH METHODOLOGY

The argument that minimizes equation (4) above is our main interest. This is, typically, an inventory
control problem. To solve this problem, we shall use the principles of optimality in dynamic programming
developed by Bellman(1957) and follow the notational conventions of Bertsekas(1995).

6. OPTIMALITY CONDITION: (BELLMANS’ EQUATION)

An optimal policy has the property that whatever the initialstate and the initial decisions, the remaining
decisions must constitute an optimal policy with regard to the state resulting from the first decision.
Proposition 1 The optimal cost functionJ∗ satisfies

J∗π(X0) = min
π∈Π

ED{g(Xk,Zk,Dk) + αJ∗π[ f (Xk,Zk,Dk)]}, ∀ Xk ∈ S.

Or equivalently,J∗ = T J∗. Furthermore,J∗ is the unique solution of this equation within the class of
bounded functions.
Corollary 1 For every stationary policyµ, the associated cost function satisfies

Jµ(x) = ED{g(X,Z,D) + αJµ( f (X,Z,D))} ∀ X ∈ S.

Or equivalentlyJµ = TµJµ.
And Jµ is the unique solution of this equation within the class of bounded functions.
Proposition 2 Under either assumptionP or N, the optimal cost function,J∗µ(X0) satisfies

J∗π(X0) = min
π∈
∏ ED{g(Xk,Zk,Dk) + αJ∗π[ f (Xk,Zk,Dk)]}. (5)

Or equivalently,J∗ = T J∗.
Corollary 2 Let µ be a stationary policy. Then under assumptionsP or N, we’ve

Jµ = ED{g(Xk,Zk,Dk) + αJ∗π[ f (Xk,Zk,D)]}, Xk ∈ S.

Or equivalently,Jµ = TµJµ.
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Proposition 3 A stationary policyµ is optimal if and only ifµ(x) attains the minimum in corollary 2 for
eachx ∈ S, that isT J∗ = TµJ∗.
Proposition 4 For every stateX0, the optimal costJ∗(X0) of the basic problem is equal toJ0(X0), where
the functionJ0 is given by the last step of the following algorithm, which proceeds backward in time from
periodN − 1 to period 0:

JN(XN) = gN(XN),

Jk(Xk) = min
Zk∈Uk(Xk)

ED{gk(Xk,Zk,D) + Jk+1( fk(Xk,Zk,D))}, k = 0, 1, 2, . . . ,N − 1

where, the expectation is taken with respect to the probability distribution ofD which depends onXk and
Zk. Furthermore, ifZ∗k = µ

∗
k(Xk) minimizes the right hand side of equation above for eachXk andk, the

policyΠ∗ = {µ∗0, . . . , µ
∗
N−1} is optimal.

The argument of the preceding proof provides an interpretation of Jk(Xk) as the optimal cost for an (N−K)-
stage problem starting at stateXK and timeK, and ending at timeN. We consequently, callJk(Xk) the
cost-to-go at stateXk and timek, and refer toJk as the cost-to-go function at timek.

Consider ak-stage policyπ = {µ0, µ1, . . . , µK−1}. Then the expression (Tµ0,Tµ1, . . . ,Tµk−1 J)(x) is defined
recursively fori = 0, . . . , k− 2 by

(Tµk ,Tµk+1, . . . ,Tµk−1 J)(x) = (Tµk(Tµk+1, . . . ,Tµk−1 J)(x)

and represents the cost of the policyπ for thek-stage,α discounted problem with initial stateX, cost per
stageg and terminal cost functionαkJ.

Jµ(X) = lim
N→∞

(TN
µ J)(X) ∀ X ∈ S.

6.0 Backward recursion for the two- stage supply chain management problem Here,K = 2, we write out
this algorithm for stage1 and stage2 as follows:

(T2J)(x) = min
π∈Π

ED{g(X,Z,D) + α(T J)( f (X,Z,D))}

= min
π∈Π

ED1{g(X1,Z1,D1)} + αmin
π∈Π

ED2{g( f (X1,Z1,D1),Z2,D2)

+αJ( f ( f (X1,Z1,D1),Z2,D2))}

= min
π∈Π

ED1{g(X1,Z1,D1)} +min
π∈Π

ED2{αg( f ( f (X1,Z1,D1),Z2,D2))}.

