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Abstract
Variable annuities are investment products offered by 
Insurance Companies. They allow investors to place assets 
in mutual funds under the umbrella of a tax-deferred 
account. The account value of variable annuities fluctuates 
based on the performance of the selected mutual funds 
and therefore some risks are involved.

Recently there has been a growing interest in using 
fuzzy numbers to deal with financial uncertainty. 
Many authors have tried to deal fuzziness along with 
randomness in option pricing models.

Aim of the present contribution is to deepen the topic 
of evaluating the options embedded in variable annuities 
contracts in a fuzzy logic framework.
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INTRODUCTION
Insurance markets around the world are changing because 
the investors are becoming more aware of investment 
opportunities outside the insurance sector. Policyholders 
want to enjoy the benefits of equity investment in 
conjunction with mortality protection and insurers around 
the world have developed new insurance products to meet 
this challenge.

Among the proposed innovative product we can find 
the Variable Annuities (VA). According to the National 
Association of Variable Annuity Writers (NAVA)  “with a 
VA contract owners are able to choose from a wide range 
of investment options called sub-accounts, enabling them 
to direct some assets into investment funds that can help 
keep pace with inflation and some into more conservative 
choices. Sub-accounts are similar to mutual funds that 
are sold directly to the public in that they invest in stocks, 
bonds and money market portfolios”. The VA products 
include guarantees, available as a rider feature of the 
overall product. Traditionally the guarantees were offered 
as a rider feature to the overall product package, but since 
2000 insurance companies began offering more innovative 
guarantees, for an explicit price, as an optional choice to 
the customer.

VA have existed in USA since 1950s. NAVA report 
that the first variable annuity was issued in 1952. VA are 
now also spreading across Europe. Some of the more 
significant and high profile launches have been AXA’s 
in France, Germany, Spain, Italy and Belgium as well as 
ING’s launches in Spain, Hungary and Poland. Generali’s 
launch (December 2007) in Italy and Ergo’s launch 
(February 2008) launch in Germany. This is in addition 
to the various launches by Aegon, Hartford, Metlife and 
Lincoln in the U.K. 

Over the years, many practical and academic contributions 
are dealing with the VAs and the guarantees embedded. 

Recently, the academic literature has shown a fervent 
interest to the topic of VA (Bauer, Kling, & Russ, 2006), 
(Coleman, Li, & Patron, 2006), (Milevsky & Posner, 
2001), (Milevsky & Promislow, 2001), (Milevsky & 
Salisbury, 2006). 

The recent literature shows a great interest in applying 
fuzzy logic to insurance field. De Wit (1982) first applied 
fuzzy logic to insurance. Shapiro gives an interesting 
and exhaustive overview of insurance uses of fuzzy logic 
(Shapiro, 1998).
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Aim of this paper is to focus on the pricing of options 
embedded in the VA contract resorting to fuzzy theory. 

As well known the Black-Scholes model and the Cox-
Ross-Rubinstein (CRR) model has been widely applied 
for computing the optimal warrant price. Referring to the 
results obtained by Li and Han (2009) we apply fuzzy set 
theory to the binomial tree option pricing model (CRR) to 
price the put option embedded in a GMDB guarantee of a 
variable annuity contract. 

Taking the Knightian uncertainty of financial markets 
into consideration, the randomness and fuzziness of 
underlying should be evaluated by both probabilistic and 
fuzzy expectation. Han and Li make use of parabolic fuzzy 
numbers to discuss Han use the fuzzy binomial option 
pricing model with uncertainty of both randomness and 
fuzziness, and derive expression for the fuzzy risk neutral 
probabilities, along with fuzzy expression for option 
prices. Consequently, they obtain weighted intervals for 
the risk neutral probabilities and for the expected fuzzy 
option prices. 

1.  VARIABLE ANNUITY CONTRACT WITH A 
GUARANTEED MINIMUM DEATH BENEFIT 
Variable annuities are investment products offered by 
Insurance Companies. The typical Variable Annuity 
(VA) is a unit linked annuity contract, which is normally 
purchased by a single premium payment. This kind 
of products allows investors to place assets in mutual 
funds under the umbrella of a tax-deferred account. The 
account value of variable annuities fluctuates based on the 
performance of the selected mutual funds and therefore 
some risks are involved.

