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Abstract
The concept of a [k1, k2, . . . , kK]-selection applied on a multiset is introduced and an algorithm is outlined
to generate all [k1, k2, . . . , kK]-selections from a given multiset.
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INTRODUCTION

We will introduce (quite informally) the notion of a multiselection and apply it to a multiset. Then we will
outline an algorithm which generates all possible multiselections for a given multiset. A corresponding
Maple program named Multiselection.mpl will be described. The enumeration of all possible multiselec-
tions for a given multiset will be mentioned. Finally, we will give possible applications and we will discuss
possible amendments of Multiselection.mpl.

1. MULTISELECTIONS FROM A MULTISET

Consider a multiset N = [e1, . . . , e1, e2, . . . , e2, . . . , e j, . . . , eN] composed of N elements e1, e2, . . . , eN where
each element e j occurs with the multiplicity m j in N. Thus, in a multiset an element e j may occur several
times in contrast to a usual set. As a consequence, the multiple instances of e j can not be discerned as it
is in the case of a set of unlabeled elements. However, different elements e j and e j′ can be discerned as it
is in the case of a set of labeled elements. Order does not count within N. 2 An equivalent way to write

2In order to handle with a multiset in a program, it is useful to introduce an ordering like the lexicographic ordering but this ordering
does not enter into enumeration questions.
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N uses the multiplicities in the obvious manner N = [(m1, e1), (m2, e2), . . . , (mN , eN)]. As an example, the
multiset N = [a, a, a, b, b, b, b, c] = [(3, a), (4, b), (1, c)] is composed of the three elements a, b and c with
multiplicities m1 = 3, m2 = 4, m3 = 1 and what regards order, [b, b, a, c, a, b, a, a, b] is the same multiset.

Now consider the task to select k (not necessarily distinct) elements from N with k ≤ Nt where Nt =∑N
j=1 m j. We will speak of a k-selection. Then the question arises how many k-selections are possible for

given N. We will abbreviate the number of possible selections by Z.3 MacMahon gave the quite complicated
formula for Z in the case of a multiset N , see appendix.

Finally we arrive at the last step of our problem formulation. We want to perform a selection which is
prescribed by a multiset K = [k1, k2, . . . , kK] of K selection numbers ki. We will speak of a [k1, k2, . . . , kK]-
selection-list or just of a selection list. The sum

∑K
i=1 = κ is the total number of selected elements. We

discard any order among the ki in K . Thus, our selection S will be a set of subsets [S1,S2, . . . ,Si, . . . ,SK]
where the i-th subset Si will have ki elements taken fromN . Obviously, Si may be a multiset itself. Because
of this set of subsets, we speak of a multiselection instead of a selection only.

2. A NON-RECURSIVE ALGORITHM VIA SELECTION MA-
TRIX

If we are given with a multiset N and a [k1, k2, . . . , kK]-selection-list, then Z possible multiselections S
exist. We note that Z does not depend on the order of the selection numbers ki. No formula for Z is known
yet. 4

We are ready to describe our algorithm to generate all these multiselections S. The problem is to keep
track of the already selected instances of each multiple element. The solution consists in the usage of a
selection matrix X with its elements xi, j where i = 1, . . . ,K and j = 1, . . . ,N. Row i of X corresponds to
the selection element ki. Column j of X corresponds to the multiset element e j. Equation (1) depicts these
correspondences, the row sums are

∑N
j=1 xi, j = ki and the column sums are

∑k
i=1 xi, j = w j .

X =

e1 e2 . . . eN

x1,1 x1,2 . . . x1,n = k1

x2,1 x2,2 . . . x2,n = k2

. . . . . . . . . . . . = . . .

x3,1 x3,2 . . . x3,n = kL

w1 ≤ m1 w2 ≤ m2 . . . w3 ≤ mN

(1)

As an example for X, we return to the multiset N = [a, a, a, b, b, b, b, c] and request the multiselection
K = [2, 3, 1] to be taken from N. Several solutions are possible, one of them is outlined in the following
selection matrix:

X =

e1 = a e2 = b e3 = c
1 1 0 2 = k1

1 2 0 3 = k2

0 0 1 1 = k3

w1 = 2 w2 = 3 w3 = 1

(2)

From (4) we see that our particular solution is S = [[a, b], [a, b, b], [c]]. However, also S′ = [[a, a, a],
[b, b], [c]] = [[b, b], [a, a, a], [c]] is a valid solution (remember that the order of the subsets Si does not
count), but this solution would have a different selection matrix.

3If N is a usual set of N distinct elements, then the answer is the binomial coefficient Z =
(
n
k

)
and for Nt identical elements the

answer is Z = 1.
4Z is easy to calculate for a conventional set with Nt distinct elements, namely Z =

(
Nt
k1

)(
Nt−k1

k2

)
. . .

