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Abstract
In the last decades, analyzing and optimizing the power 
plants based on thermodynamic laws and intelligent 
control techniques absorb an incremental interest of 
researchers. This is because deriving the efficient 
operating parameters for designing and optimizing the 
performance of power plants will lead to an acceptable 
investment and avoiding from discarding the energy. 
However, there are a few areas of application of 
mathematical optimization method. Optimizing the 
governing equations and designing parameters of power 
plants simultaneously leads to a multi-objective problem 
in industry. Some of these objectives are nonlinear, non-
convex and multi-modal with different type of real life 
engineering constraints. In this paper a new method called 
Synchronous Parallel Shuffling Self Organized Pareto 
Strategy Algorithm (SPSSOPSA) is presented which 
synthesized evolutionary computing, swarm intelligence 
techniques and Time Adaptive Self  Organizing 
Map(TASOM) simultaneously incorporating with a 
data shuffling behavior. Thereafter it will be applied to 
verifying the optimum decision making for parameter 
designing of Mahshahr power plant that produced about 
117MW electricity, sited in Iran, as a multi-objective and 
multi-modal problem. The results show the deep relation 
of the unit cost on the change of the operating parameters. 
Key words:  Economic optimizing; Exergetic 
optimizing; Work output maximization; Evolutionary 
algorithm; Self organized map; Power plant
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Parameters and Decision Variables

Decision Variables:
rp   Compressor pressure ratio
ηc   Compressor isentropic efficiency
ηT   Turbine isentropic efficiency
T3   Combustion chamber input temperature
T5   Combustion product temperature 
T2   Compressor output temperature
T1   Compressor input temperature
m3

a   Air mass flow rate
m3

f   Fuel mass flow rate

Model Parameters and Variables:
PWF   Present worth factor    
CRF   capital recovery factor
PEC   Purchased equipment cost
CHE   Chemical properties
MEC   Mechanical properties
T   Thermal properties
SV   Salvage value
AC   Air compressor
GT   Gas turbine
AP   Air preheater
CC   Combustion chamber
 ŻK ($/s) Capital investments rate for Kth component
φk   Maintenance cost rate for Kth component
Ėk   Exergy stream for Kth component
   Exergetic efficiency
ηI   First law of thermodynamic efficiency
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W
3

    Power output
PK  Pressure of Kth component
hK  Enthalpy of Kth component
ΔT   M e a n  l o g a r i t h m i c  t e m p e r a t u r e 

difference
Tref  Standard state temperature
Pref  Standard state pressure
n  Time period
CP  Specific heat ratio
Q            Heat transfer rate
S
3

             Entropy flow rate
W           Work or electricity

  Component cost
m  Material   

INTRODUCTION
The importance of developing and controlling thermal 
system such as power plants that effectively use energy 
resources such as natural gas is apparent. Designing 
efficient and cost effective systems, which also meet 
environmental conditions, is one of the foremost 
challenges that researchers almost meet[1]. In the world 
with finite natural resources and large energy demands, 
it becomes increasingly important to understand the 
mechanisms which degrade energy and resources and to 
develop systematic approaches for improving in order 
to improving the performance of systems like power 
plants and also reducing the impact of emission and 
pollution on environment. One of the common tools in 
analyzing and optimizing the thermal systems like power 
plants derived from combining exergetic and economic 
properties of the flow stream in such systems. Exergetic 
and microeconomics forms the basis of thermoeconomics, 
which is almost known as exergoeconomics[2]. Combining 
the second law of thermodynamic with economics 
(thermoeconomics) using availability of energy (exergy) 
is one of the major objects that an engineer should apply 
in optimizing the thermodynamic systems. Its goal is to 
mathematically combine the second law of thermodynamic 
analysis with the economic factors which predict the unit 
cost of product such as electricity and quantifies monetary 
loss due to irreversibility. One of the other important 
objects in optimizing the thermodynamic systems like 
power cycles is applying the exergy analysis which 
submits the thermodynamic performance of an energy 
system and the efficiency of the system components by 
accurately quantifying the entropy-generation of each 
component in power plant. The third crucial object which 
an engineer face in designing the operating parameter 
of power plant is achieving acceptable properties due 
to the first law of thermodynamic such as reaching to 
maximum power, maximum efficiency and controlling the 
dependent parameters. Considering all of these objectives 
simultaneously will lead to optimum and precise results 

which conclude an acceptable providence in use of 
energy and predict optimum plan for enterprises. During 
last decades, a variety of methods have been developed 
which was not limited to traditional probabilistic and 
stochastic methods and involved advanced computational 
technologies, information and prediction models in order 
to increase the power plant’s efficiency[3]. Cammarata 
et al.[4] formulate the objective function, the sum of 
capital, and the operational and maintenance cost of a 
district heating network using exergioeconomic concepts. 
Gorji and Ebrahimian[5] analyzed a gas turbine power 
plant using exergioeconomic principles and mathematic 
modeling. Bhargava et al.[6] analyzed an intercooled 
reheat gas turbine for the co-generation applications using 
exergioeconomic principles and mathematical models. 
Attala et al.[7] used exergioeconomic principles as a design 
tool for the realization of gas-steam combined power 
plant principle; whereas Mirsa et al.[8-9] optimized a single 
and double effect H2O/LiBr vapor absorption refrigeration 
systems.