The VA typically contains some embedded guarantees. 
The guarantees offered generally fall into four classes: 
Guaranteed Minimum Death Benefits (GMDBs) that 
guarantee a return of the principal invested upon the death 
of the policyholder; Guaranteed Minimum Accumulation 
Benefits (GMABs) similar to GMDBs except that 
instead of the guarantees being contingent on the death 
of the insured, they typically bite on specified policy 
anniversaries or between specified dates if the policy is 
still in-force. If the guarantee is available at maturity, 
they are called Guaranteed Minimum Maturity Benefits 
(GMMBs); Guaranteed Income Benefits (GMIBs) 
guarantee a minimum income stream (typically in the 
form of a life annuity) from a specified future point 
in time; Guaranteed Minimum Withdrawal Benefits 
(GMWBs) guarantee e minimum income stream trough 
regular withdrawals from the account balance.

Let us consider a portfolio of VA contracts offering 
GMDB guarantees and issued to C independent lives aged 
x being ω the ultimate age.

Each insured pays a unique premium P and at time 
zero the Company receives the sum C*P.

Assuming that the insured pays an initial charge 
for general expenses computed as a percentage c of 
the premium, the Company invests the net premiums 
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and each insured can choose between different investment 
strategies. By virtue of the GMDB guarantee, if the 
insured does not survive at the end of the month t, the 
Company pays a sum equal to the maximum between the 
guaranteed and the fund value.

The obligations the Company has to front for the 
GMDB at time xt −∈ ϖ,...,2,1  are:

GMDBt=ND(t)·Max[Ft,Gt] (2.1)
Being ND(t) the number of deaths in [t-1, t] .
We assume that: { } x
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number of policies issued at time zero, xqt  the probability 
that a life aged x dies in the (t+1)-th month after issue.

We assume that the guaranteed is computed according 
to a roll up guarantee that is the minimum benefit is 
equal to the single premium compounded with a constant 
interest rate (the roll up rate) and tg

t ePG ⋅⋅= '  with 
xt −∈ ϖ,...,2,1  and g the monthly guaranteed rate. 

As well known by means of the put decomposition 
principle, (2.1) can be rewritten as follows:

GMDBt=ND(t)·(Ft+Max[0,Gt-Ft]) (2.2)
with ],...,2,1[ xt −∈ ϖ
(2.2) implies that upon death of the policyholder the 

Insurance Company pays the accumulated fund Ft  plus 
an additional payoff of a put option with increasing strike 
price equal to Gt with xt −∈ ϖ,...,2,1 .

If the Fund performs so poorly that the account value 
is below the guaranteed value, when the deaths occur the 
Company pays the difference. 

Therefore, referring to a GMDB option, the Company’s 
obligations month by month are:

Lt
GMDB=ND(t)·Max[0,Gt-Ft] ],...,2,1[ xt −∈ ϖ  (2.3)

Our interest now is in the evaluation of the loss 
function Lt

GMDB at time zero. On the basis of the preceding 
considerations we need to price the portfolio of the 
embedded put options. These options are characterized by 
an increasing strike price and a stochastic maturity date, 
depending on the time of death of the insured.

In order to estimate the options we refer to a Binomial 
Tree option pricing model in a fuzzy logic framework.

2.  OPTION PRICING AND UNCERTAINTY
As stressed in the previous section, we are interest in 
assessing the liabilities connected to the guarantees that 
the Company offers in the contract. Of course, we have 
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to price the connected embedded options dealing with 
uncertainty that characterizes financial markets.

In asset pricing theory, uncertainty is modelled by 
means of state variables which play the role of sufficient 
statistics for the state of the world. The probability 
distributions, as well as the dynamic processes followed 
by the state variables, are assumed to be given and 
revealed to the agents in the economy.

