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Abstract 
This paper uses the visibility and invisibility algorithms 
to build the peak and trough indicators, providing a way 
to recognize the convexity, concavity and regime change 
of the CSI 300 Index from the April 8, 2005 to June 30, 
2016. The study found that the automated trading rules 
discovered by the gradient boosted classification trees 
models derived from the peak indicator outperform that 
from the trough indicator. Due to the long-term bubble 
regime in the Chinese stock market, the technical trading 
rules in general have a better short term predictive ability 
than long term, in terms of the values of Sharpe Ratio and 
PnL/MD obtained from the whole out-of-sample.
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INTRODUCTION
The stock market is considered as a high complex and 
dynamic system with noisy, non-stationary and chaotic time 
series. The intricate issue of nowcasting and forecasting 
the phase transition has been one more time well-
illustrated recently with the global downturn experienced 
by most countries around the world. Governments, 
central banks and investors are very sensitive to financial 

indicators showing readable signals in order to adjust 
their policies or technical strategies sufficiently to gain 
profit or avoid loss in advance (Park & Irwin, 2007). 

The method of technical analysis aims to predict stock 
returns by finding persistent patterns and relationships 
generalized beyond the historical data (Allen & 
Karjalainen, 1999; Friesen et al., 2009). Except for 
incorporating historical movements to discover technical 
trading rule, another high-level research is detecting 
the trend of phase transition in financial markets (Wen 
et al., 2010). Various soft computing techniques have 
been introduced for early detection or prediction purpose 
among both academics and industry professionals over 
the last two decades. A particularly active area of research 
is employing artificial intelligence methods (Booth et 
al., 2014) or evolutionary computation techniques (Hu 
et al., 2015) to recognise investment opportunities and 
reduce error derived from noise, with which is better than 
or at least as good as their human counterparts. Trading 
rule discovery technique could be a way to integrate the 
information derived from relevant technical indicators, 
filter the noise and increase the return adjusted to the risk 
(Cervello-Royo et al., 2015). 

Convexity is an important concept that gains insight 
into the more technical aspects accumulated in stock 
investment (Kwon & Moon, 2007). Understanding 
this basic characteristic allows the investor to better 
comprehend the evolution of financial time series. 
Empirical observations associated with the Log-
periodic Power Law Singularity model have revealed 
the characterisation of super exponential growth in price 
time series before the crashes (Johansen & Sornette, 
1999; Johansen et al., 2000; Sornette, 2009). Forecasting 
financial extremes thus refers to the detection and measure 
of the occurrence of this kind of growth. However, it is an 
experience-dependent to make trading decisions for the 
difficulties in identifying the robust signals and measuring 
the effectiveness. 
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Gradient boosting is widely used by data scientists to 
achieve state-of-the-art results on many machine learning 
challenges (Chen & Guestrin, 2016). Differ from linear 
models like logistic regression or support vector machine, 
gradient boosted trees can model non-linear interactions 
between the features and the target. The gradient boosted 
trees model has become one of the most effective machine 
learning models. It is not only suitable for handling 
numerical features and categorical features with tens 
of categories, but also can be used as a classifier for 
predictive tasks. The prediction is based on a collection of 
base learners (i.e., decision tree classifiers) and combines 
them through a technique called gradient boosting. 

In this paper, it aims to exploit a convexity-concavity 
representation of time series and use the gradient boosted 
classification trees models to discover trading rules. The 
basic idea is that the stock price time series is supposed 
to exhibit certain structures inherited in a period of time. 
It thus employs the visibility and invisibility algorithm 
to convert a time series into a price network (Lacasa et 
al., 2008), and builds the peak and trough indicators to 
measure the magnitude of the super-exponential growth of 
stock prices (Yan & Serooskerken, 2015). The strengths of 
the approach lie in two main aspects. First, the convexity-
concavity indicators specifically measure all conceivable 
upward or downward growth laws that are faster than 
exponential. The actual values of the indicators thus may 
foretell the future. Second, trading signals that suggest 
buy or sell are discovered by the ensemble learners of the 
gradient boosted classification trees models for a higher 
prediction performance. 

