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Abstract
Based on the second type of sales diffusion curve 
proposed by the professor Zheng Zukang, the existence 
of the moment estimation is demonstrated through 
researching the digital characteristics of parameters in the 
model. Besides, the moment estimations of parameters are 
calculated. The precision of estimation is investigated by 
Monte-Carlo simulation, and some examples are used to 
validate this model.
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INTRODUCTION
With the development of economy and living standard, 
impulsive purchasing is becoming a main stream of 
modern consuming idea, due to continuous change in 
shopping taste and concept. Iyer, an employee of Dupont 
Company (1989), thought that almost all consumers 
have experienced at least one unplanned purchasing. 
Additionally, a study shows that impulsive purchasing has 

more influence on consuming behavior (Sfiligoj, 1996). 
Analyzing reasons and main factors of impulse purchase 
can help companies take corresponding marketing 
strategies, so as to stimulate impulsive purchasing and 
expand sales volume.

Many scholars, these years, have been conducting 
deep researches in consumers’ impulsive purchasing as 
well as new products’ sales diffusion. XUE Ming gave 
definition of impulsive purchasing in his article. It is a 
specific and unplanned purchasing behavior which is 
instant, emotional, regardless of consequences. This 
behavior has been classified in four categories: pure, 
indicative, inspired and planned buying, and XUE listed 
corresponding marketing strategies. It has got cognitive 
aspects such as lack of planning and deliberation (Kim 
Ramus & Niels Asger Nielsen, 2005). LU Xiaomin 
and XUE Yunjian reclassified impulse purchase into 
catalyzed, compensatory, penetrative, and blind impulse 
purchasing. Main factors affecting the behavior are also 
analyzed in depth with features as follows: first, detailed 
research target instead of ambiguous consumer image; 
second, more comprehensive incentives combining 
examples, theories and data, some most typical incentives 
are summed as follows: attitude towards money, use of 
credit cards, life experience, bundled price promotion, 
self-construction, allopatry and anticipated regret. Thus, 
we can give an outlook of Chinese impulse purchase 
researches, and continue studying “re-impulse purchase” 
which will shift focus from traditional shopping to 
E-shopping. Impulse buying behaviors are presumed to 
be universal in nature (Mai et al., 2003; Rook, 1987). 
However, although the impulse behavior as such may not 
deviate much between countries, it is suggested that local 
market conditions as well as social and cultural factors 
affect consumers’ propensity to make such purchases 
(Mai et al., 2003; Rook, 1987; Shamdasani & Rook, 
1989). There are several areas of consumers’ consumption 
and patronage behavior that are in need of additional 
exploration (Pan & Zinkhan, 2006; Brown & Dant, 2008). 
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While ZHENG paid emphasis on mathematical analysis 
of Sales diffusion curve in order to explain how impulse 
affects the change of sales diffusion curve. The “impulse” 
can be described by survival analysis in the Statistics. 
The method in this article is to constitute three types 
differential equation by integrating sales diffusion curve, 
average speed of sales diffusion and time of market. 
Thus, we can anticipate some information such as peak 
sales, time of over-half sales, according to the results of 
differential equations.

On the basis of the second sales diffusion curve 
proposed by professor ZHENG, this article aims to 
calculate moment estimation through researching models’ 
numerical characteristics and proving the existence of 
moment estimation. The article also uses Monte-Carlo 
to gain simulate estimation accuracy, and verify models 
with examples.

1 .   M O D E L S  A N D  N U M E R I C A L 
CHARACTERISTICS
In this article, we have a specific discussion on the second 

model, combining equation (3) with average ratio
( )F t
t

or instantaneous ratio ( )f t . As a consequence, we get 
probability distribution function, show that
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Then we take the derivative of probability density 
function, show that
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For given β ( 0 1β< < ), we know ( ) 0f t′ < .Hence, 
( )f t is a strictly monotonic decreasing function. See 

Figure 1
For given β ( 1β = ), we also know ( ) 0f t′ < .Hence, 

( )f t is a strictly monotonic decreasing function .See 
Figure 1

But for β (1 β< < +∞ ), there is something different.
Let
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From that we know the probability density function of 
this model, ( )f t , is strictly monotonic increasing where t
(denotes time) is from 0 to 0t .Correspondingly, ( )f t is 

strictly monotonic decreasing where t  is greater than 0t . 