There are also many optimization models which 
utilized algorithmic stochastic searching, prediction 
methodologies and advance soft computing techniques. 
Wang et al.[10] developed a parametric optimization 
design for supercritical CO2 power cycles using Genetic 
Algorithm (GA) and Artificial Neural Network (ANN). 
Gorji and Goodarzian[11] optimized a gas turbine power 
plant operating parameters using a Multi Objective 
Genetic Algorithm (MOGA). Valdes et al.[12] developed 
a thermoeconomic optimization of combined cycle gas 
turbine power plants using Genetic Algorithm (GA). 
Lee and Mohamed[13] proposed a real-coded genetic 
algorithm involving a hybrid crossover method for power 
plant control system design and there are many different 
computational programming in the case of optimizing 
power plants. As it was expressed the feedback of new 
research papers obvious that soft computing techniques 
and machine learning methodologies attract incremental 
attention of scientists because of their reliability and 
robustness in the field of optimizing.

In the next part the characteristics of Mahshahr power 
plant will be scrutinized. In step 3 the governing equations 
related to optimizing the power plant will be implemented 
and the engineering limits and constraints for optimizing 
the system will be expressed mathematically. At the next 
step the power plant will be optimized using proposed 
methodology and the results will be exposed. At the end, 
obtaining results will be compared to base operating 
parameters for making a contrast. 

1.  POWER PLANT DESCRIPTION
In this paper, the applicability and efficiency of operating 
parameters of Mahshahr gas turbine power plant will be 
verified using proposed method. This part of power plant 
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plays an important role by supplying over than 117 MW 
electricity for industrial, agricultural, civil and domestic 
regions in various provinces.
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Figure 1
Gas Turbine System

 Figure 1 indicates the schematic diagram of gas 
turbine plant and shows the work, exergy flows and the 
state points which was accounted for in this analysis. In 
this model, the net power generated by the system is 117 
MW. This model is treated as the base case with following 
nominal properties which make an important role in 
proper analyzing:

●  amount of compression pressure ratio is : rp=10.26  
●  the isentropic efficiency of compressor is : ηsc=85% 
●   the temperature of combustion products entering the 

turbine is: T5=1320 K
●   the isentropic efficiency of turbine is :  ηsc=88%
●   environmental condition of the air at the inlet are :  

P0=1.013bar and T0=2991.1K
●  the power plant operates at steady state
●  fuel is assumed to be pure Methane (CH4)
●   air and combustion gasses are considered as ideal 

gas with variable specific heats
●   the exit temperature is above the dew point 

temperature of the combustion products
●   the pressure drop in the air  preheater  and 

combustion chamber is 4% and
●  the effectiveness of the air preheater is 75% 

It must be notion that standard air is an ideal gas 
consists of 78.1% nitrogen, 20.95% oxygen, 0.92% argon 
and 0.03% carbon dioxide.

2.  THE PROBLEM STATEMENT
In general, a thermal system has three conflicted 
objectives: (1) maximizing the power output and first 
law efficiency, (2) increasing the exergetic efficiency 
and (3) decreasing the product cost. In order to derive 
to precise results, all of nominated objectives must 
satisfy simultaneously. The first two objectives are 
governed by thermodynamic requirements and the last 

one derived from economic constraints. Therefore, total 
objective function should be defined in a manner that 
the optimizing procedure satisfied all of requirements. 
For that, the optimization problem should be formulated 
as a minimization or maximization problem. The 
exergioeconomic analysis gives a clear picture about the 
costs related to the exergy destruction, exergy losses, 
maximum power output, optimum exergy efficiency and 
etc. Mahshahr power plant as a thermodynamic system 
follows the above rules, so the objective function for this 
system is defined as minimizing a total cost function Cp,tot 

and maximizing the power output (efficiency of first law) 
and exergetic efficiency which can be derived a model 
that will be explained.