(
Nt−k1−...−kK−1

kK

)
. As above, if all

elements are identical, then Z = 1.
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The selection matrix X shows us a way to systematically generate all possible solutions. The sum over
all row sums is

∑K
i=1 ki = κ, that is the total number of selected elements. The column sum w j is the number

of chosen instances of element e j and it must be fulfilled that w j ≤ m j. Finally, the sum
∑N

j=1 w j over all
column sums must be equal to κ, too. Thus, X is a matrix with given row sums and the column sums are
restricted to the condition

∑N
j=1 w j = κ.

To each feasible solution one and only one selection matrix corresponds. In order to find all feasible
solutions, we have to construct all corresponding selection matrices. This is done by finding all N-tuples
of integers with

∑N
j=1 w j = κ, each of these tuples is an allowed column sum vector. Lower and upper

limits apply for the tuples: The lower column marginals are equal to zero for each element ei and the upper
marginals are equal to the multiplicities mi. The row sum vector is always the same, namely k1, k2, . . . , kK .
Thus, for each of these N-tuples we are confronted with a matrix X with given row and column sums and
our task is then to find all possible realizations of X. This problem is well know in statistics, it is the
generation of all r × c-tables or also the generation of all contingency matrices with given row and column
sums [1, 2].

We can write down this ansatz quite formally. Let us introduce the following symbol for the two positive
integers m and n.

∣∣∣∣∣∣
m
n

∣∣∣∣∣∣ =

{
1 if n ≤ m
0 else

(3)

Furthermore, let us understand that in (4) a sum like wi,1 + . . .+ wi, j + . . .+ wi,N = ki indicates all integer
partitions of Ki with wi, j ≤ m j . The array of partitions under the summation shall mean that we have to
count all feasible combinations of the K partitions corresponding to the K subsets of the K-selection. In
(4) the product guaranties that only those partitions contribute to Z for which the number of used instances
of element e j is less or at most equal to its multiplicity m j. Then the number Z = Z(K) of all possible
K-selections from the multiset N is

Z(K) =
∑

w1,1 + . . . + w1, j + . . . + w1,N = k1

. . .

wi,1 + . . . + wi, j + . . . + wi,N = ki

. . .

wK,1 + . . . + wK, j + . . . + wK,N = kK

N∏

j=1

∣∣∣∣∣∣
m j

w1, j + . . . + wi, j + . . . + wK, j

∣∣∣∣∣∣ (4)

An algorithm for the generation of all integer N-tuples with given lower and upper bounds has been
provided by O’Connor [3]. An algorithm for finding all r × c-tables was given by Saunders [4]. Then our
algorithm for generating all multiselections for the given selection list K from the multiset N proceeds as
follows:
1. Generate all feasible N-tuples.
2. For each N-tuple generate all corresponding selection matrices.
3. Transform each selection matrix into a selection list S.

This algorithm has been implemented into a corresponding Maple (version 13) program named Multis-
election.mpl [5]. It takes two arguments, K and N . As an example of its use, we take K = [2, 3, 1] and
N = [a, a, b, b, b, c] (where we actually use Maple’s list construction instead of Maple’s multiset construc-
tion). Then the command Multiselection([2, 3, 1], [a, a, b, b, b, c]) gives us [[[c,a], [a,b,b], [b]], [[c,a],
[b,b,b], [a]], [[c,b], [a,a,b], [b]], [[c,b], [a,b,b], [a]], [[a,a], [c,b,b], [b]], [[a,a], [b,b,b], [c]], [[a,b], [c,a,b],
[b]], [[a,b], [c,b,b], [a]], [[a,b], [a,b,b], [c]], [[b,b], [c,a,a], [b]], [[b,b], [c,a,b], [a]], [[b,b], [a,a,b], [c]]]. 5

5Actually, Multiselection.mpl returns two lists where the first list is an intermediate result and the second list is the final result.
Our algorithm produces ordered selections first, then multiple selections are removed. For example, with K = [2, 1, 2] and N =

[a, a, b, b, b, c] we get 24 selections in the intermediate result. Except of [[a, b], [b], [a, b]] and [[a, b], [c], [a, b]], all other solutions
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read in 

N and K

next

N-tupel 

generate
selection 
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stop

 all N-

tuples?

continue 

yes

no

Figure 1
Program Flow for Multiselection. mpl.

3. APPLICATIONS

The first application is the complete set partitioning of N . Consider an integer partition P of the total
number of multiple elements Nt =

∑N
j=1 in N . We understand P as a selection list (like K above) and we

generate all corresponding multiselections from N . Let us call the set of all these partitions P(Nt). If we
perform all associated multtiselections for P(Nt), then we arrive at the complete set partitioning ΣN of N .
As an example, consider the multiset N = [a, a, a, b, c]. Since Nt = 5 we have P(Nt) = [ [1, 1, 1, 1, 1], [1,
1, 1, 2], [1, 2, 2], [1, 1, 3], [2, 3], [1, 4], [5] ] and we get ΣN = [ [[a], [a], [a], [b], [c]], [[a], [a], [a], [b, c]],
[[a], [a], [b], [a, c]], [[a], [a], [c], [a, b]], [[a], [b], [c], [a, a]], [[a], [a, a], [b, c]], [[a], [a, b], [a, c]], [[b], [a,
a], [a, c]], [[c], [a, a], [a, b]], [[a], [a], [a, b, c]], [[a], [b], [a, a, c]], [[a], [c], [a, a, b]], [[b], [c], [a, a, a]], [[a,
a], [a, b, c]], [[a, b], [a, a, c]], [[a, c], [a, a, b]], [[b, c], [a, a, a]], [[a], [a, a, b, c]], [[b], [a, a, a, c]], [[c], [a,
a, a, b]], [a, a, a, b, c] ].

Furthermore, several combinatorial objects can be constructed using a multiselection on a suitable N .
One example are the so-called ”hierarchical orderings” [6]. Multisets are also used in cluster analysis where
optimal clustering of objects is the aim [7]. If we have to distribute elements into a multiset in an optimal
manner, then (in principle) we need to produce all possible combinations and its here where multichoose
could come into play. A common example is the distribution of goods among recipients where we may ask
for the most fair distribution. Finally we want to mention that counting of multisets of a certain structure
results in many well-known (and sometimes in unknown) integer sequences. For example, the examina-

occur twice, e.g. [[c, a], [a], [b, b]] = [[b, b], [a], [c, a]]. We leave this first list in the output because it corresponds to the case
when order of subsets in S counts. In the second list returned by Multiselection.mpl all multiple instances are removed. In the above
example we thus get 13 solutions only: [[[b], [a, b], [a, b]], [[c], [a, b], [a, b]], [[a], [a, b], [b, b]], [[a], [a, b], [c, b]], [[a], [b, b], [c, a]],
[[a], [b, b], [c, b]], [[b], [a, a], [b, b]], [[b], [a, a], [c, b]], [[b], [a, b], [c, a]], [[b], [a, b], [c, b]], [[b], [b, b], [c, a]], [[c], [a, a], [b, b]],
[[c], [a, b], [b, b]]].
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tion of [1,1]- and [2,2]-multiselections applied to the natural numbers (A000027) and the natural numbers
repeated (A008619) resulted in findings which are listed under the sequence entry A188667 in the OEIS [8].

4. DISCUSSION

The literature on multisets is not vast. An introduction into the combinatorics of multisets was given by
Petrovsky [11]. Various applications of multisets were outlined by D. Singh et al. [12], the connection of
multisets to membrane computing and DNA computing was described by G. Ciobanu and M. Gontinea [13].
In particular, only a few papers on the enumeration or generation of submultisets of multisets exist. Hage
gave a formula for the particular case in which each element has equal multiplicity [14]. Furthermore, Ruskey
and Savage provided a Gray code for k-combinations of a multiset [15]. To the author’s best knowledge, no
literature exists on multiselections from multisets.

According to an extensive literature search, our algorithm seems to be the first one form the generation
of multiselections from multisets. However, the present algorithm has two drawbacks.
1.: Multiselection.mpl returns all its solution at once, for large multisets it would be better to get one solution
at a time.
2.: At first, Multiselection.mpl produces ordered multiselections from which the (unordered) multiselections
(i.e. without permutations of the subselections) are sorted out, see the corresponding footnote above. This
is inefficient.
The reason for this detour lies in subroutine enum.mpl which needs to be replaced by more efficient version.
Aside from these deficiencies the algorithm is non-recursive which makes it more easy to understand during
execution compared to a recursive algorithm. A recursive algorithm was developed by the present author
previously [16]. This algorithm inevitably results in ordered multiselections.

Thus, a more efficient non-recursive algorithm is left to future work. The same applies to the derivation
of a closed-formed expression for the number of K-selections from multisets.
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APPENDIX

MacMahon’s formula is [9]

Z =

Nt∑

t=0

(−1)t
∑

1≤i1<i2<...<it≤Nt

(
Nt + k − mi1 − mi2 − . . . − mit − t − 1

Nt − 1

)

The second sum in (5) runs over all possible subsets of size t which can be taken from the multiplicities.
For example, if N = [a, a, a, b, b, b, b, c], then one can get for k = 5 the following 6 selections [a, a, a, b, b,
b], [a, a, a,b, b, c], [a, a, b, b, b, b], [a, a, b, b, b, c], [a, b, b, b, b, c] [16].
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