1. PEAK AND TROUGH INDICATORS 
Yan and Serooskerken (2015) constructed peak and trough 
indicators as two financial extreme indicators to predict 
the peaks and troughs in the financial time series. For a 
log-price time series, yi = log(pi), the peak degree Dpeak(ti) 
at time ti measures the number of data points (ti, yi) in the 
time window tj∈[ti-s , ti-1] satisfying: 

    yi > yj, (1)
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Similarly, the trough indicator at time ti is defined as 
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measures the proportion of data points (ti, yi) in the time 
window tj∈[ti-s, ti-1] satisfying: 

    yi < yj, (3)
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Thus, the peak indicator PI is a measure of convexity 
of the log-price as a function of time at a local maximum. 
Hence it is a direct measure of the super-exponential 
acceleration. At the same time, it can be influenced by the 
volatility of the log-price decorating the convexity. So a 
large peak indicator indicates: there is a local maximum 
such that the log-price has shown a strong convexity over 
S trading days while the volatility during this upward 
acceleration has been moderate. 

Similarly, the trough indictor TI is a measure of 
concavity of the log-price as a function of time at a local 
minimum. It also can be influenced by the roughness of 
the log-price decorating the concavity.

2. APPLICATIONS TO THE REAL DATA 
This section thus applies above measures to investigate 
the convexity and concavity of the CSI 300 Index. 

2.1 Data 
The CSI 300 is a capitalization-weighted stock market 
index designed to replicate the performance of 300 stocks 
traded in the Shanghai and Shenzhen stock exchanges. 
The data to be examined from the April 8, 2005 to June 
30, 2016 are from the Thomson Reuters Datastream. 

2.2 Calculation of Two Indicators 
Three panels in Figure 1 illustrate how to respectively 
calculate two indicators of CSI 300 by the visibility 
algorithm and absolute invisibility algorithm at each ti 
from the January 3, 2012 to June 30, 2016. 

Figure 1
Calculation of Peak and Trough Indicators of CSI 300

As the red lines shown in the top panel of the Figure 1, 
for the peak indicator PI at ti=2015.04.17, 31 data points 
are linked to the green point in the look-back window 
with a length of S=131 trading days (represented by the 
green line) that satisfying the Equation (1) and Equation 
(2) by the visibility algorithm. Thus, PI(ti=2015.04.17) 

= 31
131 0.237= ==0.237. For the trough indicator TI at ti=2015.08.26 

in the second panel, 29 data points are linked to the green 
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point in the look-back window with a length of S=131 
trading days (represented by green line) that satisfying the 
Equation (3) and Equation (4) by the absolute invisibility 

algorithm. Thus, TI(ti=2015.08.16) = - 29
1312015.08.16) 0.21( 1iTI t = = − = −=-0.211. The 

bottom panel of Figure 1 further shows the performance 
of peak indicator (red line) and trough indicator (blue line) 
in the window [2012.01.03, 2016.06.30]. 

2.3 Performance of Two Indicators on Real Data 
Figure 2 presents the performance of the two indicators of 
CSI 300 in the whole window [2005.04.08, 2016.06.30]. 
Four panels show the price time series (black line in the 
top panel), the signals of PI (red line in the second panel), 
the signals of TI (blue line in the third panel), and the 
cross-correlation of these two discrete signal sequences as 
a function of the lag ranged from -131 to 131 (black dot in 
the bottom panel). 