So ( )f t take the peak 0t t= and the value is
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Characteristics of ( )f t see Figure1

Figure 1
Probability Density Function ( )f t  where 1α =

The failure rate function of the above probability 
distribution is
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where t denotes time
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Then we take the derivative of failure rate function
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For given β ( 0 1β< < ), we know ( ) 0tλ′ < . Hence, 

( )tλ is a strictly monotonic decreasing function. See 
Figure 2
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( )tλ is a strictly monotonic decreasing function too. See 

Figure 2
But for β (1 β< < +∞ ), the result is different.
Let
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From that we know failure rate function of the model, 
( )tλ , is strictly monotonic increasing where t (denotes 

time) is from 0  to 0t′ . Correspondingly, ( )tλ is strictly 

monotonic decreasing where t  is greater than 0t′ . So ( )f t

take the peak 0t t′=  and the value is
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Characteristics of ( )tλ are shown as Figure 2

Figure 2
Failure Rate Function ( )tλ  Where 1α =

The P-Quartile Chart of the Above Distribution
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Numerical Characteristics of the Distribution
The k-moment of parameter t
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Especially, the mathematical expectation of parameter t is
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2.  MOMENT ESTIMATORS OF THE 
PARAMETERS
Suppose 1 2, , , nT T T is a simple random sample of 
population T , whose size is n . We can establish the 
following equation if we are notified 2β > , that is
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Lemma: the equation (13) for β  has unique positive 
real root, where 2β >
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To prove the lemma, let us establish an auxiliary 
function ( )G β
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Just because of 2β > , we can infer that both 
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2
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 are not whole numbers. So we can construct two 

equations according to the properties of Gama function. 
Show that
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After plugging in (14), (15), we simplify the auxiliary 

function. That is
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Next, let us establish another auxiliary function ( )g x
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Similarly, we take the derivative of 1( )g x , that is
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Hence, the unique root of equation (16), β̂ , is just the 

moment estimation of β .
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As a consequence, parametric estimate ofα is
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In order to examine the accuracy of the moment 
estimation, we make a simulation to display it concretely. 
Let the sample size n = 10(5)30, real values are α = 1, 
β = 3. Then we take 1000 times Monte Carlo simulation 
and we get moment estimation for mean and mean-square 
error of parameter α, β, see Table 1. From that we find the 
estimation precision is satisfied and mean-square error 
decreases as sample size increases.

Table 1
Simulation Results of Moment Estimation 

n α̂ β̂
mean mean-square error mean mean-square error

10 1.2347 1.9482 4.1304 2.2980

15 1.0571 0.6162 3.9172 1.5964

20 1.0140 0.3306 3.7395 1.1113

25 0.9664 0.2043 3.6487 0.8625
30 0.9535 0.1794 3.5647 0.6840

For example: Let the sample size n =10(5)30, real 
values are 1α = , 3β = . Take Monte Carlo simulation 
and we get a set of simple random sample from 
populationT , show that

0.6533, 0.8704, 0.5044, 0.6698, 1.1526, 0.7570, 
0.7539, 1.4736, 2.3477, 1.1282, 

0.5108, 0.7828, 0.3145, 0.6842, 0.7627, 0.7788, 
0.8156, 1.9681, 0.6543, 0.9698

Thus we get the moment estimation of parameter ,α β

ˆ 2.0541α = , ˆ 4.0202β = .

CONCLUSION
Based on the properties of probability distribution 
function and failure rate function, while in method of 
moment estimation, researches in this article estimate 

,α β , variables of model, through analyzing numerical 
characteristics of variables in model. This article also 
testifies moment estimation accuracy of ,α β , by means 
of using simulate simple random samples from population 
T , and these samples are produced by Monte-Carlo. From 
the result, the moment estimation accuracy is convincible. 
Thus, we can put this model into practice to help solve 
realistic problems.
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