Comparative Loss Aversion: Some New Behavioral Implications

XUE Minggao[a],*; CHENG Wen[a]

[a] Department of Finance, School of Management Wuhan, China. *Corresponding author.

Supported by the National Nature Science Foundation of China (No. 70871046 and No. 71171091).

Received 18 June 2012; accepted 9 October 2012

Abstract
This paper proposes a new loss aversion coefficient for decision makers. Considering this loss aversion coefficient and Shalev’s (2002) perceptive utility function, we define a new version of rank-dependent expected utility theory. Our main results extend the restrictions of comparative loss aversion, and reveal the behavioral implications of comparative loss aversion. The new loss aversion coefficient is well defined as a measure of degree of loss aversion. Our main findings of comparative loss aversion can also be applied to welfare, health, insurance and other topical economic problems.

Key words: Loss aversion coefficient; Comparative loss aversion; Rank-dependent expected utility; Decision making under risk

INTRODUCTION
Loss aversion is one of the most significant concepts in behavioral finance. It has received wide attention in decision making under risk. Kahneman and Tversky (1979) pioneer the idea of loss aversion. Loss aversion implies decision makers are more sensitive to losses than to gains. Loss aversion is a vague concept, it has various measure methods (see e.g. Kahneman & Tversky, 1979; Wakker & Tversky, 1993; Bowman et al., 1999; Breiter et al., 2001; Neilson, 2002; Bleichrodt & Miyamoto, 2003). However, these measure skills don’t make loss aversion be separated from utility curvature. This paper proposes a new separated loss aversion coefficient as a measure of loss aversion of decision makers; we hope that this loss aversion coefficient will play an important role for the comparison of loss aversion of decision makers.

Many utility theories characterize the preference relations of decision makers, such as rank-dependent expected utility theory (Quiggin, 1981), prospect theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992). Although these utility theories have tractability and psychological behavioral evidences (see e.g. Laibson & Zeckhauser, 1998), they do not well reflect the perceptive utility and loss aversion of decision maker. Therefore, this paper proposes a new version of rank-dependent expected utility theory to make comparative loss aversion will be more unambiguous.

The comparison of loss aversion between decision makers has been dissussed in the literature (see e.g. Neilson, 2002; Köbberling & Wakker, 2005; Blavatskyy, 2011). This paper extends the restrictions of comparative loss aversion, and reveals the behavioral implications of comparative loss aversion.

Many empirical results imply loss aversion (see e.g. Samuelson & Zeckhauser, 1988; Benartzi & Thaler, 1995; Camerer et al., 1997; Genesove & Mayer, 2001; Chen et al., 2006). Our main results of comparative loss aversion can be applied to the comparison of consumptions of families with different income levels. Their different loss averse degrees of less income lead to different consumptions. Our main findings can also be applied to welfare, health, insurance and other topical economic problems.

This paper is constructed as follows. Section 2 defines a new version of rank-dependent expected utility theory. Section 3 presents main results of comparison of loss
aversion between decision makers. Section 4 provides an example as an illustration of main results of comparative loss aversion. Section 5 concludes. Proofs are presented in the Appendix.

1. RANK-DEPENDENT EXPECTED UTILITY THEORY

Let \(X = \{x_1, x_2, \ldots, x_n\} \) be a finite set of riskless monetary outcomes, containing at least three elements, the outcomes in \(X \) can be ordered from best to worst, i.e., \(x_1 \geq \ldots \geq x_k > \ldots \geq x_n \) for some \(1 \leq k \leq n \), where \(x_k = r \in X \) is denoted by a riskless reference outcome that a decision maker perceives. Let \(X_r \subseteq X \) be nonempty set of gain \(x_r \) that above the reference outcome, i.e., \(X_r = \{x_1, x_2, \ldots, x_k\} \). Let \(X_r = X \setminus X_r \) be nonempty set of loss \(x_r \) that below the reference outcome, i.e., \(X_r = \{x_{k+1}, x_{k+2}, \ldots, x_n\} \).

Lottery \(l: X \rightarrow [0,1] \) is a probability distribution on \(X \), i.e., \(l(x) \in [0,1] \) for all \(x \in X \) and \(\sum_{x \in X} l(x) = 1 \). A degenerate lottery that yields one outcome \(x \in X \) with probability 1 is denoted by \(x \). Let \(L \) denote the set of all lotteries over \(X \). Lottery \(l: X \rightarrow [0,1] \) is a loss-free lottery, i.e., \(l(x) > 0 \) for all \(x \in X \).

