where

$$
\sigma^{*}=\sigma^{2}-\frac{2}{1-c} \sqrt{\frac{2}{\pi \delta t}} k \sigma
$$

2. UMV MODEL UNDER DIVIDEND AND TRANSACTION COST

Assuming that volatility of the stock fluctuates randomly in a fixed interval, it means $0<\sigma^{-}<\sigma<\sigma^{+}$. The constant σ^{-}and σ^{+}represent upper and lower bounds on the volatility that should be input in the model. While considering the dividend, tax payment and transaction
costs, the volatility adjust to σ^{*}, according to Equation (2). Obviously, σ^{*} is bounded, so the adjusted volatility σ^{*} fluctuates randomly between σ^{*-} and σ^{*+}, where the constant σ^{*-} and σ^{*+} represent upper and lower bounds on the adjusted volatility.

According to Equation (1), the stock price meet the following process

$$
\mathrm{d} S=\frac{1-\tau}{1-c}(r-q) S \mathrm{~d} t+\sigma^{*} S \mathrm{~d} W
$$

where

$$
\sigma^{*} \in\left[\sigma^{*-}, \sigma^{*+}\right] .
$$

We could establish a stochastic control system as follows:

$$
\left\{\begin{array}{c}
\mathrm{d} S=\frac{1-\tau}{1-c}(r-q) S \mathrm{~d} t+\left(\frac{\sigma^{*+}+\sigma^{*-}}{2}+\frac{\sigma^{*+}-\sigma^{*-}}{2} u\right) S \mathrm{~d} W \tag{2}\\
S_{\left(t_{0}\right)}=S_{0}
\end{array}\right.
$$

with the cost functional

$$
J(\mathrm{u}(\cdot))=E(h(S(T))),
$$

and the control function u belongs to the following control set
$u(\cdot) \epsilon U\left[t_{0}, T\right]=\left\{u(\cdot):\left[t_{0}, T\right] \rightarrow \Omega \mid u(\cdot)\right.$ is measurable $\}$
Where $\Omega=[-1,1]$.
For the European call option, we have $h(S(T))=\max \left(S_{T}-K, 0\right)$. For the European put option, we have $h(S(T))=\max \left(K-S_{T}, 0\right)$.

Now we set up the dynamic programming problem. Let U be a metric space. For any $(s, y) \in[0, T) \times R^{n}$, consider the state equation as follows:

$$
\left\{\begin{array}{c}
\mathrm{d} S=r S d+\left(\frac{\sigma^{*+}+\sigma^{*-}}{2}+\frac{\sigma^{*+}-\sigma^{*-}}{2} u\right) \tag{3}\\
S_{(q)}=y
\end{array}\right.
$$

$$
G(t, s, \mu, p, P)=\frac{1}{2}\left(\frac{\sigma^{*+}+\sigma^{*-}}{2}+\frac{\sigma^{*+}-\sigma^{*-}}{2} u\right)^{2} X^{2} P+r X P
$$

where

$$
P=-\frac{\partial^{2} U}{\partial^{2} S^{2}}, p=-\frac{\partial U}{\partial S}
$$

When $P>0$, he Hamilton function G is monotone increasing in the control function u, thus we could maximize G by letting $u=1$. In such case

$$
\sup _{\mu \in \Omega} G\left(t, s, \mu, \frac{\partial U}{\partial S},-\frac{\partial^{2} U}{\partial^{2} S}\right)=-\frac{1}{2}\left(\sigma^{*+}\right)^{2} S^{2} \frac{\partial^{2} U}{\partial S^{2}}-(r-q)\left(\frac{1-\tau}{1-c}\right) \frac{\partial U}{\partial S} S .
$$

And the HJB formula turns out to be as follows:

$$
\frac{\partial U}{\partial t}+\frac{1}{2}\left(\sigma^{*+}\right)^{2} S^{2} \frac{\partial^{2} U}{\partial S^{2}}+(r-q)\left(\frac{1-\tau}{1-c}\right) S \frac{\partial U}{\partial S}=0
$$

On the contrary, When $P<0$, the Hamilton function G is monotone decreasing in the control function u. Thus we could maximize G by letting $u=-1$. In such case

$$
\sup _{\mu \in \Omega} G\left(t, s, \mu, \frac{\partial U}{\partial S},-\frac{\partial^{2} U}{\partial^{2} S}\right)=-\frac{1}{2}\left(\sigma^{*-}\right)^{2} S^{2} \frac{\partial^{2} U}{\partial^{2} S}-(r-q)\left(\frac{1-\tau}{1-c}\right) \frac{\partial U}{\partial S} S
$$