Unfortunately in the real world distributions and 
stochastic dynamics are unknown or only partially 
known, and agent struggle to come by some hint about 
them. Usually this concept is referred to as information 
ambiguity, vagueness or uncertainty. Knight (Knight, 
1921) stressed that the distinction between risk (a 
situation in which the relative odds of the events are 
known) and uncertainty (a situation in which no such 
probability assignment can be done) was a key feature to 
explain investment decisions. We refer to such uncertainty 
as Knigthian uncertainty. Classical probability theory is 
incapable of accounting for this type of uncertainty. 

Li and Han (2009) provide a fuzzy binomial model 
of option price determination in which the Knightan 
uncertainty plays a role. By modelling the underlying in 
each state of the world as a fuzzy number, they obtain a 
possibility distribution on the risk neutral probability, i.e. a 
weighted interval of probability. By computing the option 
price under this measure, they get a weighted expected 
value interval for the price and thus they are able to 
determine a ‘most likely’ option value within the interval. 
Moreover, by means of the so-called defuzzification 
procedure it is possible to associate to the option price 
a crisp number that summarizes all the information 
contained. They get an index of the fuzziness present in 
the option price, that tells us the degree of imprecision 
intrinsic in the model.

The information given by this kind of approach can 
be very useful to the Company’s valuations, when pricing 
the options embedded into the contract to asses potential 
losses connected to the portfolio.

3.  THE FUZZY GMDB OPTION PRICING 
The VA contract offering a GMDB guarantee gives rise to 
the monthly Company obligations:
Lt

GMDB=ND(t)·Max[0,Gt-Ft] , ],...,2,1[ xt −∈ ϖ    (3.3)
Being t the random date of death and ND(t) the number 

of deaths at the random date t among the C insured lives 
at the inception of the contract.  

The value at time zero of the loss function GMDB
tL , 

for each t, is:
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Being r the monthly risk free rate.

We assume tha t :  { } x
tD tN −
=
ϖ
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with parameters ( ),,.....,,; xxx qqqC x-1-1 ϖ  being C 

the number of policies issued at time zero, xqt  the 
probability that a life aged x dies in the (t+1)-th month 
after issue. It follows that in (3.4) xtD qCtNE |)]([ ⋅=  .

Moreover, we assume that the demographic and 
financial factors are independent.

Therefore, equation (3.4) can be rewritten as follows:
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where P0(t) is the price, at time zero, of a put 
option with maturity t, underlying Ft and exercise price 

tgePtG ⋅⋅= ')( .
Thus L0

GMDB is a weighted average of ω-x European 
put options, where the weights are the expected number 
of deaths. 

We need now to price the put embedded put options 
P0(t) for each t in a fuzzy framework. To this aim we refer 
to the results obtained by Li and Han (2009).

Let us know recall briefly the traditional Binomial 
option pricing model proposed by Cox, Ross and 
Rubinstein (CRR) in 1979. CRR model has a simple 
structure and it is widely applied in the financial market 
and is one of the basic options pricing methods. 

The binomial pricing model traces the evolution of the 
option’s key underlying variables in discrete-time. This is 
done by means of a binomial lattice (tree), for a number 
of time steps between the valuation and expiration date. 
Each node in the lattice represents a possible price of the 
underlying at a given point in time.

Valuation is performed iteratively, starting at each of 
the final nodes (those that may be reached at the time 
of expiration), and then working backwards through the 
tree towards the first node (valuation date). The value 
computed at each stage is the value of the option at that 
point in time.

Option valuation using this method is, as described, 
a three-step process: price tree generation, calculation of 
option value at each final node, sequential calculation of 
the option value at each preceding node.

The tree of prices is produced by working forward 
from valuation date to expiration. At each step, it is 
assumed that the underlying instrument will move up or 
down by a specific factor u or d respectively (where, by 
definition, 1≥u  and 10 ≤< d ). So, if S0 is the current 
price, then in the next period the price will either be.

