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Abstract

This paper study the problem of wealth optimization.It is
established that the behavior model of the stock pricing
process is jump-diffusion driven by a count process
and stochastic volatility. Supposing that risk assets pay
continuous dividend regarded as the function of time.
It is proved that the existence of an optimal portfolio
and unique equivalent martingale measure by stochastic
analysis methods. The unique equivalent martingale
measure ,the optimal wealth process, the value function
and the optimal portfolio are deduced.
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INTRODUCTION

The wealth optimization problem and the
portfolioselection theory are always the kernel problems
on financial mathematics. The domestic and foreign
scholars have done a great dral of researches on the
wealth optimization problem and obtained many results
which is instructive to financial practice. When markets

are complete, the existence of optimal strategies can be
found Merton (1), Jeanblanc and Pontier (2), Follmer and
Leukert (3), Pham (4), Nakano (5) discussed continuous
and jump-diffusion modes.

In this paper, We define the wealth optimization problem:

V(t,x,y) = sup B{U (X" M)|x (0= x,Y(1) = y]

where [ (f)is the wealth process and [J is the set of a
dmissible portfolios. When the wealth is equal to X at the
time ¢. we consider an economic agent whose behavior facing
the risk is determined by a utility function (6).Utility function
is non decreasing, strictly concave, obviously [I[(l)admits an
inverse /([1).Heinvests his wealth in the two assets and wants
to maximize the expected utility of wealth at time [1Our work
extends those studies and analyses the wealth optimization
problem when markets is incomplete and driven by
discontinuous prices.We consider that price of underlying asset
price obeys jump-diffusion process, jump process generalized
conforms to the actual situation of stock price movement. This
paper discusses jump-diffusion asset price model being driven
by a count proces that more general than Poisson process.
Supposing that risk assets pay continuous dividend regarded
as the function of time. It is proved that the existence of an
optimal portfolio and unique equivalent martingale measure by
stochastic analysis methods. The unique equivalent martingale
measure ,the optimal wealth process, the value function and
the optimal portfolio are deduced.

1. ASSUMPTIONS AND MODEL

Let (Q,F,P,(F,)OQST) be a probability space .The

market is built with a bond B(f) and a risky asset [(f). We
suppose that B(f) and [(¢) satisfy differential equation

dB(r) CB(t)r(t)dt B(0) [ 1 (1)
di() U L) - [(L(@0))de L H@0))dW (1) [
C(C()dM@)) @)
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dY(r) = b(Y(£))dt + a(Y(0)(pdW,(£) + \1- p*dW, (1)) (3)
where ris[[free interest rate [(¢)volatility [(¥(#)) [J [1J
continuous dividends [(Y(#))Standard Wiener process

(W (1),0 <t <T}and {W,(t),0 <t <T} are independent |
M(t)=N() —I(: A(s)ds,T 2t =2 01s the compensated

martingale of non elplosive counting process
{N ®),0<t<T } with intensity parameter [(£)[]

Lemma 1 [or all p* in p [there elist predictable

processes [|(£)[13(¢)[14(f)[] satisfy
H(Y() LX) L) + L)) () + L HY(@) B0 = L)

L(Y(@0) + a(Y(0)pLi(@) + a(Y(O)1-p* () =1 (5)
ProofiSince [ in [Ithen d—P*|F,=L(t) is the [
dP

martingale[ applying martingale representation theorem!(
there el ists[|(#) L1 5(#)LL4(¢) such that

dri() = OO (D) + HOd(D)

that is [(1) = (L), L), (1 #)M

= exp! jo 6,(s)dW, (s) —%jo 0 (s)ds + jo 0,(s)dW,(s)—
% jo 02 (s)ds} exp! jo In(1+6,(s))dN(s) -

[ 4(5)6,(s)ds}]
applying [Jirsanov theorem " (¢) = W, (s) — ‘[(: 6,(s)ds

W, (@) =W,(5)-[ 6,(s)ds are standard Wiener
process under the martingale measurel] [
M ()= N(t)- ‘[(:l(s)(1+93(s))ds is [ martingaleSo

NOE % and Y(7) satisfy

dS(6) = SE=)(u(Y (1)) = (Y (£)) — (1))t +
(YOI, (1) + o (Y(6),(t)dr +o(Y (1))dM " (1) +
PY (N AWDOG,(1)dt)= St (Y (0) = (Y (1))~ r(t) +
S (Y (0)6,(1) + AP(Y ()8, (D)t +o (Y (1)AW; (1) +
P(Y (1)dM (1)) dY (1) = b(Y (1))dt +a(Y (1))pd W, (1) +
a(Y (0))p6,(t)dt
+a(YOWL- o2, (0) + a(Y ()1 976, (6)dr)

= (b(Y (1)) +a(Y(1))p8, (1) +a(Y ()1 - p*6,(1))dt
+a(Y(O)pd W, (1) + a(Y (O)W1- p* dW; (1))

Since S(¢) and Y(f) are [ | martingale[ | then
H(Y(0) LLY(0) L) + LX) L) + () LX) () =
bY (1) +a(Y () pf,(t) + a(Y(O)1-p*6,() =0
We define the investor wealth process [ () is
standara selflfinancing wayl the investor wealth process
(D) satisfy
X" (s) = my(s)B(s)+m, (5)S(s)
Oet m(D (D = (DO therd! () satisfy
di (O =r(O0 (OUL DOCXO) & @) D Q)
OO + M)
X" (s)B(t)
B(s)
dX "7 (s) = F() (Y () = 2(Y (£) = r(s))ds
+7(s)o (Y (s))dW,(s) + Z(s)(Y (5))dM (s)
= Z($)uY () —7(Y (1)) = r(s) + o (Y(5))6,(s) +
()Y (5))6;())ds +7(s)a((Y ()dW; (s)+
Z(s)p(Y ())dM " (s)
by Lemma 1,we have
dX ™" (5) = 7(s)o (Y ()W, () + 7 (s)p(Y (s))dM " (s)

0<t<s<T

and X*"(s) = satisfy

)
S0 X*"(s) [0 <¢<s<Tisall martingale]
Lemma 2 [Tunction
Ao Vy V.
F(z)=z+Ap- ?Vt(t,x+£2(r—,u+r—p0'a 2 —2)—,y)
I/x ' G X VXJ
e[ Jists unil lue zero pointz, € R [
[et
1 @ v, V.
0, =—V (t,x+=F—-pu+r—poa—>-z)—=2,y)-1 [

we have () elists unilue zero poin z=[11} [so elists
unilue zero point[} such that
1. v, v,
0, =—V.(t.x+2(r— 41— poa—2—ap0) =, y)-1
V o V

@)
[ogether with ([)[(5) and (['we can define a unilue
el luivalent martingale measurel ] []

2. MAIN RESULTS

Proposition 1 We assume that utility function satisfies a

polynomial growth condition then the optimal trategy 7"

is given by

r(6)= u(») + () = AOPNO(D) V.(t,x,y)  pa(y) Vo (t:x,)

0= o’ (y)
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Proof. The associated H-J-B equation takes the
following form

V, +sup{lxr+z2(u(y) = 7(») = Ap(y) =V, +
N "
mpo (y)a(y)V,, oo GD1

L@, +BOIW, AV (xmp(2). )~V 1 =0

V(T,x,y)=U(x)
[Je have

(L) =7(3)=A29(y) =WV, +7 0> (YW, + po(y)a(y)V,,
+Ap(VWV, (6, x+ 7 9(y),y) =0

Vo o oV . .
Uetr—u—poa—=—-r o —*=z, this equation
equivalently
Ap . @ Vo W
z+ -V (tx+——=(r—-u+7-poa—>—-z)—=,y)=0
@ v L ( 02( H+T=p v )VH »)

Thus,we prove that

_ (0~ p() +7(0) = AO@()E,(1) V. (2,x, )
a’(y) Ve (t,x, )

5

7 (1)

_pa V(%)
o(y) Vo (t.xp)

Lz (s) =

e(OW),e(OW,), el(1+6,)M ],
£(OM),e(O W), e[(1+6,)M ],

Zexp {—LS r(u)du}

0<t<s<T,olviously
B(#)L(s)
B(s)L(1)

r
r(u)du

7Y (s)=2zZ""(s) =z is a P martingale.

