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Abstract
In the framework of covariant theory of gravitation the 
Euler-Lagrange equations are written and equations of 
motion are determined by using the Lagrange function, 
in the case of small test particle and in the case of 
continuously distributed matter. From the Lagrangian 
transition to the Hamiltonian was done, which is 
expressed through three-dimensional generalized 
momentum in explicit form, and also is defined by the 
4-velocity, scalar potentials and strengths of gravitational 
and electromagnetic fields, taking into account the 
metric. The definition of generalized 4-velocity, and the 
description of its application to the principle of least 
action and to Hamiltonian is done. The existence of a 
4-vector of the Hamiltonian is assumed and the problem 
of mass is investigated. To characterize the properties of 
mass we introduce three different masses, one of which 
is connected with the rest energy, another is the observed 
mass, and the third mass is determined without taking 
into account the energy of macroscopic fields. It is shown 
that the action function has the physical meaning of the 
function describing the change of such intrinsic properties 
as the rate of proper time and rate of rise of phase angle in 
periodic processes.
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Hamiltonian; Generalized momentum; Generalized 
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INTRODUCTION
There are several  approaches to describing and 
constructing any physical theory. In the simplest case, the 
content of the theory is reduced to several physical laws 
and principles that conform to the experimental data. By 
analyzing and simplifying them, the system of axioms 
can be found, based on which the whole theory can be 
derived by axiomatic method, as a logical consequence of 
the initial simple assumptions. In the energy approach it is 
sufficient to know only one function with the dimension 
of energy, in order to find all the equations of the theory 
with the help of it. The examples of such functions are 
Lagrangian and Hamiltonian.

The covariant theory of gravitation (CTG) appeared in 
2009[1], as a consequence of the relativistic generalization 
of the Lorentz-invariant theory of gravitation (LITG). 
LITG equations are similar by their form to Maxwell’s 
equations and can be derived on the basis of axioms[2]. 
Recently derivation of CTG equations was made based 
on the principle of least action[3]. Based on the resulting 
form of the Lagrangian now it is possible to make the next 
step and go to the Hamiltonian corresponding to the CTG 
theory.

After a brief presentation of the Euler-Lagrange 
equations we use them to describe the motion of a 
small test particle, as well as in the case of continuously 
distributed matter. Then we find the Hamiltonian in its 
two forms, with the help of 4-velocity and the generalized 
momentum, and substitute the Hamiltonian into Hamilton 
equations to verify the motion equations. At the end of this 
paper we introduce for consideration the four-dimensional 
generalized velocity to simplify the expressions for the 
Lagrangian and Hamiltonian. The transition was done 
from the 4-vector of the generalized velocity to a new 
4-vector of the Hamiltonian, specifying the energy and 
the momentum of substance in fundamental fields. The 
comparison with the Lagrangian approach is made, in 
which the energy and the momentum are calculated 
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through energy-momentum tensors. The problem of mass 
is analyzed with the help of formulas for the energy. In 
the last part, we describe the action function as a function 
having an independent meaning in physics – it can help 
to determine the effects of time dilation, arising from 
the change of velocity of bodies’ motion or under the 
influence of fields.

THE PRINCIPLE OF LEAST ACTION
In this section we shall write down known relations for 
the Lagrange function and the principle of least action for 
the covariant theory of gravitation (CTG). According to 
the latter, the equations of motion of substance and fields 
can be found by varying the action function S L dt= ∫ . 
In the coordinates xμ = (ct, x, y, z) the Lagrangian depends 
on the coordinates xμ , on the 4-velocity of substance 

motion 
cdxu

ds

µ
µ =  (where c – the speed of light, ds 

indicates the interval for the moving substance unit), on 
4-potential Dμ of gravitational field and 4-potential Aμ 
of electromagnetic field and on metric tensor gμv of the 
reference frame. If to move on from xμ and uμ to the three-
dimensional coordinates, time and velocity, then the 
Lagrangian function with these variables can be written 
in the form: ( , , , , , , , , , )L L t x y z x y z D A gµ µ µν=    . Here the 

quantities 
dxx
dt

= , 
dyy
dt

= , 
dzz
dt

=  are the components 

of 3-vector of coordinate velocity ( , , )x y z=   v . When 
moving along a certain trajectory the current coordinates 
x, y, z of a substance unit, and its velocities , ,x y z   are 
functions of coordinate time t. In general 4-potentials 
Dμ and Aμ, which act on the substance, and the metric 
tensor gμv depend on the coordinates and time. If we take 
the coordinates of the substance along the trajectory as 
a function of time, then Dμ , Aμ and gμv at the trajectory 
can be considered as functions of time too. This allows 
us to consider the Lagrange function as a function of 

time, and the integral 
2

1

S L dt= ∫  between the spacetime 

points 1 and 2 – as a number. Theoretically, under 
variations of the coordinates we can understand small in 
magnitude functions of time, due to adding of which the 
shape of trajectory of the substance motion change, and 
respectively, change the value of the action function. From 
the principle of least action it follows, that the action S 
on the true trajectory has to be extreme (usually S has a 
minimum).

Variation of the action function along the trajectory, 
when all the variables are varying except the time, gives 
the following:

2 2

1 1

0.

L L Lx y z
x y z

L L LS L dt x y z dt
x y z
L L LD A g

D A gµ µ µν
µ µ µν

δ δ δ

δ δ δ δ δ

δ δ δ

 ∂ ∂ ∂
+ + 

∂ ∂ ∂ 
 ∂ ∂ ∂

= = + + + = 
∂ ∂ ∂ 

 ∂ ∂ ∂
+ + +  ∂ ∂ ∂ 

∫ ∫   

  

The term with the variation of the velocity xδ   can be 
integrated by parts:

( )

2 2

1 1
2

1
2 2

1 1
2

1

L L dxx dt dt
x x dt

L d x
x

L Lx x d
x x

d L x dt
dt x

δ δ

δ

δ δ

δ

∂ ∂  =  ∂ ∂  

∂
=

∂

∂ ∂ = −  ∂ ∂ 

∂ = −  ∂ 

∫ ∫

∫

∫

∫



 



 



It was considered that the variation δx at the initial 
time point 1 and in the final time point 2 is zero according 
to the condition of varying trajectory. Integrating by parts 
also for terms with yδ   and zδ  , for the variation of the 
action we obtain:

        (1)
2

1

2

1

0.

L d L x
x dt x

L d LS y dt
y dt y

L d L z
z dt z

L L LD A g dt
D A gµ µ µν

µ µ µν

δ

δ δ

δ

δ δ δ

 ∂ ∂  −   ∂ ∂   
   ∂ ∂ = + − +  ∂ ∂   
 

∂ ∂   + −    ∂ ∂   
 ∂ ∂ ∂

+ + + =  ∂ ∂ ∂ 

∫

∫







Variations δx, δy, δz, δDμ , δAμ and δgμv in (1) are 
independent from each other and are not equal to zero 
on the true path, except for the initial and final points of 
the trajectory. From this we obtain the following Euler-
Lagrange equations:

d L L
dt x x

∂ ∂  = ∂ ∂ 
,  

d L L
dt y y
 ∂ ∂

= ∂ ∂ 
,  d L L

dt z z
∂ ∂  = ∂ ∂ 

. (2)

0L
Dµ

∂
=

∂ , 0L
Aµ

∂
=

∂ , 0L
gµν

∂
=

∂ . (3)

We shall remind that the principle of least action is 
usually applied to conservative systems for which precise 
potential functions are given, from which acting forces 
can be found. We shall consider physical systems with 
substance and the fundamental fields, which include the 
gravitational and electromagnetic fields. These systems 
are conservative, and for them the law of conservation 
of energy-momentum can be found, which has the same 
form in all frames of reference. If the reference frame 
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is fixed and is not accelerated, the total energy and total 
momentum remain separately for each moment of time, 
with the possible exchange of energy and momentum 
between substance and field.

L A G R A N G E  F U N C T I O N  A N D 
EQUATIONS OF MOTION
In the case of continuously distributed substance 
throughout the entire volume of space in the gravitational 
and electromagnetic fields, we shall use the Lagrangian 
function L, which in the covariant theory of gravitation 
(CTG) has the form[3]:

        (4)

 
 

 

 
 = − + −

 

2
1 2 3

0

( 2 )

,
16

4

kc R c J J

c ΦΦL D J g dx dx dx

F F
A j

µ
µ

µ ν
µ νµ

µ

µ ν
µ νµ

µ

π γ

µ

 
 − Λ − 

 

− −
 

∫

where 
3

16
ck
π γ β

= −  – proportionality factor, 

β – low coefficient of order of unity that depends on 
the properties of the reference frame, 

γ – gravitational constant,
c – speed of light, as the measure of velocity of 

electromagnetic and gravitational interactions propagation,
R – scalar curvature,
Λ – constant for the system (in the case when (4) 

is applied to cosmology, the constant Λ is called the 
cosmological constant),

,D
cµ
ψ = − 
 

D  – 4-potential of gravitational field 

which is described through scalar potential ψ and vector 
potential D of this field,

J μ=ρ0u
μ– 4-vector of mass current density,

ρ0 – density of substance mass in reference frame in 
which the substance is at rest,

uμ – 4-velocity of the substance unit,
Φ D D D D                 – gravitational 

tensor (gravitational field strength tensor),

Φ g g Φ     
   – definition of the gravitational 

tensor with contravariant indices by means of the metric 
tensor gαμ,

,A
cµ
ϕ = − 
 

A  – 4-potential of electromagnetic field, 

set by scalar potential φ and vector potential A of the field,
jμ = ρ0qu

μ– 4-vector of electric current density,
ρ0q – charge density of substance in reference frame in 

which the charge is at rest,

μ0 – vacuum permeability,
F A A A Aµν µ ν ν µ µ ν ν µ= ∇ −∇ = ∂ −∂

–electromagnetic tensor (electromagnetic field strength 
tensor), g−  – the square root of determinant g of metric 
tensor, taken with the negative sign, dx1dx2dx3 – product of 
differentials of spatial coordinates, which can be viewed 
as a spatial coordinate volume of the moving substance 
unit in the used reference frame.

Further we shall use international system of units, 
basic coordinates in the form of coordinates with 
contravariant indices (x0, x1, x2, x3), metric signature (+, –, 
–, –), metric tensor gμv. The presence of repeated indices 
in formulas implies Einstein summation convention, 
which is a separate summation for each repeated index. 
The symbol 

Δ

μ denotes covariant derivative with respect 
to coordinates (in this case the coordinates xμ ). Similarly, 

xµ µ

∂
∂ =

∂
 is an operator of partial derivative with respect 

to coordinates, or 4-gradient.
We can assume that the quantities R, ρ0, Dμ, Φμv, ρ0q, Aμ, 

Fμv in the location of the substance unit are functions of its 
coordinates xμ, as well as the functions of the coordinates 
and velocities of other substance units. However, the 
specified quantities in the first approximation are 
independent from the 4-velocity of the substance unit. 
This is possible if the substance unit is so small that the 
propagation delay of its own field within the volume of 
the substance unit can be neglected even at relativistic 
speeds. The smallness of the volume, mass and charge of 
the substance unit leads to the fact that the motion of this 
substance unit is determined only by the gradients of the 
external fields (in the form of superposition of fields from 
all the external substance units), and the substance unit 
itself does not contribute to the average gradient of the 
field inside the unit. With these assumptions in (4) only 
4-velosity uμ, as a part of J μ and j μ, will depend on the 
3-velocity of the substance unit.

If we consider that the tensor of gravitational field 
depends on the 4-potential Dμ under the definition 
ΦμvÖ D D D Dµν µ ν ν µ µ ν ν µ= ∇ −∇ = ∂ −∂ , then the relation 

0L
Dµ

∂
=

∂
 of (3) for the Lagrangian (4) provides:

2

4Φ J
c

  


 
    

2

4Φ J
c

 


 
   

, or 

2

4Φ J
c

  


 
    

2

4Φ J
c

 


 
   . (5)

Similarly, we obtain for the relation 0L
Aµ

∂
=

∂
 in (3):

2
0

1F j
c

α β β
α ε

∇ = , or 02
0

1F j j
c

µ ν µ µ
ν µ

ε
∇ = − = − , (6)

The relations (5) and (6) set the equations of 
gravitational and electromagnetic fields, respectively, 
carrying out the connection between the 4-potentials of 
fields and the sources of fields in the form of 4-currents 
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of mass and charge. According to (5) and (6), the larger 
4-currents are, the higher are the covariant derivatives of 
the variables Φαβ and Fαβ (Φαβ and Fαβ are 4-rotors of the 
4-potentials of field).

As was shown in[3], the relation 0L
gµν

∂
=

∂
 in (3) leads 

to the following:

( )4

1 8 ,
2

R g R U W
c

α β α β α β α β α βπ γ β φ− = + +  (7)

provided that:
4

2
0 0 0 08q

cc u u D u A u cµ µ µ
µ µ µρ ρ ρ ρ

π γ β
Λ ′+ + = = .(8)

In the equation for the metric (7) the quantity Rαβ is 
Ricci tensor, so that the left side of (7) gives the Hilbert-
Einstein tensor. The right side of (7) contains the stress-
energy tensor of substance fαβ, the stress-energy tensor of 
gravitational field Uαβ, as well as the stress-energy tensor 
of electromagnetic field Wαβ. The tensor Uαβ is expressed 
through the tensor of gravitational field by the formula:

2

2

1
4 4

1
4 4

cU g Φ Φ g Φ Φ

c Φ Φ g Φ Φ

       
 

     
 

 

 

    
 

   
 

  (9)

Equation (8) states that there is a connection between 
the cosmological constant Λ and energy density ρ′0c

2 of 
the system’s substance when the substance is dispersed to 
infinity and there it is still. In this case, the 4-potentials 
Dμ and Aμ in (8) are equal to zero. As a result of further 
interaction the substance merges into a smaller size 
system, and the substance density varies from ρ′0 to ρ0, and 
there is the potential energy of interaction between the 
substance and the field due to the 4-potentials of the field. 

In the interpretation of the constant Λ two approaches 
are possible. In the first, the difference between ρ0 and 
ρ′0 arises only from the macroscopic gravitational and 
electromagnetic fields. In the second case we can assume 
that to the 4-potentials of fields Dμ and Aμ the strong 
gravitation and electromagnetic fields make contribution 
which act at the level of elementary particles and alter the 
mass of the particles[2]. In this case, the density ρ′0 should 
be composed of a certain density ρ″0 and of additives from 
the macroscopic and microscopic fields, and the mass 
of bodies is described as a characteristic that defines the 
interaction of substance with field quanta – gravitons and 
electromagnetic quanta, acting at all levels of matter[4]. 
It should be noted that since the 4-potentials Dμ and Aμ 
of fields are defined up to gauge transformation, the 
cosmological constant Λ will be determined with the same 
precision.

Now we shall turn to the relations (2). We shall 
preselect in the Lagrangian (4) only those terms which 
directly depend on the coordinates and the velocities, and 
substitute the relations J μ = ρ0u

μ and j μ = ρ0qu
μ:

( ) 1 2 3
0 0 0qL c u u D u A u g dx dx dxµ µ µ

µ µ µρ ρ ρ′ = − − − −∫ ,

 (10)
2

1 2 3

0

( 2 )
16 4

c Φ Φ F F
L L kc R g dx dx dx

 
 

  

 
        

 
  .

We shall integrate (10) for the three-dimensional 
volume, assuming that dx0 = cdt, taking into account the 
following relations[5]:

00g bg− = , 
0

00 00
dxd g dt g
c

τ = = ,

00
dg bg b
dt
τ

− = = , (11)

where g – determinant of the metric tensor gμv,
dτ – differential of the proper time at the point of 

reference frame, through which the substance unit passes, 
dt – differential of the coordinate time of the used 

reference frame, 
b – determinant of the three-dimensional metric tensor 

bik, with components 0 0

00

i k
i k i k

g g
b g

g
= − + , i k ikb g= − , i, k 

= 1, 2, 3.
The invariant of three-dimensional volume is 

t h e  p r o d u c t  1 2 3b dx dx dx ,  a n d  t h e  f a c t o r  b  

p rov ides  t rans i t ion  f rom a  moving  coord ina te 
volume dx1dx2dx3 to moving local volume in terms 
of the local observer at the point in space, through 
which at the moment τ  of its proper (local) time 
the  subs tance  un i t  passes .  This  g ives  in  (10) : 

1 2 3 1 2 3
00

d dg dx dx dx b dx dx dx dV g dV
dt dt
τ τ

− = = = , 

where dV is the differential of the moving local volume. 
For the moving substance unit 4-velocity equals to 

cdxu
ds

µ
µ = , as well as:

1 2 3 0
0 0

0 0

g dcd cdtdV g dx dx dx
ds ds ds

dm dV dV

ρτ ρ ρ

ρ ρ

− Σ
= − = =

= =
,

01 2 3
0 0

0 0

q
q q

q q

g dcd cdtdV g dx dx dx
ds ds ds

dq dV dV

ρτ ρ ρ

ρ ρ

− Σ
= − = =

= =
,

whe re  dV 0 i s  t he  d i f f e r en t i a l  o f  vo lume  o f 
substance unit in the co-moving reference frame, 

1 2 3g d g c dt dx dx dx− Σ = −  – an invariant of moving 
4-volume, provided dx0 = cdt.