2.1  Objective Function Model
The proposed optimization model possesses three different 
objective functions which will be scrutinized in following 
sections.
2.1.1  Minimizing Total Cost
All cost due to owning and operating a plant depend on 
the type of financing, required capita, expected life of a 
component and etc. The levelized cost method of Moran[14] 
is used here. By hiring the capital recovery factor CRF(i, n) 
and present worth factor PWF(i, n), the levelized annual 
cost may be written as:

 

where SV=0.1PEC ,CRF ( i ,n) =
�

� � �� � ����    , 

PWF(i,n)=(1+i)-n,and PEC is purchased-equipment cost. 
Equations for calculating the purchased-equipment costs 
for the components of the gas turbine power plant are:
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●  air preheater 

    (5) 

where mathematically expressed as:

�� �  ��� � ��� � ��� � ���
��� ���� � ���

��� � ����
              
     (6)

Dividing the levelized cost by annual operating 
seconds obtained the capital cost rate for the Kth 

component of power plant:
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Ż������������� � �����
���� � ����  (7)

The maintenance cost is taken into consideration 
through the factor   for each plant components 
whose expected life is assumed to be 20 years and the 
interest rate is 17%. The numbers of hours of plant 
operating per year and maintenance factor utilized in 
this study are the typical numbers employed in standard 
exergioeconomic analysis[15]. The objective function for 
minimizing the costs can be written as following:

������� � ������� � � ���
�

   (8)

  (9)

where LHV is the fuel low heating value[16] and CF,tot is 
0.000004＄/Kj.

  (10)
where k is the number of components that is 4 in this 

case and is the total fuel cost.
Additional standard engineering equations, known as 

exergioeconomic variables, that was vital for evaluating 
the performance of thermal systems are listed as 
following:

●  average unit cost of the fuel

  (11)

●  average unit cost of product

���� � �����
�����

   (12)

●  exergy destruction
  (13)

●  exergy economic factor

�� � ���
��� � �����

      (14)

2.1.2  Maximizing the Exergetic Efficiency
Exergy balance equation, applicable to any component 
of a thermal system may be formulated by utilizing 
the first and the second law of thermodynamics[17]. The 
thermodynamical exergy stream may be decomposed into 
its thermal and mechanical components. Ebadi and Gorji 
[18] applied these rules and derived to following exergy 
balances equation for analyzing any gas power plants:

  (15)
where the subscripts i and o , respectively, denote 

exergy flow streams entering or leaving the plant 
component.

The thermal and mechanical components of the exergy 
stream for an ideal gas with constant specific heat may be 
written as following:

  (16)

  (17)

With the decomposition defined by equation (15), the 
general exergy balance can be written as follows:

 

 

 

 (18)

The term E
3 CHEdenotes the rate of exergy flow of fuel 

in the plant and Q
3

CV in the fourth term denotes the heat 
transfer between the component and the environment.

The exergy balance equations for each component in 
the gas turbine plant can be derived from general exergy 
balance equation given equation (18). The exergy balances 
for the components of gas turbine are:

●  air compressor

( )+( )+ ( )=  (19)

●  combustion chamber

               (20)

 ●  gas turbine

( )+( )+ ( )=  (21)  

●  air preheater

  (22) 

 

  

According to above equation there is relationship 
between network power output and exergy flow stream. 
The total power output can be formulated as following:

�� ��� � |�� ��| � |����|  (23)

The objective function for maximizing exergetic 
efficiency can be written as:

� � �� ���
�� ��� � �� �

� � �� �
���    (24)

Max F2=ε (25)

2.1.3  Maximizing the Power Output and Energy 
Efficiency
Obtaining optimum performance of power plant is 
strongly related to maximizing the power output and 
energy efficiency. Gorji and Ebrahimian[16] and Gorji et 
al.[19] applied following policies for analyzing the energy 
efficiency of steam power plant under these conditions:
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●   the heat leakage during the process is take into 
considered for gaining more accurate solution

●  variable specific heat applied during process
●   kinetic and potential energies are neglected because 

they are not important
●   in order to simplify the calculation, for each 

component the average temperature  will be utilized 
in determination of variable specific heat which can 
be defined[20]:

��� � �� � ��
�� �����

�
      (26)

where i and j are respectively the final and prior 
temperature of each component.

●   following common approximation applied for 
determining the gas enthalpy

hstate=CPTstate (27)
●   due to trivial amount of Methane in mixture gas (), 

the effect of fuel (Methane) can be neglected
General conservation equation and energy balance can 

be written as follows:

�� � �� � � �� ��� � � �� ���
�

���

�

���
    (28)

The conservation equation and energy balance will be 
applied for the operating components:

●   air compressor
  (29)

mg=ma+mf (30)
●   combustion chamber
���� � ���� � ���� � ����   (31)

  (32)
●   gas turbine

  (33)
●   air pre heater

  (34)
By pursuing the above equations, the energy efficiency 

can be defined:

�� � �� ���
�� � ���   (35)

The last objective function is:
  (36)

2.2  Controller Rules and Constraints
2.2.1  Economic Constraints
For a component receiving a heat transfer and generating 
power, cost balance equation may be written as[11]:

  (37)

where C 
3

denotes a cost rate associated with an exergy 
stream and the variable Z 

3

represents non-exergetic costs.

The formulation of cost balance for plant components 
leads to following constraints:

●   air compressor
  (38)

●   combustion chamber
��� � ��� � ��� � ����   (39)
●   gas turbine
��� � ��� � ��� � ��� � ����    (40)

���
��� � ���

���    (41)

●   air preheater
��� � ��� � ��� � ��� � ����   (42)

���
��� � ���

���     (43)

Auxiliary equations (42) and (43) are written assuming 
the same unit cost of incoming and outgoing fuel exergy 
streams. Additional auxiliary equation (44) will be 
formulated based on the concept that both the net power 
exported from the system and the power input to the 
compressor, consume same energy cost. 

   (44)

Note that the cost of fuel stream to the system (  ) is 
taken as 0.1＄per kg and a zero unit cost is allocated to air 
entering to the air compressor. Mathematically, these are 
expressed as:

  &    (45)   

2.2.2  Physical Constraints
The admissible ranges of mechanical operating parameters 
are considered as following:

8 ≤ rp ≤ 16 (46)
0.75 ≤ ηT ≤ 0.92 (47)
0.75 ≤ Tc ≤ 0.92 (48)
1400 ≤ T5 ≤ 1600 (49)
600 ≤ T3 ≤ 1500 (50)
450 ≤ T2 ≤ 700 (51)
300 ≤ T1 ≤ 480 (52)
400 ≤ ma ≤ 530 (53)
8 ≤ mf ≤ 9.5 (54)

The governing mechanical constraint can be modeled 
as well as economic ones:

T2 > T1 (55)
T3 > T2 (56)
T5 > T3 (57)
T5 > T6 (58)

Nonideality in APs structure, leads to following 
engineering constraints:
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T6 > T3 & T6 > T3   (59)
In addition, due to the interaction in AP:
T6 > T7 (60)
Following constraints are set due to the information 

that reported in Mahshahr power plant data base and[3]:

T2 - T1 ≥ 30 (61)
T3 - T2 ≥ 50 (62)
T5 - T3 ≥ 100 (63)
T6 - T7 ≥ 40 (64)

Considering all of the above constraints turned the 
problem to a high complex multi-modal problem that 
makes the decision making too hard and complicate. For 
that in last papers, many researchers omitted some of these 
constraints for a convenient decision making. However, 
neglecting these constraints lead to an imprecise decision. 
In the next part, we introduced a new method that is able 
to make a suitable engineering decision by considering all 
of the modeled objective functions and their constraints.

2.3  Applying Synchronous Parallel Shuffling Self 
Organized Pareto Strategy (SPSSOPS)
Application of hybrid evolutionary-learning algorithms 
begin by Michalski’s[21] researches who hired machine 
learning technique and evolutionary algorithm to generate 
new population. These types of algorithms are simply 
called Learnable Evolutionary Models (LEMs). After that 
many researchers focused on this concept and developed 
new models and improvements. 

Ammor and Rettinger[22] applied Self Organizing 
Map, sometimes known as Kohonen map, (SOM) to 
improve diversity and avoiding from fast convergence. 
SOM approximates the probability of density of input 
data distribution. Kobuta et al.[23] developed SOM for 
reproduction new seeds in GA. 

In this paper a Time Adaptive Self Organizing Map 
(TASOM) method that utilizes a conscience mechanism 
fused to Elitism NSGA-II in order to conserve the 
diversity of populations. Besides an Artificial Bee Colony 
applied in asynchronous parallel model which improved 
the data processing speed and increase the local search 
ability (intensity) because of the greedy instinct of honey 
bees. The population is sorted and entered in each phase 
based on a random shuffling procedure. The results 
indicate that an adjustable random data sharing between 
these two algorithms, called shuffling process, expand the 
robustness of proposed method explicitly. In following 
sections we interpreted the detailed of SPSSOPSA more 
closely. 
2.3.1  Time Adaptive Self Organizing Map
TASOM proposed by Shah-Hosseini and Safabakhsh[24] 
is a modification of SOM that automatically adapts the 
learning rate and neighborhood function of neuron weights 
independently. One of its explicit dominance comparing 
to classic SOM is its ability to normalize all distance 

calculation between any input vector and the neuron’s 
weight vector since the basic SOM often fails to provide 
a suitable topological ordering for input distribution. 
Figure 2 exposes a schematic of weight adaption during 
the process. TASOM with conscience mechanism used 
following learning rule:

 t=1,2,…,T (65)
 where is sub-generation in SOM network and  

represents the SPSSOPSA generation number. yi(t) is 
a controlling parameter that leads weight vectors to a 
none dominate solution which was transferred from 
external archive to network as an input. In other word 
if the input’s, which is a non-dominate solution, fitness 
value fR is lower than fwj(n) then yi(t)=1 and neuron center 
moves toward the non-dominate solution (networks input) 
otherwise yi(t)=0 and neuron center does not approach to 
the solution. Mathematically expressed as:

  (66)

 refers to updated weight vector and  is 

the old weight vector.  represents the distance 
between input vectors where  is the i-th none dominate 
solution in n-th generation.

The learning rate which is a descending function 
defined as following:

���� � 1� � ����� � � �� � 1
���� ����� ���

���� ����������
 

 

(67)
The learning rate parameter hj(0) should be initialized 

with value close to unity. α obtains any arbitrary value 
between 0 and 1, and Sf is a descending constant and 
should be set due to the problem condition. In this paper 
we set [25].Function f (.) should be designed in a manner 
that following criteria derived appropriately:

f (0)=0, 0≤ f (z) ≤1, and  ≥ 0 for positive values 

of z. 
In this paper f (z) set as[25]:
���� � 1 � 1 1 � ��     (68)

Shah-hosseini and Safabakhsh produced a scaling 
value for a 2-D input. In this paper scaling value is 
extended to a 9-D input due to the number of our decision 
parameters and our problem condition.

Scaling value sl adjusts using following equation:

 

(69)
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  (70)

where i represents the number of variable in each 
solution.  initialized with some small random values. 

Conscience mechanism is applied in order to revive 
the dead units (weights) in neuron center[26]. Dead unit is a 
term that refers to weights with a trivial chance of learning 
and adaption during the progress. The policy of repairing 
these units is often called conscience mechanism. In 
this paper a simple well-known mechanism is utilized 
which tuned the bios of each node (neuron) by following 
formula:

���� � �� � �
��� �����

��
����� � ���

   (71)
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Figure 2
Weight Adaption During the Process

2.3.2  Synchronous Parallel Shuffling Self Organized 
Pareto Strategy
In this section, pseudo code and the schematic flowchart 
of proposed method will be given respectively:

●   Step 0: Define algorithm initial parameters such 
as mutation probability (Pmut), number of neurons 
(NuGA and NuABC) in SOM center for each phase, 
sharing factor (ξ), pool size, number of generation, 
population size (Ps), descending constant (Sf), α, and 
stopping criterion. Set and start the process.

●   Step 1: Randomly generate Ps solution for the initial 
population P1.

●   Step 2: Share (shuffle) the solutions into ABC phase 
and NSGA-II phase due to the sharing factor (ξ). 
ξ is a random number from a uniform distribution. 
Lead (1-ξ)* Ps of solutions in ABC operator phase 
(PABC) and the rest of them in genetic operator (PGA).

●   Step 3: Evaluate the fitness of ABC solutions (foods) 
in PABC and rank them based on none dominate 
sorting and crowding distance. 

●   Step 4: Define random weight vectors for SOM unit 
center in ABC operator phase (NuABC) in a uniform 
stochastic distribution manner spanning to problem 
solution space. Evaluate the fitness of weight vectors.

●   Step 5: Train the weight vectors in SOM center 
(W��� � � ���� � � ��ABC )  u s ing  ob ta ined  non-
dominate solutions (elite bees) in the current nth 

generation.
●   Step 6: Generate new weight vector Wj

n+1, using 
equation (80). 

●    Step 7: if the new weights dominated old ones, 
replace old one with new ones. In other words move 
the SOM mobile units toward better area. If they do 
not dominate each other, save the new non-dominate 
weights in external archive.

●   Step 8: Apply the employed bees for neighbor 
search (as agents that perform near the PABC)

●   Step 9: Evaluate the fitness of new obtained 
solutions. 

●   Step 10: Sort the new solutions based on none 
dominate sorting and crowding distance to evaluate 
their fitness.

●   Step 11: Select a food source (solution) and 
employed the onlooker bees in order to perform 
a neighbor search near the chosen solution and a 
greedy selection based on the evaluated fitness. 

●   Step 12: if all of the onlooker agents contribute in 
searching go to the next step, otherwise return to 
step 11.

●   Step 13: Export the obtained solutions in ABC 
phase to the collection site.

●   Step 14: Evaluate the fitness of GA solutions 
(chromosomes) in PGA and rank them based on none 
dominate sorting and crowding distance.

●   Step 15: Perform a same treat for SOM center in 
GA phase. In other words regard  instead of NuABC 

and repeat steps 4 to 7 respectively.
●   Step 16: Generate a random number with uniform 

distribution. If the random number is less than   
Pmutation produce children using mutation operator, 
and else produce children using crossover due to the 
pool size.

●   Step 17: Evaluate the fitness of produced solutions 
and combine them with old population. Rank all of 
the solutions using non-dominate sorting and crowd 
distance.

●   Step 18: Selectξ* Ps best solutions from current 
population.  

●   Step 19: Export the obtained solutions in GA phase 
to the collection site.

●   Step 20: if the stopping criterion is satisfied, go to 
step 21, otherwise go to step 3.

●   Step 21: latest population, the weight vectors in 
both SOM centers and also the recorded solutions 
(archived ones) are considered as the final solution.

●   Step 22: Stop
Figure 3 indicates the flowchart of the SPSSOPSA. 
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Figure 3
The Flowchart of SPSSOPSA
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3.  RESULT AND DISCUSSION
Figure 4(a) represents the Pareto optimal front obtained 
using SPSSOPSA. It seems that the proposed optimizing 
methodology achieve better Pareto solutions comparing to 
[11].

Figure 4(a)
The Non-Dominated Solutions Calculated Using 
SPSSOPSA

Figure 4(b) represents the variation of non-dominated 
solutions during the optimizing process. It is obvious that 
SPSSOPSA resulted in a significant increase in the number 
of non-dominated solutions in the last generations. This 
is because of the incremental capability of Time Adaptive 
Self Organizing Map (TASOM) center in finding better 
areas. 

Table 1 represents the base chemical, thermal and 
mechanical exergy flow rates at various state points in 
Mahshahr power plant that reported in [18]. These flow 
rates were calculated based on the values of measured 
properties such as pressure, temperature, and mass flow 
rate at respective state points. Table 2 shows the net flow 
rates of various exergies crossing in the boundary of 
each component together with their respecting exergy 
destruction in gas turbine power plant. It must be 
mentioned that positive values indicate the exergy flow 
rate of product while negative values represent the exergy 
flow rate of resources or fuel.

Table 1  
Base Property Values and Chemical, Thermal and      
Mechanical Exergy Flows at Various State Points

State     
 

m
3

T ρ E
3

CHE E
3

T E
3

MEC

1 497.00 299.15  1.013 0.000 0.000 0.000 

2 497.00 603.02 8.611 0.000 47.034 91.311

3 497.00 796.91 8.267 0.000 102.221 89.580

4 10.09 299.15 30.00 508.5 0.000 5.298

5 507.09 1320.0 8.019 0.000 335.76 91.015

6  507.09 861.54 1.075 0.000 143.181 2.613

7 507.09 695.18 1.032 0.000 83.699  0.488

Table 2  
Base Net Exergy Flow Rates and Exergy Destruction 
in Power Plant in Rated Condition

Component E
3

w E
3

CHE E
3

T E
3

MEC E
3

D

AC -154.814 0.000 47.034 91.318 13.462 

AP 0.000 0.000 -4.295 -3.534 7.829

CC 0.000  -508.566  233.545 -3.863 278.88

GT   267.824  0.000 -192.585       -88.402 13.163

Total plant 116.010 -508.566  88.699 -4.481  313.338

Table 3 represents the base initial investment, the 
monetary flow rates and the capital cost rate for each 
component in the full load condition with the electricity 
output near 116.010 MW. These amounts play an 
important role in predicting and economic analyzing of 
thermal systems. In [5] these parameters and some famous 
methods such as Moran’s method were used for analyzing 
production costs of Mahshahr, located in Iran, power plant 
altogether.

Table 3   
Base Initial Investments, Monetary Flow Rates, and 
Capital Cost Rates Under Full Load Condition

Component PEC (×10-6) C 
3

(×10-6) Z 
3

(×10-6)

AC 9.69  2.36  869

AP 0.7 0.171 63

CC 0.97 0.236 87

GT 39.17 9.56 3519

In order to select an acceptable optimum solution 
among the feasible solutions, the obtained Pareto front 
has been checked precisely. Table 4 shows the selected 
optimum operating parameters together with the base 
parameters for making an engineering contrast.Generation
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Figure 4(b)
Variation of Non-Dominated Solutions
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Table 4
Comparison of the Decision Variables for Optimum 
and Base Case