And the HJB formula turns out to be as follows:

$$
\frac{\partial U}{\partial t}+\frac{1}{2}\left(\sigma^{*-}\right)^{2} S^{2} \frac{\partial^{2} U}{\partial S^{2}}+(r-q) S\left(\frac{1-\tau}{1-c}\right) \frac{\partial U}{\partial S}=0
$$

The cost functional U of the Equation (4) under the worst condition satisfy the following partial differential equations:

$$
\left\{\begin{array}{c}
\frac{\partial U}{\partial t}+\frac{1}{2} \sigma\left(\frac{\partial^{2} U}{\partial S^{2}}\right)^{2} S^{2} \frac{\partial^{2} U}{\partial S^{2}}+r S \frac{\partial U}{\partial S}=0 \tag{4}\\
\sigma\left(\frac{\partial^{2} U}{\partial S^{2}}\right)=\left\{\begin{array}{l}
\sigma^{*+} \frac{\partial^{2} U}{\partial S^{2}}<0 \\
\sigma^{*-} \\
\frac{\partial^{2} U}{\partial S^{2}}>0
\end{array}\right. \\
\left.U(x)\right|_{t=T}=e^{-(T-t)} h(S(T))
\end{array}\right.
$$

When it comes to the best condition, we have such equivalent transformation as follows:

$$
U_{\text {best }}=-(-U)_{\text {worst }}
$$

Let $U_{\text {best }}=-(-U)_{\text {worst }}$ substitute into Equation (4), thus we have the cost functional of the Equation (4) under the best condition:

$$
\left\{\begin{align*}
& \frac{\partial U}{\partial t}+\frac{1}{2} \sigma\left(\frac{\partial^{2} U}{\partial S^{2}}\right)^{2} S^{2} \frac{\partial^{2} U}{\partial S^{2}}+(r-q)\left(\frac{1-\tau}{1-c}\right) S \frac{\partial U}{\partial S}=0, \tag{5}\\
& \sigma\left(\frac{\partial^{2} U}{\partial S^{2}}\right)=\left\{\begin{array}{l}
\sigma^{*-} \frac{\partial^{2} U}{\partial S^{2}}<0 \\
\sigma^{*+\frac{\partial^{2} U}{\partial S^{2}}>0}
\end{array},\right. \\
& U(x)_{t=T}=e^{-(T-t)} h(S(T)) .
\end{align*}\right.
$$

According to the relationship between the cost functional U and the option value function V and the rule of the partial derivatives:

$$
U(t, x)=\mathrm{e}^{r(\mathrm{~T}-\mathrm{t})} V(t, x),
$$

we have the following equation,

$$
\left\{\begin{array}{l}
\frac{\partial U}{\partial t}=-r e^{r(T-t)} V+e^{r(T-t)} \frac{\partial V}{\partial t} \tag{6}\\
\frac{\partial U}{\partial S}=e^{r(T-t)} \frac{\partial V}{\partial S} \\
\frac{\partial^{2} U}{\partial S^{2}}=e^{r(T-t)} \frac{\partial^{2} V}{\partial S^{2}}
\end{array}\right.
$$

When considering the worst condition Equation (4), we have the minimum option value $V^{-}(t, x)$ satisfy the PDE formula by applying the transformation Equation (6)

$$
\left\{\begin{align*}
& \frac{\partial V}{\partial t}+\frac{1}{2} \sigma\left(\frac{\partial^{2} V}{\partial S^{2}}\right)^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+(r-q)\left(\frac{1-\tau}{1-c}\right) S \frac{\partial V}{\partial S}-r V=0 \tag{7}\\
& \sigma\left(\frac{\partial^{2} U}{\partial S^{2}}\right)=\left\{\begin{array}{l}
\sigma^{*+} \frac{\partial^{2} V}{\partial S^{2}}<0 \\
\sigma^{*-} \\
\frac{\partial^{2} V}{\partial S^{2}}>0
\end{array}\right. \\
& U(x)_{t=T}=e^{-(T-t)} h(S(T))
\end{align*}\right.
$$

On the contrary, when considering the best condition Equation (5), we have the maximum option value $V^{+}(t, x)$ satisfy the PDE formula as follows:

