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Abstract
Activation functions are an essential part of artificial 
neural networks. Over the years, researches have been 
done to seek for new functions that perform better. 
There are several mainstream activation functions, such 
as sigmoid and ReLU, which are widely used across 
the decades. At the meantime, many modified versions 
of these functions are also proposed by researchers in 
order to further improve the performance. In this paper, 
limitations of the mainstream activation functions, as well 
as the main characteristics and relative performances of 
their modifications, are discussed.
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INTRODUCTION
In 1943, Warren S. McCullock and Walter Pitts proposed 
the possibility of simulating neural activities with 
computational network models, and proved that artificial 
neural networks can theoretically approximate any 
function, either arithmetic or logical (Mcculloch & Pitts, 
1943). The Artificial Neural Network (ANN) algorithm 
has since been further developed and applied in various 
fields, which has actively promoted the development of 
artificial intelligence.

An ANN is comprised of computable units called 
neurons (or nodes). The activation function in a neuron 
processes the inputted signals and determines the output. 
Activation functions are particularly important in the 
ANN algorithm; change in activation functions can have 
a significant impact on network performance. Therefore, 
in recent years, researches have been done in depth on 
the improvement of activation functions to solve or 
alleviate some problems encountered in practices with 
“classic” activation functions. This paper will give some 
brief examples and discussions on the modifications and 
improvements of mainstream activation functions.

1. INTRODUCTION OF ACTIVATION 
FUNCTIONS
Activation functions are functions that determine the 
output of the nodes (neurons) in ANNs. C. Gulcehre 
et al. pointed out that an activation function should be 
differentiable almost everywhere (Gulcehre, C., et al, 
2016). Also, in order for ANNs to be capable of learning, 
an activation function must be nonlinear on its domain, or 
piecewise-linear. 

An ANN with such act ivat ion funct ion(s)  is 
theoretically sufficient to approximate any function. 
Kur Hornik et al. pointed out that “there is a single 
hidden layer feedforward network that approximates any 
measurable function to any desired degree of accuracy on 
some compact set K.” (Hornik, Stinchcombe, & White, 
1989)

2. IMPROVEMENTS BASED ON SIGMOID 
FUNCTION
Sigmoid function is defined by 
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Figure 1
The graph of sigmoid function

The graph of the function is an S-shaped symmetric 
curve centred at (0,0.5), with an output range limited in 
(0,1). The derivative of the function is 

The limitations of sigmoid are as follows:
Sigmoid reaches soft saturation at both sides. When the 

input falls into the saturated region, the activation values 
will be largely zeros, and therefore the network may not 
be trained properly.

The backpropagation algorithm computes gradients by 
the chain rule. In each iteration of training, the gradient 
is multiplied by the derivative of the activation function, 
. The derivative of sigmoid is always smaller than 1; 
therefore, the gradient will decrease exponentially in 
backpropagating, approaching towards zero. This is often 
called the vanishing gradient problem. Such problem will 
result in very small gradients in the front layer, meaning 
that when a gradient-descent based iterative method (e.g. 
stochastic gradient descent) is applied, the weight update 
in the front layer will be extremely slow, and the training 
will therefore be inefficient.

It is worth noting that Tanh function, another widely 
used S-shaped function, is often compared with sigmoid.

Tanh function is defined by 

Figure 2
The graph of tanh function

It is very similar in nature to sigmoid, and therefore 
has similar drawbacks as the former. However, it is often 
proved to perform better than sigmoid. A possible reason 
is that, with an output range of (-1,1), it has a zero mean 
value, and therefore prevents bias shift, resulting in faster 
learning rate (Goodfellow, Bengio, & Courville, 2016; 
Glorot, Bordes, & Bengio, 2011; Clevert, Unterthiner, & 
Hochreiter, 2015).

An example of modifications based on sigmoid is the 
bi-parametric sigmoid function proposed by Huang et al. 
(Huang, Y., et al, 2017). Two independent parameters α 
and λ are introduced in the function and its derivative: 

The parameter α () is introduced to prevent excessive 
input values from falling into the right-side saturated 
region, with λ () to countermand the vanishing effect of 
α on the gradient. Based on MNIST dataset, Huang et al. 
performed number classification tasks using deep belief 
network, benchmarking bi-parametric sigmoid against the 
ordinary sigmoid function. It turns out that compared with 
sigmoid, bi-parametric sigmoid can efficiently alleviate 
the vanishing gradient problem, therefore achieving better 
training results and faster convergence speed.