Sup=S0·u or Sdown=S0·d. The up and down factors are 
calculated using the underlying volatility, σ, and the 
time duration of a step, Δt, measured in months, in our 
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case (using the day count convention of the underlying 
instrument). From the condition that the variance of the 
log of the price is t∆2σ , we have:
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At each final node of the tree – i.e. at expiration of the 
option T – the option value is simply its intrinsic value 
that is Max [(ST − K), 0] for a call option and Max [(K – 
ST), 0], for a put option where K is the strike price and ST 
is the spot price of the underlying asset at expiration time 
T. Once the above step is complete, the option value is 
then found for each node, starting at the penultimate time 
step, and working back to the first node of the tree (the 
valuation date) where the calculated result is the value of 
the option.

 Let us now refer to the evolution of the Fund value 
referring to GMDB guarantee. Let us consider the date 
t=1. 

The Fund value F1 is given by either dF0  or uF0 . 
In a fuzzy framework, the up and down parameters 

u  and d  are parabolic fuzzy numbers denoted by 
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Being u and d parabolic fuzzy numbers, the fund value 
F1 at t=1 in each state is represented by a parabolic fuzzy 
number too.

We denote the put payoff in state ‘up’ with P(u) and in 
state down with P(d). 

Applying the  a lgebra  of  fuzzy numbers  and 
remembering that in our case the strike price is given by 

tgePG ⋅⋅= ')1(  , we obtain the put payoff is equal to
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Based on Li and Han results we get:
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It is now possible to determine the put price P0 by 
means of the risk-neutral valuation approach, as follows:
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Where Ê  stands for expectation under the risk-neutral 

probabilities and 1P  is the payoff of the put at t=1.
Differently from the standard binomial option pricing 

model, it is possible to obtain risk-neutral probability 
intervals instead of point values. This is clearly a 
consequence of the assumptions on the stock price.

The risk-neutral probability intervals arise from the 
ambiguity of the stock price at time t=1. Moreover, the 
intervals of risk neutral probabilities are weighted, i.e. 
they are fuzzy numbers.

This is a very important feature of pricing options in 
a fuzzy framework, since it allows finding a weighted 
expected value interval for the option price.
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Solving system 5.5 we get:
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The two solutions represent the α-cut of the risk-
neutral probability up  and dp  :
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It is easy to prove that α increases the put option 
interval of prices shrinks. If 3232 , dduu == and α=1 the 

interval collapses into one single value.
Extending the methodology to a multiple period, we get:
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CONCLUSION AND FUTURE DIRECTIONS
We are interested in pricing variable annuity guarantees of 
the typical VA contract described in section 2.

In the recent literature two stochastic approaches are 
implemented: The traditional actuarial approach which 
uses a ‘real world’ projection and the market consistent 
approach which typically uses a ‘risk neutral’ projection. 
In general, pricing practice varies across different 
countries and companies.

We believe that the use of market consistent approach 
for pricing variable annuities guarantees is the most 
appropriate method for actuaries and companies today. 
This approach uses stochastic valuation techniques 
consistent with the pricing of options. This flexible 
methodology enables most product benefit and charging 
structures to be accommodated, and facilitates the 
calculation of risk exposures that can be used to construct 
and manage a dynamic hedge portfolio. 

As well known the Black-Scholes model and the Cox- 
Ross- Rubinstein (CRR) model has been widely applied 
for computing the optimal warrant price and are typically 
used in insurance to price embedded options.

In asset pricing theory, uncertainty is modelled by 
means of state variables which play the role of sufficient 
statistics for the state of the world. The probability 
distributions, as well as the dynamic processes followed 
by the state variables, are assumed to be given and 
revealed to the agents in the economy.

Unfortunately in the real world distributions and 
stochastic dynamics are unknown or only partially 
known, and agent struggle to come by some hint about 
them. Usually this concept is referred to as information 
ambiguity, vagueness or uncertainty. Knight (1921) 
stressed that the distinction between risk (a situation in 
which the relative odds of the events are known) and 
uncertainty (a situation in which no such probability 
assignment can be done) was a key feature to explain 
investment decisions. We refer to such uncertainty as 
Knigthian uncertainty. Classical probability theory is 
incapable of accounting for this type of uncertainty. 