We now present the two - stage supply chain management activities as follows: Define the following
variables:

Dt: The exogenous demand experienced by stage1 during periodt, usually a day (for convenience).
X1,t: Stage1 inventory level at the start of periodt
Y1,t: Stage1 production quantity during period
Z1,t: Stage1 inventory position after production during periodt
X2,t: Stage2 inventory level at the beginning of periodt
Y2,t: Stage2 regular production quantity during periodt.
Z2,t: Stage2 inventory level after regular production during period t.
X2,t: The stage2 inventory level at the start of overtime, after receiving Demand from stage1 during periodt.
Y2,t: The stage2 overtime production quantity during periodt.
Z2,t: The stage2 inventory level after overtime production during periodt
X1

2,t: The stage2 inventory position at the start of outsourcing during periodt.
Y1

2,t: The stage2 outsourcing quantity during periodt.
Z1

2,t: The stage2 inventory level after outsourcing during period t.
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Every production process entails various cost implications. At stage1 set up costs are assessed for
production ((C1) , holding cost (h1) and since backordering is allowed at stage1, we’ve backordering costs
(b1). At stage2 backordering is not allowed, however, linear costs are assessed for production (c2) and
holding cost (h2), overtime production incurs linear cost (c0) plus fixed costs (k0) and outsourcing incurs
linear costs (c3) plus fixed cost (k3). All the costs are assumed to be discounted every period by afactorα,
with 0 < α < 1. We now present our sequence of activities at both stages asbelow:

7. DECENTRALIZED MODEL

The two stages of supply chain management are independent firms and each seeking to minimize its own
costs. These costs includes: linear cost of production. Holding cost and backordering costs respectively.
We determine the optimal inventory control policy for stage1 and proceed to show that it is a base-stock
policy. We establish that the optimal inventory control policy for stage2 is a base-stock policy under the
assumptions below: -That overtime production is the only method of expediting available to stage2.

7.1 Stage1 Optimal Policy Under Decentralized Control

Under decentralized control, stage1 is an independent firm and makes decisions based on the initial inven-
tory available,X1. He incurs linear cost of production,c1, holding cost,h1 and backordering costb1. All the
variables discussed in this section occur during the same period, t so we drop the subscriptt for notational
convenience.
The 1-period costs experienced by stage1 are:

g1,dec.(X1,Z1,D) = C1(Z1 − X1) + h1(Z1 − D)+ + b1(Z1 − D)−

= C1Z1 −C1X1 + h1(Z1 − D)+ + b1(Z1 − D)−.

With Z1 ≥ X1, clearly,g1,dec.(·) ≥ 0. Hence the optimal cost functionJ∗1,dec.(X1) satisfies

J∗1,dec.(X1) = min
Z1≥X1

lim
N→∞

ED{

N−1∑

k=0

αkg1,dec.(X1,Z1,D)}.

The argument that minimizes this equation is the optimal inventory control policy we seek. To determine
this policy, we use a technique similar to Veinott(1965), Huggins(2002). We proceed as follows:
Move the−C1X1 term back to the previous period as−αC1(Z1 − D) and determine our moved one period
costs as:

g1,dec,v(X1,Z1,D) = C1Z1 − αC1(Z1 − D) + h1(Z1 − D)+ + b1(Z1 − D)−

= C1Z1 − αC1Z1 + αC1D + h1(Z1 − D)+ + b1(Z1 − D)−

= (1− α)C1Z1 + αC1D + h1(Z1 − D)+ + b1(Z1 − D)−

Z1 ≥ X1.

We use this method to derive the optimal policy for stage1 step-by-step for two reasons:
i) The more complicated derivations later in the thesis tendto follow the same steps and we feel that the

proof of lemma1 below is a good introduction to this methodology.
ii) One of the steps we will frequently use is to “move” a term backward to the previous period.

Lemma. The optimal policy that solvesJ∗1,dec.(X1,0) also solvesJ∗1,dec.,v(X1,0). And J∗1,dec.(X1,0) = −C1X1,0 +

J1,dec.,v(X1,0).
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Proof:

J∗1,dec(X1,0) = min
π∈Π

lim
N→∞

ED{

N−1∑

k=0

αkg1,dec(X1,k,Z1,k,D)}

= min
π∈Π

lim
N→∞

ED{α
k[C1(Z1,k − X1,k) + h1(Z1,k − D)+ + b1(Z1,k − D)−]}

= min
π∈Π

lim
N→∞

ED{α
kC1(Z1,k − α

kC1X1,k) + αk[h1(Z1,k − D)+ + b1(Z1,k − D)−]}

= min
π∈Π

lim
N→∞

ED{

N−1∑

k=0

αk(−C1X1,k)}

+min
π∈Π

lim
N→∞

ED{

N−1∑

k=0

αk[C1Z1,k + h1(Z1,k − D)+ + b1(Z1,k − D)−]}

Thus,

J∗1,dec(X1,0) = −C1X1,0 +min
π∈Π

lim
N→∞

ED{

N−2∑

k=0

αk[C1Z1,k + h1(Z1,k − D)+ + b1(Z1,k − D)−

−αC1(Z1 − D)] + αN−1[C1Z1,N−1 + h1(Z1,N−1 − D1,N−1)+

+b1(Z1,N−1 − D1,N−1)−}

= −C1X1,0 +min
π∈Π

lim
N→∞

ED{

N−2∑

k=0

αk[g1,dec.,v(X1,k,Z1,k,D)−]}

+min
π∈Π

lim
N→∞
{αN−1[C1Z1,N−1 + h1(Z1,N−1 − D1,N−1)+ + b1(Z1,N−1 − D1,N−1)−]}

= −C1X1,0 +min
π∈Π

lim
N→∞

ED{

N−2∑

k=0

αk[g1,dec,v(X1,k,Z1,k,D)−]} + 0

= −C1X1,0 + J1,dec,v(X1,0).

We now consider the optimal cost functionJ∗1,dec,v(X1,Z1,D).

J∗1,dec,v(X1,Z1,D) = min
Z1≥X1

ED{g1,dec,v(X1,Z1,D) + αJ∗1,dec,v(Z1 − D)}

= min
Z1≥X1

{ED[g1,dec,v(X1,Z1,D)] + αED[J∗1,dec,v(Z1 − D)]}

= min
Z1≥X1

{G1,dec,v(Z1) + αED[J∗1,dec,v(Z1 − D)]}.

From
g1,dec,v(X1,Z1,D) = (1− α)C1Z1 + αC1D + h1(Z1 − D)+ + b1(Z1 − D)−,

it is clear thatG1,dec,v(Z1) is convex and so−G1,dec,v(Z1) unimodal. We now apply the method used by Zheng
(1991) to show that the optimal inventory control policy at stage1 is a base - stock policy. To apply the
results from Zheng’s paper, we need that−G1,dec,v(Z1) is unimodal and thatG1,dec,v(Z1)→ ∞ as|Z1| → ∞.
For Z1 < 0, the slope(in the discrete sense) ofG1,dec.,v(Z1) is −C3 + (1 − α)C1 < 0 by assumption (A6).
Thus, asZ1 → −∞, G1,dec,v(Z1) → ∞ asZ1 → ∞, the slope ofG1,dec,v(Z1) becomes (1− α)c1 + h1 > 0
and thusG1,dec,v(Z1)→ ∞, hence we have that the optimal inventory control policy at stage1 is a base-stock
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policy. We now define the base-stock level asS∗1,dec. We assume that the initial inventory is not more than
this value that is,X1 ≤ S∗1,dec , we can calculateJ∗1,dec(X1).

J∗1,dec(X1) = −C1X1 + J∗1,dec,v(X1)

= −C1X1 +minZ1≥X1{G1,dec,v(Z1) + αED[J∗1,dec,v(Z1 − D)]}

= −C1X1 +minZ1≥X1{G1,dec,v(S∗1,dec) + αED[J∗1,dec,v(S
∗
1,dec− D)]}

= −C1X1 +G1,dec,v(S∗1,dec) + αED[J∗1,dec,v(S
∗
1,dec− D)]

= −C1X1 +G1,dec,v(S∗1,dec) + αG1,dec,v(S∗1,dec) + α
2ED[J∗1,dec,v(S

∗
1,dec,v − D)]

= −C1X1 +G1,dec,v(S∗1,dec) + αG1,dec,v(S∗1,dec)[1 + α + α
2 + · · · ]

= −C1X1 +
G1,dec,v(S∗1,dec)

1− α
.

Hence under decentralized control, the optimal policy at stage1 is to order-up toS∗1,dec every period. Note
that due to the base-stock policy, stage1 will pass the exactdemand it experiences back to stage2, and stage2
will face the same demand that stage1 faces.

7.2 Stage2 Optimal Policy Under Decentralized Control

Under the decentralized control, stage2 is an independent firm. The manager makes decisions based on the
initial inventory available,X2 and the potential costs incurred. Stage2 faces the same demand distribution
as stage1. We assume that overtime production is the only method of filling shortages. Thus, the overtime
decision is straightforward. Note that per unit cost of overtime production is more than that of regular
production, hence it will never be cost-effective to produce more than the shortage with overtime production.