3. IMPROVEMENTS BASED ON RELU 
FUNCTION
Rectified Linear Unit (also rectifier, or ReLU) function is 
defined by 

Figure 3
The graph of ReLU function

As X. Glorot et al. pointed out, in human brains, 
information stores in neurons sparsely, i.e. the percentage 
of neurons active at the same time is small (Glorot, 
Bordes, & Bengio, 2011). The fact that ReLU returns 
zero for all negative input allows the function to simulate 
this nature of biological neurons. Also, the gradient of 
ReLU when  is always zero, so can efficiently prevent 
the vanishing gradient, compared with sigmoid and tanh, 
which have a much wider saturated region. It has been 
seen in practice that ReLU generally outperforms both 
sigmoid and tanh (Maas, et al, 2013).
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The limitations of ReLU are as follows:
It hard-saturates, i.e. its gradient disappears, when, 

returning zero for all input values. As a result, if the input 
falls into this region, causing neuron death: weights of 
the neurons can no longer be updated. The network may 
therefore be completely incapable of learning. (it is worth 
noting that, when comparing ReLU with softplus function, 
Glorot et al. discovered that supervised training can in fact 
be benefited by hard-saturation of ReLU, providing the 
gradient can backpropagate, i.e. neurons in the same layer 
are not deactivated in the same time (Glorot, Bordes, & 
Bengio, 2011)  

ReLU has a positive mean value, and non-zero mean 
will cause bias shift: the mean activation value will 
propagate to next layer as bias, deviating the standard 
gradient from the natural gradient. Oscillation will occur 
due to bias shift, and will therefore cause low learning 
rate. 

ReLU is unrestrained in the positive axis. As P. 
Ramachandran et al. pointed out, such nature of ReLU 
means that it will not saturate when , which is desirable 
(Ramachandran, Zoph, & Le, 2017); however, this also 
means the gradient could easily explode if excessive 
activation values occur. 

In order to solve these problems, many modifications 
based on ReLU are proposed. A. L. Maas et al. introduced 
Leaky ReLU function (Maas, et al, 2013) in 2013, which is 
defined by 

Figure 4
The graph of Leaky ReLU

The hyperparameter  is generally set at 0.01.  allows 
the function to have a slight gradient on  (see Fig.4), so as 
to avoid neuron death. Based on 300-hour Switchboard 
conversational telephone speech corpus (LDC97S62), 
Maas et al. performed LVCSR experiments. They 
discovered that there was no significant improvement on 
network performance when replacing ReLU with Leaky 
ReLU, and concluded that the said problem of ReLU 
will not adversely affect training. Followed researches 
shows that Leaky ReLU can in practice improve network 
performance, and, generally, the improvement is more 
significant with a greater value of  (Xu, B., et al, 2015).

K. He et al. proposed Parametric ReLU (PReLU) 
function in 2015 (He, et al, 2015), whose basic form is 
the same as Leaky ReLU, but the parameter  is obtained 
through learning. Based on ImageNet 2012 dataset, He 
et al. performed image recognition experiments, reaching 
the conclusion that PReLU generally outperforms ReLU 
without increasing computing cost.

In order to solve the bias shift problem of ReLU, D.-
A. Clevert et al. proposed Exponential Linear Unit (ELU) 
function in 2016 (Clevert, Unterthiner, & Hochreiter, 
2015), which is defined by  

Its derivative is 
where  is a hyperparameter. The mean value of ELU 

is closer to zero than that of ReLU, therefore alleviating 
bias shift to some extent; at the meantime, according 
to Clevert et al., because functions like Leaky ReLU 
which also have negative values are not saturated in 
the negative region, neurons may be activated by noise; 
ELU, on the other hand, has a soft-saturated region, 
making it more robust to noise (see Fig. 5) (He, et 
al., 2015). Also, by introducing output values when , 
neuron death can also be prevented. Based on MNIST, 
CIFAR-10, CIFAR-100 and ImageNet datasets, the team 
benchmarked the performance of ELU against other 
ReLUs such as Leaky ReLU and PReLU, and observed 
that ELU generally outperformed the others.

Figure 5
Comparing the graphs of Leaky ReLU and ELU, . Note that 
ELU has “a clear saturation plateau in its negative region”, 
as the team put it (He, et al, 2015)

There are many other improving attempts based on 
ReLU. Several examples are as follows:

In order to prevent neuron death, and the problem that 
ReLU-Softplus (a hybrid function defined by , proposed by 
Q. Shi (Shi, 2017) only converges under the learning rate 
of no greater than 0.0001, H. Wang et al. proposed ReLU-
Softsign function (WANG, et al, 2019), which is defined 
by 
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Figure 6
The graph of ReLU-Softplus

Based on MNIST, PI100, CIFAR-100 and Caltech256 
datasets, Wang et al. performed image classification 
experiments. It is discovered that ReLU-Softplus achieves 
higher precision and faster convergence speed than several 
existing activation functions. 

In order to prevent vanishing gradient and neuron 
death, and to improve noise robustness of the network, 
T. Zhang et al. proposed TReLU  (Zhang, Yang, Song, 
& Song, 2019) function, a hybrid of tanh and PReLU, 
defined by 

Figure 7
The graph of TReLU

TReLU is very similar to ELU, whose negative region 
is soft-saturated to make it noise robust. Based on MNIST, 
CIFAR-10 and NWPU-RESISC45 datasets, Zhang et 
al. performed experiments and observed that TReLU 
outperformed both ReLU and PReLU. 

In order to prevent explosion, X. Liu et al. proposed 
threshold ReLU function (Liu, Guo, & Li, 2019).  is 
set to zero after  reaches a threshold value , so that the 
network stops learning in the  region. Based on Caltech 
101 and Caltech 256 datasets, Liu et al. performed image 
classification experiments on Alexnet and threshold 
ReLU, benchmarking against ReLU. They concluded that 

threshold ReLU outperformed ReLU in precision and 
extent of convergence. Optimal performance occurred 
when . 