Properties base optimum 

Compressor pressure ratio  10.26 9.96

AC isentropic efficiency [%] 85 81

GT isentropic efficiency [%] 88  90

CC inlet temperature 796.91 770.8

CC product temperature 1320 1443.5

AC inlet temperature 299.15 300.4

AC product temperature 603.02 604.4

Air mass flow rate 497.00 442.2

Fuel mass flow rate 10.09 8.8

It is obvious that the compressor’s pressure ratio 
decreased to 9.96 in optimum case. Also our method 
proposed using an AC with 81% isentropic efficiency 
which is more accessible comparing to the AC in base 
case with 85% isentropic efficiency. In addition, this 
element is a promising achievement in initial enterprise. 
The results evident the importance of utilizing a gas 
turbine with 90% isentropic efficiency for deriving to 
an optimum condition while providing a component 
with higher quality of isentropic efficiency, demands 
an increase in capital investment. But the increase in 
isentropic efficiency of GT in our proposed optimum case 
is just about 2%. Hence the increase in initial enterprises 
can be justified conveniently. The inlet temperature in 
combustion chamber decrease about 3.3%. This will lead 
to a lower thermal tension and consequence metallurgical 
damages in component and also an increase in total life 
of intake section in CC. Combustion chamber is the 
most important component from the exergioeconomic 
view. This is because it has the highest sum of capital 
investment (Z

3

CC) and exergy destruction (C
3

D,CC) and a 
lower value of exergioeconomic factor ( fCC ). For that the 
component efficiency should be enhanced by increasing 
the capital investment. This can be achieved by increasing 
the combustion product temperature. Our optimum case 
proposed a product temperature about 1443.5 K which 
means about 9.36% increase comparing to base situation. 
Applying this operating policy will granted the appropriate 
engineering condition for compensating the shortcomings. 
The obtained change in AC inlet and product temperature 
in our optimum case has not any crucial impact on the 
performance of power plant. Therefore justifying their 
exergioeconomic and thermodynamical impacts will 
be neglected. The inlet air mass flow rate shows about 
11.03% reduction in optimum case. Besides the fuel 
mass flow rate reduced about 12.78% that lead to one 
of the most promising elements among the obtained 
optimum operating variables. The effects of reduction in 

fuel mass flow rate of power plant in both economic and 
thermodynamical aspects will be scrutinized later. Table 
5 represents the optimum thermal and mechanical exergy 
flow rates at various state points in Mahshahr power plant 
respecting to obtained operating parameters.

Table 5  
Optimum Variables and Their Consequent Exergy 
Flows

State m
3

 T ρ E
3 CHE E

3 T E
3 MEC

1 442.20 300.40 1.013 0.000 0.000 0.000

2 442.20 604.40 8.611 0.000 41.700 81.590

3 442.20 770.8 8.267  0.000 93.221 80.036

4 8.80  299.15 30.00 508.5 0.000 4.650

5 451.00 1443.5 8.019 0.000 354.36 81.56

6 451.00 861.54 1.075 0.000 129.876 2.342
7 451.00 695.18 1.032 0.000 75.31 0.738

                                                    
Table 6 shows the net flow rates of various exergies 

crossing from the boundary of each component together 
with their respecting exergy destruction in gas turbine 
power plant.

Table 6  
Optimum Net Exergy Flow Rates and Exergy 
Destruction in Power Plant in Rated Condition

Component E
3 w E

3 CHE E
3 t E

3 MEC E
3

D

AC -134.966 0.000  41.700 81.590 11.676 

AP 0.000 0.000 -3.045 -3.158 6.203

CC 0.000 -508.566 261.15  -1.435 248.85

GT 307.082 0.000  -224.484  -79.218 3.383

Total plant 172.116 -508.566 75.321 -2.214 270.112

                                           
The results indicate explicit improvements in thermal 

properties of power plant components. The bold numbers 
in Table 6 dominate the properties of corresponding 
components in base condition. As it is shown AC 
consumes lower power and also its exergy destruction rate 
reduced about 13.2%. Optimum AP shows an advantage 
in reducing the released thermal and mechanical exergy 
flows. Its destructed exergy reduced about 23.07% 
comparing to base case. This reduction has not an 
explicit effect on minimizing the total destructed exergy 
since AP is a component that destructs a low amount of 
exergy flow comparing to AC and CC. The most concern 
should be focused on minimizing the exergy destruction 
in CC because of its crucial impact in destructing the 
exergy flow in power plant. Our optimum case leads to 
10.8% reduction in CC which is obviously acceptable. 
The total results evident 48.36% increase in plants net 
power output and also 13.8% reduction in power plant 
exergy destruction. Table 7 indicates the optimum initial 
investments, the monetary flow rates and the capital cost 
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rate for each component at rated condition. Consuming 
lower amount of fuel will lead to an obvious providence in 
investments. The total fuel cost reduced about 12.78% in 
optimum case. In addition the sum of capital investments 
for power plant components decreased approximately 
about 13.7%. 