During periodt, stage2 will receive orderY1,t+1 = Dt from stage1. At the beginning of overtime, the
inventory level is,X2,t = Z2,t −Y1,t+1 if X2,t < 0, then overtime production must be employed. This quantity
is (Z2,t − Dt)−. All the variables occur during the same period,t, so we drop the subscript. The one period
costs experienced by stage2 are

g2,dec(X2,Z2,D) = C2(Z2 − X+2 ) + h2(Z2 − D)+ +C0(Z2 − D)− + K0δ(Z2 − D)−

with Z2 ≥ X+2 . Clearly,g2,dec(·) ≥ 0 and hence the optimal cost functionJ∗2,dec(X2) satisfies

J∗2,dec(X2,Z2,D) = min
Z2≥X2

ED{g2,dec(X2,Z2,D) + αJ∗2,dec.(Z2 − D)}.

To determine the optimal policy, we move the−C2X2 term back to the previous period as−αC2(Z2 − D)+

as we did in the previous section. We now define our moved one period costs as,

g2,dec.,v(X2,Z2,D) = C2Z2 + K0δ[(Z2 − D)−] +C0(Z2 − D)− + (h2 − αC0)(Z2 − D)+

with Z2 ≥ X+2 . Note that the optimal policy that solvesJ∗2,dec(X2) also solvesJ∗2,dec.,v(X2).
And J∗2,dec.(X2) = −C2X2,0 + J2,dec.,v

J∗2,dec.,v(X2) = min
Z2≥X2

ED{g2,dec.,v(X2,Z2,D) + αJ∗2,dec.,v(Z2 − D)}

= min
Z2≥X2

{G2,dec.,v(Z2) + αED[J∗2,dec.,v(Z2 − D)]}

whereG2,dec.,v(Z2) = ED{g2,dec.,v(X2,Z2,D)}.
Again we apply the result from Zheng as before, we need to showthatG2,dec.,v(Z2) → ∞ as|Z2| → ∞ and
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that−G2,dec.,v(Z2) is unimodal or thatG2,dec.,v(Z2) is quasiconvex. ForZ2 < 0, the slope ofG2,dec.,v(Z2) is
C2 − C0 < 0 by A3, thus, asZ2 → −∞, G2,dec.,v(Z2) → ∞. As Z2 → +∞, the slope ofG2,dec.,v(Z2) → ∞
becomesh2 + (1 − α)C2 > 0, and thusG2,dec.,v(Z2) → ∞. Hence we have from Zheng that the optimal
inventory control policy at stage2 is a base-stock policy.

We now define the optimal base-stock level asS∗2,dec, under the assumption that the initial inventory is
not more than this value,X2 ≤ S∗2,dec. We computeJ∗2,dec.(X2),

J∗2,dec.(X2) = −C2X+2 + J2,dec.,v(X2)

= −C2X+2 + min
Z2≥X2

{G2,dec,v(Z2) + αED[J∗2,dec,v(Z2 − D)]}

= −C2X+2 +G2,dec,v(S∗2,dec) + αED[J∗2,dec,v(S
∗
2 − D)]

= −C2X+2 +G2,dec,v(S∗2,dec) + αG2,dec,v(S∗2,dec) + α
2ED[J∗2,dec,v(S

∗
2,dec− D)]

= −C2X+2 +G2,dec,v(S∗2,dec)[1 + α + α
2 + · · · ]

= −C2X+2 +
G2,dec,v(S∗2,dec)

1− α
.

Hence under decentralized control with overtime as the onlyexpediting option, the optimal policy at stage2
is to order-up toS∗2,dec every period.

8. CONCLUSION

Note that the decisions are made separately by the two stages, as in our decentralized model. Under the
assumptions of the centralized model, all decisions aboutZ1,t+1, Z2,t andZ2,t+1 are made at the same time,
where stage 1 makes its decision in the time line. In our model, we make the following assumptions. First,
as mentioned above, we assume a discount factorα, with 0 < α < 1. Second, we assume that demand is
discrete, non-negative, stationary, and from a discrete probability distribution. We assume that the expected
value of demand,µ, is positive and finite. Third, we assume that per unit cost ofovertime production at
stage 2 is greater than per unit cost of regular production atstage 2. Fourth, we assume that the cost of
backordering at stage 1 is not so small that it is cheaper to always backorder than to produce. All of these
assumptions are fairly standard.
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