Figure 2 
CSI 300 Time Series and Signals of PI and TI and Their Cross-Correlation

The results shown in Figure 2 are obtained using 
the window size S=131 trading days, i.e., roughly half 
a calendar year. The peaks of signals in the second and 
third panels in the Figure 2 show that most of the change 
of regime can be diagnosed by PI and TI. However, 
the reality is so complex that the indicators have been 
influenced by the volatility of time series. The different 
height of bunches of signals continually derived from 
PI means that the log-price convex ups at different 
rates. Some of them are even followed by or mixed 
with the concave-up sharp until reaching the critical 
time. And their cross-correlation values within the 
range of lag from -131 to 131 are very low. They thus 
are suitable to be two features of the gradient boosted 
classification trees model for capturing the states of 
market. 

3. AUTOMATED TRADING STRATEGIES 
BASED ON GRADIENT BOOSTED 
CLASSIFICATION TREES MODELS 
Given the historical data, this section thus trains the data 
to develop profitable strategies based on the gradient 
boosted classification trees models, and tests the 
aforementioned indicators’ performance and usability. 

3.1 Defining the Peaks and Troughs 
First, it searches the local “peak” (noted as PK) as defined 
in Equation (5) and local “trough” (noted as TR) in 
Equation (6) along the whole time series, where b and 
a determine the length of searching windows (Yan & 
Serooskerken, 2015). 

   PK=(ti, yi),where yi = max(yj), (5)
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     TR=(ti, yi), where yi=min(yj), (6)
i-b ≤ j ≤ i+a, j∈N.

3.2 Trading in the Well-Defined Regimes 
The found local peaks and troughs are the points dividing 
the whole time series as continuous regimes. For an 
interval [PK, TR] therein with a peak as its left point and a 
trough on the right, one of the simple trading strategies is 
selling the asset at the beginning and buying it at the end. 
The profit in the interval [TR, PK] can also be realized 
from buying the asset at first and selling it later. For the 
interval [PK1, PK2], it further finds the minimum in it as 
a local trough that divides the whole into two subintervals, 
such that sell in the interval [PK1, TR] and shift to hold it 
in the interval [TR, PK2]. For an interval [TR1, TR2], a 
new found local peak PK would divide the regime to [TR1, 
PK] for holding and [PK, TR2] for selling.

Given that b=131 and a=45 trading days, the top panel 
of Table 1 presents all the found peaks (red triangle) 
and troughs (blue inverted triangle) of CSI 300 and the 
corresponding benchmark trading strategy. The statistical 
measures at the bottom give a reference being the best that 
can be achieved, without a consideration of transaction 
costs. So these buy-sell signals can be the input of target 
to train trees models. The statistical measures can also be 
used to examine the performance of out-of-sample. For 
the Maximum Drawdown (MD), a lower output means a 
better performance. With the Sharpe Ratio, Annual Return 
(PnL) or PnL/MD, a higher output is better. 

Table 1 
Benchmark Trading Strategy and Its Performance of 
CSI 300 

Found peaks and troughs and benchmark trading strategy

Statistical measures Values

Sharpe Ratio 
Annual Return (PnL) 
Maximum Drawdown (MD) 
PnL/MD 
Trading days 
Trade counts 

2.03
0.41
0.17
2.41

2406.00
9.00

3.3 Representat ion of  Gradient  Boosted 
Classification Trees Model 
3.3.1 Input 
Feature vector: X={xp,i, p=1,2; i=1,2,...,N} ={PI(ti), TI(ti), 
i=1,2,...,N}. Please note that the absolute value of TI(ti) 
is used during the training for a better comparison with 
PI(ti). 

Target for training: Z={zi, i=1,2,...,N}∈{-1,1}, that is, 
the buy-sell signals derived from the benchmark trading 
strategy in Table 1. 

Goal: 
Given the training data (X,Z), produce a binary 

classifier F(X)=sign[fM(X)]= 
 

1

,( )
M

m m
m

sign b Xνβ γ
=

 
  
∑

∈{-1,1} in a form of a weighted sum of tree b(X,γm) 
where γm parametrizes the splits. 
3.3.2 Algorithm

(a) Initialize the model with a constant value: f0(X)=0; 

(b) From m=1 to M repeat: compute 
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the loss function L(●) not only measures how well model 
fit the training data, but also measures the complexity of 
model mainly through the term βb(xp,i, γ); 

(c) Update the model: fm(X)=fm-1(X) +vβmb(xp,i, γ). 
3.3.3 Key Parameters

●  M(max iterations): The maximum number of 
iterations for training. Each iteration results in the 
creation of an extra tree. 

●  v(step size):  Step size (shrinkage) used for 
combining the weight of individual trees in update to 
prevents overfitting. It shrinks the prediction of each 
weak learner to make the boosting process more 
conservative. The smaller the step size, the more 
conservative the algorithm will be. Smaller ν works 
well when M is large, that is, the lower “learning 
rate” requires more iteration. 

●  βm(min loss reduction): Minimum loss reduction 
required to make a further partition on a leaf node 
of the tree. The larger the non-negative value is, the 
more conservative the algorithm will be. 

●  γm(max depth; min child weight):
max depth: The maximum depth of the individual 

decision trees (at least 1). It not only controls the number 
of terminal nodes in trees, but also controls the maximum 
allowed level of interaction between variables in the 
model. If it equals to 2, there is no interaction between 
variables allowed. When it equals to 3, the model may 
include effects of the interaction between up to two 
variables, and so on. 

min child weight: This non-negative parameter controls 
the minimum weight assigned to leaf nodes. The larger it 
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is, the more conservative the algorithm will be. Formally, 
this is minimum sum of instance weight (hessian) in 
each leaf. If the tree partition step results in a leaf node 
with the sum of instance weight less than it, then the 
building process will give up further partitioning. 

In the following tests, the parameters are set as 
max iterations=50,        step size=0.01, 
min loss reduction=1,   max depth=3, 
min child weight=0.6.

3.3.4 Evaluation and Validation
The correctness of a classification can be evaluated 

by computing the number of correctly recognized class 

examples (true positives), the number of correctly 
recognized examples that do not belong to the class (true 
negatives), and examples that either were incorrectly 
assigned to the class (false positives) or that were not 
recognized as class examples (false negatives). 

The metric accuracy (Sokolova & Lapalme, 2009) can 
be used to measure the fraction of predictions of target 
values made by the classifier that are exactly correct. The 
score lies in the range [0, 1] with 0 being the worst and 
1 being the best. In the following tests, the classification 
accuracy is measured both on the training data and 
validation set through: 

                               accuracy=      
.

          

+
+ + +

true positives true negatives

true positives true negatives false positives false negatives                         (7) 

3.3.5 Output
Classification trees use a tree structure to recursively 
partition the features space until the subsets of feature 
space are tame enough to fit simple models to them. Each 
of the leaf nodes of a tree represents a small subset of the 
feature space, and is attached to a simple model which 
applies only to that subset. The cell to which a data point 
belongs is identified by starting at the root node of the 
tree, and answering a sequence of questions about the 
feature values. Measuring these sets of possible outcomes 
thus provides a way to select the features and develop 
effective trading strategies. 

A series of binary spits that each internal node 
represents a value query on one of the variables, while 
the terminal nodes are the decision nodes, and classified 
into two classes taking values +1 (buy signal) or -1 (sell 
signal) with the estimated aggregate score  fM(X). 

3.4 Classification-Based Trading Strategy 
Figure 3 shows the classification process towards a higher 
PnL/MD in three steps. 

In step 1, it finds the local peaks and troughs along 
the whole time series determined by b and a. For each 
round of training and testing in step 2, data are divided 
into three parts, with the length of InLen, a and OutLen. 
Since a trading days’ data are needed to define the peaks 
and troughs that further determine the input of target Z, 
only a length of InLen data are available for training the 
gradient boost trees model to be tested in the following 
out-of-sample. Please note that, rather than fix the length 
of in-sample window, the starting date of all in-sample 
windows are fixed and proceeding in a step of out-of-
sample windows length OutLen. In step 3, it measures 
the performance of the whole out-of-sample. 