LetX (t,z,y)= [ TL (Z(T)]» We have

X (t.z,)= 0

=D
L(1)
1

== {LT)[Z"(T)(Z"(T)|F 1}
zZ

(Z (TR}

TJ‘Tr(u)du

[ L(TY(Z"(T)|F1}

~Lozeam (Z"(T)|F]
z
Proposition 2 The optimal wealth process UX’”* ()

satisfies

A X (X )2 (T2 (T)

’—‘x,ﬁ‘ (S) = Z(t’l)(s)
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F10<t<s<T).

057 (5)B()
B(s)
martingale, applying Bayesls rule,

S 7 (T)B(Y) L(T)
B(T) L(t)
L7 (T)B(1), L(T)
B(T) L(t)
= ([0 (T2 (T)|F ]
and
x=X(6,X(t,x,),y) = [Z“(T) (X' (t,x,) 2" (T)|F,]
we have
(T = X (8,2, 0)Z0(T))
SO
T ()B()
B(s)
T (T)B()L(T)
B(T)L(t)
7 (T)B()L(T)
B(T)L(t)
(X (t,x,0)Z"(T))B(1)L(T)
B(T)L(?)

Proof Since (0<¢t<s<T) is a P

[F1=—=|F]

= 1——=|F]

o 057 (T)B(1)
B(T)

F1]

L(T)

=[] L)

|F.1/ (=== ]
_ L)
L(s)
L)
L(s)
then

I F.]

u k.1

0 (s)= X (6 N ZTHZT)

1
- F
Z(t,l)(s) 3]

Proposition 3 et
(t,z,y) = LU((zZ""(T)))], the value function and
the optimal portfolio are given [y

V(t,x,y)=0(t,X ' (t,x,),»)
F— =00, X\(s, 0% (5),0(s))

2

o X (s, 05 (9),1(s))
_pa X7 (s 1 (9). ()

o X (s, 07 (5),U(s))
Proof. [lorO0< &<z,

2X(6,2,9) = EX (1.€.9) = [, X (o y)du

7' (s)=

= (2D HZ (T -2 (T) 2T -
[ 220y (z ()
Su

= (22T -2 (1) (2 (7)) -
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[0 1wyav

1

g2t X (s)= L) ;l () exp {I,s 2 5 [1 R
= EUUIGZ () ~UEZ (M) 070 (B-H
=G(t,Z,y)—G(t,§,y) - ]

"hen we easily see that G.(¢,z,y) = zX_(t,z,) [| Al+6) _m@ — 1145
V(t,x,y) = sup E[UX "™ (T)| X* () = x, Y (£) =
(t,%,9) =sup E[U (X" ()X (1) = .Y () = y] m) =X 1)
= EUCX (D)X () =xY(0) =] 200, 1
. r—pu+t—Apl, X"
= E[lUU(X ™ (t.x, )2 (T))] 7 (s)= = 1S *
=G(t, X7 (1,x,), ) '
thus 28 o (S LT
, o L L - X (s,1,Y(s))
Vit x,y) =G, (6, X" (t,x,), )X (£,x,y) =X (1,x,)
where
V;(t,x,y):)(’lx'(t,x,y) ]/x;(tﬂxzy)zxilyl(tﬂxny) T —[r 0 2 2
applying Proposition 1] we have X (tLy)=exp {L er 2( 01y 67+ 81
. — U+ A0, X (5, X" (s),Y —
()= IR S0 A1+6) 7 ———0, -1 -
o X7 (8, X7 (s),Y(9)) =1
pa X (5, X (5),Y(s)
o X —lx’(S’Xer* (5),Y(s)) REFERENCES
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