Table 7   
Optimum Initial Investments, Monetary Flow Rates, 
and Capital Cost Rates Under Full Load Condition

Component PEC (×10-6 ) C 
3

(×10-6) Z 
3

(×10-6)

AC 7.99 1.95  746

AP 0.22 0.054 21

CC 1.35   0.330  126
GT   33.24 8.82 3023  

                      
Following tables evident the cost-effective robustness 

of the Mahshahr power plant comparing to base case.

Table 8   
Levelized Cost Rates and Average Cost per Unit of 
Exergy at Various State Points in Base Case
State point C 

3

[＄s-1] C 
3

[＄GJ -1] C 
3

[＄kW -1h-1]

1 0.000 0.00  0.000000

2 0.8036  5.808  0.020911

3 1.0174 5.304 0.019096

4 0.8000 1.556 0.005605

5 1.9043 4.461 0.016063

6   0.6503 4.460 0.016057

7 0.3755 4.460 0.016057

8 0.5370 4.628 0.016664

9 0.7167 4.629 0.016665

                                                                  
Table 9   
Exergoeconomic  Parameters  of  Gas  Turbine 
Components

Component cp[＄GJ -1] cf [＄GJ -1] C
3

D[＄GJ -1] fk [%]

AC 5.808 4.628 0.0623 58.24

AP 6.012 4.461 0.0349 15.29

CC 4.461 2.399 0.6692 1.28

GT 4.628 4.461  0.0587 85.7

                                                             
Table 8 represents the cost of stream under base 

operating parameters of power plant. It is obvious that 
gas turbine requires a higher monetary flow dedication 
comparing to other components. The base exergoeconimic 
parameters of Mahshahr power plant are shown in Table 9. 
These parameters play an important role for analyzing the 
economic behavior of components. Hence, in following 

tables, cited parameters will be tabulate for making an 
engineering contrast. 

Table 10   
Levelized Cost Rates and Average Cost per Unit of 
Exergy at Various State Points in Optimum Condition

State point C 
3

[＄s-1] C [＄GJ -1] c [＄kW -1h-1]

1 0.000  0.000 0.000000

2 0.5948 4.824 4.824

3 0.4638 2.676 0.009637

4 0.8000 1.556 0.005605

5 1.2764 2.927 0.010541

6  0.3871 2.927 0.010539

7  0.2226 2.940  0.010584

8 0.6633 3.853   0.013873

9  0.5202 3.854 0.013875 

                             
Table 11   
Optimum Exergoeconomic Parameters of Gas Turbine 
Components

Component cp[＄GJ -1] cf [＄GJ -1] C
3

D[＄s-1] fk [%]

AC  4.824 3.853 0.0449 62.42

AP 5.023 2.927  0.0181 10.39

CC 2.927 1.305 0.3247 3.73

GT 3.853 2.927 0.0099 96.82

                                                                    
The bold numbers represents the achieved promotion 

after utilizing optimum parameters. As it is shown in 
Table 10, an explicit reduction occurred in the cost of 
each state. Nevertheless, the results show an ascendance 
in cost of 8th stream line. This is because of a supremacy 
that takes placed in the gas turbine power output in the 
optimum condition. It is important to mention that the 
resulted increment in the gas turbine net power output can 
justifies the higher monetary flow conveniently. Besides 
the exergoeconomic parameters have an improvement 
comparing to base properties. For example the combustion 
chamber derived to a lower value of Z

3

K+C
3

D,K and higher 
value of exergoeconomic factor. This suggests an occurred 
predominance in saving the dissipated exergy flow and 
consequence improvement in capital investment.

According to gained results authors conclude that 
the proposed optimum operating variables shows an 
obvious robustness comparing to base operating variables 
as a view of exergy efficiency, net power output and 
exergioeconomic. Figure 5 indicates the different 
performance of power plant in base and optimum 
conditions.
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CONCLUSIONS
Combining the second law of thermodynamics with 
economics i.e. thermoeconomics using availability of 
energy and exergy for cost purposes provides a powerful 
tool for systematic study and optimization of complex 
energy systems like power plants. In this paper the 
maximum potential in performance of Mahshahr power 
plant investigated in a cost effective manner. Also it was 
indicated that an efficient optimizing of the operating 
parameters required a complex multi-objective and multi-
modal simulated functions that makes the decision making 
process really complicated. Hence a new optimizing 
model proposed based on synthesizing the artificial bees 
and chromosomes which perform simultaneously. The 
results confirm that proposed model is a predominance 
optimizing method in analyzing and optimizing 
complicated real life engineering problems.
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