Li and Han (2009) provide a fuzzy binomial model 
of option price determination in which the Knightan 

uncertainty plays a role. By modelling the underlying in 
each state of the world as a fuzzy number, they obtain a 
possibility distribution on the risk neutral probability, i.e. a 
weighted interval of probability. By computing the option 
price under this measure, they get a weighted expected 
value interval for the price and thus they are able to 
determine a ‘most likely’ option value within the interval. 
Moreover, by means of the so-called defuzzification 
procedure it is possible to associate to the option price 
a crisp number that summarizes all the information 
contained. They get an index of the fuzziness present in 
the option price, that tells us the degree of imprecision 
intrinsic in the model.

The information given by this kind of approach can be 
very useful to the company’s valuations, when pricing the 
options embedded into the contract.

Of course the topic of setting what price should the 
policy holder be charged for guarantee benefit is an 
important issue for actuaries and risk managers.

Moreover, a suitable pricing technique is essential to 
asses potential losses connected to the portfolio.

On the other hand, the complex hybrid equity and 
interest rate options embedded in variable annuity 
products present formidable hedging challenges for the 
insurers who write them.

Actuarial risks of policyholders’ behaviour complicate 
this problem further. Few insurers have developed complete 
liability valuation models integrating all these factors. Yet, 
growth in the VA markets requires not only comprehensive 
valuation models, but also efficient methods to measure 
the prospective performance of different hedging programs 
around these risks, and a way to help insurers decide how 
they are going to hedge. Aim of this research is to deepen 
these issues in a fuzzy logic framework.

REFERENCES
Appadoo, S. S., & Thavaneswaran, A. (2013). Recent 

developments in fuzzy sets approach in option pricing. 
Journal of Mathematical Finance, 3(2), 312-322.

Bauer, D., Kling, A., & Russ, J. (2006). A universal pricing 
framework for guaranteed minimum benefits in variable 
annuities. Astin Bulletin, 38(2), 621-651.



Esposito M.; Orlando A.(2014). 
International Business and Management, 9(1), 14-19

19 Copyright © Canadian Research & Development Center of Sciences and Cultures

Coleman, T. F., Li, Y., & Patron, M. (2006). Hedging guarantees 
in variable annuities under both equity and interest rate 
risks. Insurance: Mathematics and Economics, 38, 215-
228.

Cox, J. C., Ross, S., & Rubinstein, M. (1979). Option pricing, a 
simplified approach. Journal of Financial Economics, 7(3), 
229-263.

Cox, E. (1994). The fuzzy system handbook. New York: 
Academic Press.

De Wit G. W. (1982). Underwriting and uncertainty. Insurance: 
Mathematics and Economics, 1, 277-285.

Knight, F. H. (1921). Risk, uncertainty and profit Boston, MA. 
Hart, Schaffner & Marx Houghton Mifflin Company.

Li, W., & Han, L. Y. (2009). The fuzzy binomial option pricing 
model under Knightian uncertainty (pp. 399-403). 
Proceedings of sixth international conference on fuzzy 
systems and knowledge discovery, Tianjin, China, 14-16 
August. IEEE.

Liu, S. X., Chen, Y., & Xu, N. (2009). Application of fuzzy 
theory to binomial option pricing model. Fuzzy Information 
and Engineering (pp. 63-70). Berlin: Springer-Verlag. 

Milevsky, M., & Posner, S. E. (2001). The titanic option: 
Valuation of the guaranteed minimum death benefit in 
variable annuities and mutual funds. The journal of Risk 
and Insurance, 68(1), 91-126.

Milevsky, M. A., & Promislow, S. D. (2001). Mortality 
derivatives and the option to annuities. Insurance: 
Mathematics and Economics, 29, 299-318.

Milevsky, M. A., & Salisbury, T. S. (2006). Financial valuation 
of guaranteed minimum withdrawal benefits. Insurance: 
Mathematics and Economics, 38, 21-38.

Shapiro, A. F. (2007). An overview of insurance uses of fuzzy 
logic. In Wang P. P., & Kuo, T. W. (Eds), Computational 
and Intelligence in Economics and Finance (II, pp. 25-63). 
Springer.