To prevent bias shift, vanishing gradient and explosion, 
Y. He et al. proposed Tanh ReLU function (He, Cheng, 
Zhang, & Li, 2019), which is defined by 

It is easy to see that TReLU and Tanh ReLU are very 
similar, but a threshold value  is introduced in Tanh ReLU 
to prevent explosion. He et al. performed classification 
experiments on MNIST dataset, benchmarking Tanh 
ReLU against ReLU. Tanh ReLU generally outperformed 
ReLU according to the team. Particularly, when the 
learning rate is reduced to 0.001, the network performance 
is greatly improved.

In order to prevent vanishing gradient and neuron 
death, B. Xu et al. proposed ArcReLU function (Xu & Xu, 
2019), a hybrid of Arctan and ReLU, which is defined by 

It is clear that its derivative is always positive, so 
a single-layer net will be a convex function. The team 
predicted that the network would therefore have better 
convergence. Xu et al. performed five classification 
experiments to benchmark ArcReLU against ReLU 
and ELU; the dataset that each experiment used was 
respectively Pima Indians Diabetes Database, The Iris 
Dataset, Car Evaluation Dataset, US Census Income 
Dataset and Avila Dataset. According to Xu et al., 
ArcReLU “[…] can not only significantly accelerate the 
training speed of BP neural network, but also effectively 
reduce the training error and avoid the problem of gradient 
disappearance.” (Xu & Xu, 2019)

4 .  I M P R O V E M E N T S  B A S E D  O N 
SOFTPLUS FUNCTION
Softplus function is defined by 

Figure 8
The graph of softplus function

Its graph is very similar to ReLU, but smooth 
around the origin. Therefore, softplus and ReLU has 
similar advantages and drawbacks. Compared with 
ReLU, softplus does not hard-saturate when , so it can 
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theoretically prevent the gradient from diminishing 
completely for all negative . 

An example of modifications based on softplus is Rand 
Softplus function (Mai, Chen, & Zhang, 2019) proposed 
by Y. Mai et al., defined by 

where parameter  is introduced to reflect the 
randomness of biological neurons, so as to improve 
noise robustness of softplus networks. The value of  is 
determined by

Calculating the standard deviations of noise;
Calculating mean standard deviation  of each layer, 

and reset ’s to   when ;
Normalizing the deviations to (0,1) to obtain .
A threshold value  is introduced to achieve sparsity: 

values of  smaller than  is reset to zero. Based on CK+ 
(The Extended Cohn-Kande Dataset), KDEF (Karolinska 
Directed Emotional Faces) and GENKI-4K datasets, Mai 
et al. performed facial expression recognition experiences 
using deep residual networks. They concluded that 
compared with mainstream activation functions, Rand 
Softplus performed better for noisy input.

5. IMPROVEMENTS BASED ON SWISH 
FUNCTION
Swish function was proposed by Ramachandran et al. 
in 2017 (Ramachandran, Zoph, & Le, 2017), which is 
defined by 

Figure 9
The graph of Swish

The graph crosses the origin, and  as . It can also 
be seen as a “smooth ReLU”, but unlike softplus, it is 
non-monotonic, which is likely to be “advantageous” 
according to Ramachandran et al. (Ramachandran, Zoph, 
& Le, 2017) The negative activation value can also reduce 
neuron death. Based on MNIST, CIFAR and ImageNet 
datasets, the team benchmarked Swish against softplus 
and ReLU functions such as Leaky ReLU, PReLU and 
ELU, and concluded that Swish “robustly” outperformed 
the others. 

An example of modifications based on Swish is Xwish 
function proposed by Y. Liu et al. (Liu, Wang, & Xu, 
2019), which is defined by 

The parameter  controls the speed for the derivative 
to converge to 0 or 1. It is clear that the group draws 
inspiration from the basic form of Swish, . Based on 
MINST and Cifar-10 datasets, Liu et al. performed 
experiments under Tensorflow framework, benchmarking 
Xwish against ReLU, LReLU and tanh. They observed 
that Xwish network showed the best convergence 
compared with the other three.

CONCLUSION
In view of the shortcomings of mainstream activation 
functions, many researchers have proposed modified 
versions of existing functions. A considerable proportion 
of researches are devoted to solving the problems 
commonly existing in mainstream activation functions 
(e.g. traditional S-shaped functions and ReLUs) such 
as vanishing gradient and neuron death. There are also 
studies focusing on improving noise robustness, extent of 
convergence, and stability. 

It is also worth noting that ReLU gained growing 
popularity due to its promising performance. Most 
improved functions in this article (including the ReLU-
based piecewise functions, softplus and Swish) are 
based on ReLU. Some studies suggest that behind the 
success of ReLU are its unboundedness when  and its 
sparse activation. Finding the actual reason why these 
characteristics are advantageous may help to select the 
activation function applicable in different application 
scenarios and to propose better activation functions, 
thereby promoting the further development of ANN.
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