Figure 3 
Diagrammatic Classification Process Within Rolling Windows 

It first trains the data in the in-sample window 
[2005.04.08, 2007.04.11] and tests the classification-

based trading strategy in the out-of-sample window 
[2007.04.12, 2007.10.12]. The implementation has been 
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done 17 times for various in-sample windows sliding in 
a step of OutLen=131 trading days within [2007.10.12, 
2016.06.30]. Note that the PnL derived from the 
whole out-of-sample windows can be achieved by the 
individual investor if he/she enters the market on April 
12, 2007. 

Through a number of tests employing the gradient 
boosted classification trees models, the results show that 
the single feature PI always outperforms the result of TI 
and the combination of them. Figure 4 thus investigates 
the performances of the whole out-of-sample with a single 
feature PI as a function of the starting date. It shows 
that, the shorter the out-of-sample window, the larger the 
Sharpe Ratio and PnL/MD. Although the values drop 
around the starting date of April 24, 2015, mainly due to 
the crash regime in the out-of-sample (as shown in the 
top panel of Figure 2), the Maximum Drawdown exhibits 
approximate plateaus of the value as a function of the 
starting date, which gives confidence in the reliability of 
the feature PI and the gradient boosted classification trees 
models. 

Figure 4 
Performance of the Gradient Boosted Classification 
Trees Models With a Single Feature PI as a Function 
of the Starting Date

In more detail, when the investor enters the market 
on October 22, 2013, Figure 5 specifically shows a 
boosted classification tree of CSI 300 trained in the in-
sample window [2005.04.08, 2013.10.21], preparing 
for the test in the out-of-sample window [2013.10.22, 
2014.04.23]. The fuchsia circle represents the root node, 
the green nodes represent the intermediate nodes, the red 
terminal leaf nodes with positive score indicate the “buy” 
signal, and the blue nodes with negative values represent 
the “sell” signal. Thus, if PI(ti)<0.041985, it gives the 
“sell” signal, if PI(ti)≥0.041985, it presents the “buy”
 signal. 

Table 2 presents the corresponding trading strategy 
and performance of the whole out-of-sample window 

[2013.10.22, 2016.06.30]. As the trading signals and the 
PnL shown in the top panel, the neat “buy-and-hold” 
strategies derived from the peak indicator PI successfully 
prevent the loss from the market volatility, as well as the 
bubble that crashed in June 2015.

Figure 5 
A Boosted Classification Tree of CSI 300 Trained in the 
In-Sample Window [2005.04.08, 2013.10.21] 

Table 2 
Performance of CSI 300 in the Whole Out-of-Sample 
Window [2013.10.22, 2016.06.30] 

Trading strategy and the PnL

Statistical measures Values

Sharpe Ratio 
Annual Return (PnL) 
Maximum Drawdown (MD) 
PnL/MD 
Trading days 
Trade counts 

1.76
0.19
0.07
2.71

703.00
54.00
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CONCLUSION 
In this paper, based on the gradient boosted classification 
trees models, a novel implementation of trading rule 
discovery associated with the convexity-concavity 
indicators has been proposed on the CSI 300. The 
performance with the buy-and-hold trading rule provides 
a further insight into the nature in recognizing the regime 
change of the Chinese stock market. 

It is very remarkable to see the peak indicator  PI  
can be regarded as an effective feature for developing 
automated trading strategy, which suggests an obvious 
pattern of upward convexity within the historical time 
series of the CSI 300. Looking at the performance of the 
trading strategy derived from this convexity indicator in 
recent times, it shows that the technical trading rule in 
general have a better short term predictive ability than that 
of long term, in terms of the values of Sharpe Ratio and 
PnL/MD. 

The gradient boosting machine also demonstrates 
the possibility in improving the predictive capacity and 
lessening the Maximum Drawdown (MD). It thus would 
be more exciting to combine all these techniques to make 
an end-to-end system that scales to even larger real data 
and more complex trading rules in the future. 
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