Let \(L_r \subseteq L \) denote the set of all such loss-free lotteries over \(X \). Similarly, let \(L_r: X \rightarrow [0,1] \) be a gain-free lottery, i.e., \(l(x) > 0 \) for all \(x \in X \).

A decision maker has a unique preference relation \(\succ^\\prime \) on \(L \) if the fixed reference outcome is \(r \). We write \(\succ^\\prime \) as \(\succ \) simplified form if all decision makers have the same reference outcome \(r \), \(\succ \) is denoted as the asymmetric component of \(\succ^\\prime \), \(\sim \) is denoted as the symmetric component of \(\succ^\\prime \).

We next define a new version of rank-dependent expected utility theory proposed by Quiggin (1981). We begin with a definition of perceptive utility function in loss aversion model proposed by Shalev (2002). Let the increasing differentiable function denoted by \(u: X \rightarrow \mathbb{R} \) be the basic utility function of a decision maker, let \(r \in X \) be a riskless reference outcome, let non-negative \(\lambda \geq 0 \) be loss aversion coefficient that is constant for different outcomes and reference outcomes. Loss aversion is considered as a new risk attitude, the perceptive utility function of a decision maker is defined by

\[
U(x) = \begin{cases}
u(x) & x \in X_r \\
u(x) - \lambda[u(r) - u(x)] & x \in X_r
\end{cases} \quad (1)
\]

Behavioral implications behind definition (1) are very intuitive. It shows the perceptive utility of a decision maker equals to his basic utility for the gain above reference outcome, and it equals to his basic utility by subtracting the loss multiplied by loss aversion coefficient for the loss below reference outcome. This perceptive utility function implies the core idea of loss aversion that perceptive utility function is kinked at reference point. Köberling and Wakker (2005) take the riskless reference outcome \(r \) as zero, and take the ratio of the left derivative and the right derivative of the utility function at reference point as index of loss aversion. According to this implication of loss aversion, we can define a plausible loss aversion coefficient at the reference point in the following.

Definition 2.1. The loss aversion coefficient of a decision maker is defined as

\[
\lambda = \frac{U'_+(r) - U'_+(r)}{U'_+(r)} \quad (2)
\]

Formally, we propose a new rank-dependent expected utility theory using perceptive utility function (1). A decision maker with basic utility function \(u \) and reference outcome \(r \) uses perceptive utility function \(U \) to compute his rank-dependent expected utility of risky lottery. So the rank-dependent expected utility of any lottery \(l \) with respect to reference outcome \(r \) is denoted by

\[
EU(l) = \sum_{x \in X} U(x)\left[w\left(\sum_{y \in X} l(y)\right) - w\left(\sum_{y \in X} l(y)\right)\right] \quad (3)
\]

Theorem 1 in Peters (2012) shows a decision maker’s preference over lotteries can be represented by a unique utility function (up to a positive affine transformation) in expected utility theory. In this paper, we assume decision makers are rank-dependent expected utility maximizers, and their preferences over lotteries exist the new rank-dependent expected utility representations. Namely, there exists a unique rank-dependent utility function (up to a positive affine transformation) \(w: [0,1] \rightarrow \mathbb{R} \), a real number \(\lambda \geq 0 \) (i.e. a unique perceptive utility function \(U \)) and a unique continuous and strictly increasing perceptive probability weighting function \(w: [0,1] \rightarrow [0,1] \) with \(w(0) = 0 \) and \(w(1) = 1 \), we have

\[
l \succ h \iff EU(l) \geq EU(h) \quad (4)
\]

for all \(r \in X, \forall l, h \in L \).

2. MAIN RESULTS

Blavatsky (2011) gives a benchmark of comparison of loss aversion between decision maker 1 and decision maker 2 whose preference relations are characterized by \(\succ_1 \) and \(\succ_2 \) respectively in the following.

Lemma 3.1. Decision maker 1 is more loss aversion than decision maker 2 if and only if
Comparative Loss Aversion: Some New Behavioral Implications

(i) \(l^+ >_2 l \Rightarrow l^+ >_1 l \) for \(\forall l^+ \in L^+ \), \(l \in L \);
(ii) \(l^+ \sim_2 l \Rightarrow l^+ \sim_1 l \) for \(\forall l^+ \in L^+ \), \(l \in L \);
(iii) \(\exists l^+ \in L^+ \), \(l \in L \), such that \(l^+ \sim_2 l \), \(l^+ >_1 l \).

Behavioral implications behind Lemma 3.1 are very intuitive. A less loss averse decision maker strictly prefers a certain loss-free lottery to a risky lottery, and then a more loss averse decision maker should more do so. And a less loss averse decision maker perceives indifferent between a certain loss-free lottery and a risky lottery, then a more loss averse decision maker weakly prefers a loss-free lottery to a risky lottery. Blavatksy (2011) points out the advantage of Lemma 3.1 is that we can compare loss aversion between decision makers according to the observable preferences rather than depending on some specific decision theory that represents their preferences.

As the core idea of this paper, we next present main results of comparative loss aversion between different decision makers in the new rank-dependent expected utility theory. In this paper, decision maker 1, 2 are characterized by basic utility function \(u_1, u_2 : X \to R \) and loss aversion coefficient \(\lambda_1, \lambda_2 \geq 0 \) i.e., perceptive utility function \(U_1, U_2 \) respectively. We can obtain several propositions of comparative loss aversion between different decision makers in the following.

Proposition 3.1. A decision maker 1 with perceptive utility \(U_1 \) and perceptive probability weighting \(w_1 \) is more loss aversion than a decision maker 2 with perceptive utility \(U_2 \) and perceptive probability weighting \(w_2 \) if and only if \(\exists a \in R_+, b \in R \) such that

(i) \(w_1(p) = w_2(p) \), for \(\forall p \in [0,1] \);
(ii) \(\Delta U_{1,2}(x_+) = 0 \), for \(\forall x_+ \in X_+ \);
(iii) \(\Delta U_{1,2}(x_-) \geq 0 \), for \(\forall x_- \in X_- \);
(iv) \(\exists x \in X_- \), such that \(\Delta U_{1,2}(x) > 0 \).

Where, \(\Delta U_{1,2}(x) = NU_2(x) - U_1(x) \), \(NU_2(x) = aU_2(x) + b \), \(\forall x \in X \).

Proof. See Appendix.

Behavioral implications behind Proposition 3.1 are very intuitive. It shows the comparison of loss aversion between two decision makers can be characterized by perceptive utility difference; it doesn’t depend on the shape of perceptive probability weighting function. In other words, decision maker 1 is more loss aversion than decision maker 2 if the two decision makers have the same perceptive probability weighting, there is indifference between decision maker 1’s perceptive utility \(U_1 \) and decision maker 2’s normalized perceptive utility \(NU_2 \) (i.e. \(U_1 \) and \(U_2 \) are strategically identical) in the domain of gains, and difference between the two decision makers is nonnegative (and it is strictly positive for at least one loss) in the domain of losses, or vice versa.

We can obtain an intuitive idea according to Proposition 3.1. It is that two decision makers can be ranked by loss attitudes only if they have the same perceptive probability weighting, the same perceptive utility in the domain of gains, and the perceptive utility of decision maker 1 is lower than the one of decision maker 2 in the domain of losses. So we immediately obtain some strong restrictions that characterize comparative loss aversion between different decision makers in the following propositions.

Proposition 3.2. A decision maker 1 with perceptive utility \(U_1 \) and perceptive probability weighting \(w_1 \) is more loss aversion than a decision maker 2 with perceptive utility \(U_2 \) and perceptive probability weighting \(w_2 \) if \(\exists \mu \in R_+, a \in R_+, b \in R \) such that

(i) \(w_1(p) = w_2(p) \), for \(\forall p \in [0,1] \);
(ii) \(U'_1(x_+) \equiv NU_2'(x_+) \), for \(\forall x_+ \in X_+ \);
(iii) \(U'_1(x_-) \geq \mu \geq NU_2'(y_-) \), for \(\forall x_-, y_- \in X_- \);

where, \(NU_2(x) = aU_2(x) + b \), \(\forall x \in X \).

Proof. See Appendix.

The behavioral implications of Proposition 3.2 are intuitive. It shows comparative loss aversion between two decision makers can be characterized by perceptive marginal utility, it doesn’t depend on the shape of perceptive probability weighting function. Namely, decision maker 1 is more loss aversion than decision maker 2 if the two decision makers have the same perceptive probability weighting, the same perceptive marginal utility in the domain of gains, and the perceptive marginal utility of decision maker 1 is greater than the one of decision maker 2 in the domain of losses. The parameter \(\mu \) can be interpreted as a boundary value between perceptive marginal utilities of the two decision makers.

Proposition 3.3. A decision maker 1 with perceptive utility \(U_1 \) and perceptive probability weighting \(w_1 \) is more loss aversion than a decision maker 2 with perceptive utility \(U_2 \) and perceptive probability

(i) \(w_1(p) = w_2(p) \), for \(\forall p \in [0,1] \);
(ii) \(U'_1(x_-) \geq \mu \geq NU_2'(y_-) \), for \(\forall x_-, y_- \in X_- \);

where, \(NU_2(x) = aU_2(x) + b \), \(\forall x \in X \).
Proposition 3.4. A decision maker 1 with basic utility function \(u_1 \), loss aversion coefficient \(\lambda_1 \) and perceptive probability weighting \(w_1 \) is more loss aversion than a decision maker 2 with basic utility function \(u_2 \), loss aversion coefficient \(\lambda_2 \) and perceptive probability weighting \(w_2 \) if and only if \(\exists \ a \in R_+ \), \(b \in R \) such that

(i) \(w_1(p) = w_2(p), \) for \(\forall \ p \in [0,1] \);
(ii) \(u_1(x) = nu_2(x), \) for \(\forall \ x \in X \);
(iii) \(\lambda_1 \geq \lambda_2 \);

where, \(nu_2(x) = au_2(x) + b, \) \(\forall \ x \in X \).

Proof. See Appendix.

Proposition 3.4 reveals the fundamental nature of comparative loss aversion between decision makers. It shows the comparison of loss aversion between two decision makers can be characterized by loss aversion coefficient. Loss aversion coefficient can be used as a measure of degree of loss aversion of decision makers. So decision maker 1 is more loss aversion than decision maker 2 if the two decision makers have the same perceptive probability weighting, there is indifference between decision maker 1’s basic utility and decision maker 2’s normalized basic utility \(nu_2 \) (i.e. \(u_1 \) and \(u_2 \) are strategically identical) in the domain of all outcomes, and the loss aversion coefficient of decision maker 1 is greater than the one of decision maker 2.

In this paper, comparative loss aversion is characterized by observed preferences over lotteries, but Köbberling and Wakker (2005) characterize comparative loss aversion by Yaari’s acceptance sets. Proposition 3.4 makes these two formulations of comparative loss aversion coincide in the new rank-dependent expected utility theory.

3. Example

In this section, we provide an example as an illustration of Proposition 3.4 that implies the essence of comparative loss aversion between decision makers. The basic utility function of decision maker 1 is \(u_1(x) = \sqrt{x} + 1, x \in R_+ \).

Without loss of generality, we take \(a = 1, b = 0 \), then the normalized basic utility function of decision maker 2 is \(nu_2(x) = u_2(x) = \sqrt{x} + 1, x \in R_+ \). We take \(w_1(p) = w_2(p) = p, \) \(p \in [0,1] \), reference outcome \(r = 4 \) and \(\lambda_1 = \frac{1}{2}, \lambda_2 = \frac{1}{4} \), so \(\lambda_1 > \lambda_2 \). Now we demonstrate decision maker 1 is more loss aversion than decision maker 2 if the conditions (i)-(iii) of Proposition 3.4 hold. According to the definition of perceptive utility, we have \(U_1(x) = NU_2(x) = u_1(x) = \sqrt{x} + 1, \) when \(x \geq r = 4 \), so \(U_1(x) = NU_2(x) - U_1(x) = 0 \), when \(x \geq r = 4 \). We also obtain that \(\Delta U_{1,2}(x) = U_1(x) - NU_2(x) = (\lambda_1 - \lambda_2)[u_1(r) - u_1(x)] \)

\[\geq \frac{\sqrt{r} - \sqrt{x}}{4} > 0 \]

when \(x < r = 4 \).

According to Proposition 3.1, we demonstrate that decision maker 1 is more loss aversion than decision maker 2. We can also demonstrate the inverse conclusion of Proposition 3.4. We give an illustration of behavioral implications of comparative loss aversion of Proposition 3.4 in Figure 1.
same basic utility on the set of all outcomes, we have
\[U'_1(r) \geq NU'_2(r) \] in terms of Definition 2.1 and
\[U'_1(r) = NU'_2(r) \]. Therefore, the perceptive utility
function of decision maker 1 exhibits a greater kink at
reference point \(r = 4 \), so that the curve graph of decision
maker 1 falls below the one of decision maker 2. In this
sense, \(U'_1(r) \geq NU'_2(r) \) can be used as a measure
of comparative loss aversion between the two decision
makers. According to Proposition 3.1, we conclude that
decision maker 1 is more loss aversion than decision
maker 2. Based on the above analysis, we note that loss
aversion coefficient in Definition 2.1 is well defined as a
measure of degree of loss aversion of decision makers
in the new rank-dependent expected utility theory.

CONCLUDING REMARKS

This paper proposes a new loss aversion coefficient for
the perceptive utility function of decision maker. This
loss aversion coefficient will result in an unambiguous
decomposition of risk attitude into three distinct
components: perceptive utility, perceptive probability
weighting and loss aversion. Considering this loss
aversion coefficient, we define a new version of rank-
dependent expected utility theory. Our main results of
comparison of loss aversion are obtained by characterizing
some restrictions of perceptive utility functions. These
restrictions show some very meaningful behavioral
implications of comparison of loss aversion. In fact,
comparative loss aversion between decision makers is
implies by the comparison of perceptive utility difference,
perceptive marginal utility, average perceptive utility
and loss aversion coefficient. Our main results extend
the restrictions of comparative loss aversion, reveal the
 essence of comparative loss aversion, and also make
comparative loss aversion proposed by us coincide with
the one proposed by Köbberling and Wakker (2005) in
the new rank-dependent expected utility theory. The new
loss aversion coefficient is well defined as a measure of
degree of loss aversion of decision makers. Our main findings
of comparative loss aversion can also be applied to welfare,
health, insurance and other topical economic problems.

REFERENCES

and the Equity Premium Puzzle. Quarterly Journal of
Economics, 110(1), 73-92.

Blaevatskyy, P. R. (2011). Loss Aversion. Economic Theory, 46,
127-148.

Quality-Adjusted Life-Years Under Cumulative Prospect

in a Consumption-Savings Model. Journal of Economic
Behavior and Organization, 38, 155-178.

Breiter, H. C., Aharon, I., Kahneman, D., Dale, A., & Shizgal,
P. (2001). Functional Imaging of Neural Responses to
Expectancy and Experience of Monetary Gains and Losses.
Neurol, 30, 619-639.

Labor supply of New York City Cabdrivers: One Day at a

Basic Are Behavioral Biases? Evidence from Capuchin-
Monkey Trading Behavior. Journal of Political Economy,
114(3), 517-537.

Behavior: Evidence from the Housing Market. Quarterly

Analysis of Decision under Risk. Econometrica, 47, 263-
291.

Ascent of Behavioral Economics. Journal of Risk and
Uncertainty, 16, 7-47.

Neilson, W. S. (2002). Comparative Risk Sensitivity with
Reference-Dependent Preferences. Journal of Risk and
Uncertainty, 24, 131-142.

Quiggin, J. (1981). Risk Perception and Risk Aversion Among
Australian Farmers. Australian Journal of Agricultural

in Decision Making. Journal of Risk and Uncertainty, 1,
7-59.

Journal of Game Theory, 29, 269-287.

Cumulative Prospect Theory. Journal of Risk and
Uncertainty, 7, 147-176.
APPENDIX. PROOFS

1. Proof of Proposition 3.1
According to Proposition 4 in Blavatskyy (2011), we use perceptive utility function (1) to replace its basic utility function, and consider the preference representation (4) in new rank-dependent expected utility theory. Considering Lemma 3.1, we have decision maker 1 is more loss aversion than decision maker 2 if and only if \(\exists a \in R_+, \ b \in R \) such that \(w_1(p) = w_2(p) \), for \(\forall \ p \in [0,1] \); \(U_1(x) = aU_2(x) + b \), for \(\forall \ x \in X_+ \);
\[
U_1(x_-) \leq aU_2(x_-) + b, \text{ for } \forall \ x_- \in X_-;
\]
\[
\exists x_+ \in X_+ \text{, such that } U_1(x_+) < aU_2(x_-) + b \text{ Let } \Delta U_{12}(x)
\]
\[
= NU_2(x) - U_1(x), \text{ } NU_2(x) = aU_2(x) + b,
\]
\[
\forall \ x \in X, \text{ we obtain the parts (i)-(iv) of definition}
\]

2. Proof of Proposition 3.2
According to Proposition 3.1, we only need to proof part (ii) and (iii) of Proposition 3.2 implying part (ii) and (iii) of Proposition 3.1 respectively. Part (ii) of Proposition 3.2 implies \(U_i(x) = NU_i(x) + c \), for \(\forall x \in X_+ \), \(c \) is constant, because \(NU_i(x) = aU_i(x) + b \), for \(\forall x \in X_+ \), so \(U_i(x) = NU_i(x), \text{ for } \forall x_+ \in X_+, \text{ i.e., } \Delta U_{12}(x) = 0, \text{ for } \forall x_+ \in X_+ \), which is the part (ii) of Proposition 3.1. Let \(x_+ = y_+ \in X_+ \), part (iii) of Proposition 3.2 implies \(U'_i(x) \geq NU'_i(x), \text{ for } \forall x_+ \in X_+, \text{ i.e., } \text{ } NU'_i(x) - U'_i(x) \leq 0, \text{ for } \forall x_+ \in X_+ \), that is to say, \(NU_i(x) - U_i(x) \) is nondecreasing on \(X_+ \). We have \(NU_i(x) - U_i(x) \geq NU_i(x) - U_i(x) = 0, \text{ when } x_+ < r. \) So we have \(\Delta U_{12}(x) \geq 0, \text{ for } \forall x \in X_+ \), which is the part (iii) of Proposition 3.1. We complete the proof of Proposition 3.2.

3. Proof of Proposition 3.3
According to Proposition 3.1, we only need to proof the parts (ii) , (iii) of Proposition 3.3 imply the parts (ii) , (iii) of Proposition 3.1 respectively. Part (ii) of Proposition 3.3 implies \(\Delta U_{12}(x) = NU_2(x) - U_1(x) = 0, \text{ for } \forall x \in X_+, \text{ which is the part (ii)} \) of Proposition 3.1.

Part (iii) of Proposition 3.3 implies \(\frac{U_1(r) - U_1(x_-)}{r - x_-} \geq \frac{NU_2(r) - NU_2(x_-)}{r - x_-}, \text{ for } \forall x \in X, \text{ when } x_+ = y_+ \in X_+. \)

Because \(U_i(x) = NU_i(r), \text{ we have } U_1(x_-) \leq NU_2(x_-), \text{ for } \forall x \in X_+, \text{ i.e., } \Delta U_{12}(x) \geq 0, \text{ for } \forall x \in X_+, \text{ which is the part (iii)} \) of Proposition 3.1. We complete the proof of Proposition 3.3.

4. Proof of Proposition 3.4
According to Proposition 3.1, we only need to proof the parts (ii) , (iii) of Proposition 3.4 imply the parts (ii) , (iii) of Proposition 3.1, or vice versa. According to the definition of perceptive utility function, part (ii) of Proposition 3.4 implies \(U_1(x_+) = u_1(x_+) = au_2(x_+) + b = aU_2(x_+) + b = NU_2(x_+), \text{ for } \forall x_+ \in X_+, \text{ i.e., } \Delta U_{12}(x) = 0, \text{ for } \forall x_+ \in X_+, \text{ which is the part (ii)} \) of Proposition 3.1. Because \(U_i(x) = u_i(x) - \lambda_i[u_i(r) - u_i(x_+)] \) (i = 1, 2), for \(\forall x_+ \in X_+, u_1(x_+) = au_2(x_+) + b, \text{ for } \forall x \in X, \text{ part (ii)} \) of Proposition 3.6, i.e., \(\lambda_1 \geq \lambda_2 \), and \(u_1(r) > u_2(x_+) \text{ when } x_+ \in X_+, \) we have \(\Delta U_{12}(x) = (aU_2(x) + b) - U_1(x), \text{ for } \forall x \in X, \text{ i.e., } \Delta U_{12}(x) = (\lambda_1 - \lambda_2)[u_1(r) - u_1(x_+)] \geq 0, \text{ for } \forall x_+ \in X_+, \text{ which is the part (iii)} \) of Proposition 3.1. We complete the proof of Proposition 3.4.