This implies the expression for the mass density ρ and 
charge density ρq of the moving substance:

0 0
cd ds
ds ds
τρ ρ ρ

′
= = , 0 0q q q

cd ds
ds ds
τρ ρ ρ

′
= = ,
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where ds denotes the interval for the moving substance 
unit, and ds' is an interval for a stationary observer, by 
which the substance passes.

With the formulas for dm  and dq , L′  in (10) will 
equal to:

.

dx dx dx dxL c g D dm A dq
dt dt dt dt

dx dx dx dxm c g mD q A
dt dt dt dt

µ ν µ µ

µν µ µ

µ ν µ µ

µν µ µ

 
′  = − − − =

 
 

= − − −

∫ ∫

 (12)
In (12) m and q are the mass and the charge of a small 

substance unit, moving as a whole with the coordinate 

velocity dx
dt

µ

,  and this velocity is not a 4-vector. 

4-potentials Dμ and Aμ in the result of integrating by 
volume are considered to be effective averaged by volume 
potentials acting on the substance unit. In the coordinates 

x μ =(c t ,  x ,  y ,  z )  t he  quan t i t y  ( , , , ) ( , )dx c x y z c
dt

µ

= =   v ,

h e n c e  t h e  p r o d u c t  i s  , ( , )dxD c
dt c

µ

µ
ψ ψ = − = − ⋅ 
 

D Dv v . 
Similarly for the electromagnetic potential is:

, ( , )dxA c
dt c

µ

µ
ϕ ϕ = − = − ⋅ 
 

A Av v . 

We shall note that the coordinate velocity d
dt

=
rv  is 

different from the velocity of the substance unit, which is 
measured by the local observer. This is due to the fact that 
the local observer’s proper time τ does not coincide with 
the coordinate time t (the coordinate time t is common 
for the reference frame as a whole, and the proper time 
τ is measured by stationary electromagnetic clocks in 
each specific point of reference frame, or by the clock 
associated with the moving substance, and depends on 
the actions on the clocks of existing gravitational and 
electromagnetic fields at the time of measurement).

Three-dimensional vector potential of gravitational 
field has its components along the spatial axes of the 
coordinate system: D = (Dx , Dy , Dz), as well for the vector 
potential of electromagnetic field it can be written down: 
A = (Ax , Ay, Az)

Taking it into account for (12) we have:

      (13)

1
2

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

( )
( )
( )
( )

( )

( ) .
x y z

x y z

c g c g x g y g z
x g c g x g y g z

L mc
y g c g x g y g z
z g c g x g y g z

m xD yD zD
q xA y A z A
ψ

ϕ

+ + + 
 + + + + ′ = −
 + + + +
 
+ + + + 

− − − −

− − − −

  

   

   

  

  

  

In the simplest case, we can assume that for an 
arbitrary reference frame the velocities , ,x y z    do not 
depend explicitly on the coordinates x, y, z, and are 

time-dependent; the mass m and the charge q can be 
dependent on t, x, y, z and independent on , ,x y z   ; the 
scalar potentials ψ and φ, the vector potentials D and A, 
the metric tensor gμv do not depend directly on , ,x y z   , 
but depend on t, x, y, z. The assumption of independence 

, ,x y z    in an explicit form on the coordinates x, y, z 
means that the velocity field is free, and not the bound 
vector field. An example of the bound field is the velocity 
field in the liquid flowing in the volume bounded by 
a surface. Due to the interaction of the liquid with the 
surface and the liquid particles with each other there is a 
clear dependence of the velocity field on the coordinates. 
If we consider quasi-free motion of continuously 
distributed substance with weak gravitational and 
electromagnetic fields, the velocity will depend weakly on 
the spatial coordinates.

Under these conditions from (12) and (13) we find:

10 11 12 13

1

( )

.x x x x

L L m c g c g x g y g z
x x dx dxg

dt dt
m D q A m g u m D q A

µ ν

µν

µ
µ

′∂ ∂
= = − + + +

∂ ∂

+ + = − + +

  

 

 (14)
I n  ( 1 4 )  i t  w a s  t a k e n  i n t o  a c c o u n t  t h a t 

dx dx dsg
dt dt dt

µ ν

µν = , where ds is the interval, and the 

r e l a t i o n  ( , , , )cdt dx cdt cdxc x y z u
ds dt ds ds

µ µ
µ= = =    w a s 

used. We shall note that from the definition of 4-velocity 
cdxu

ds

µ
µ =  and of the interval ds g dx dxµ ν

µν=  follows 

the standard relation u μu μ=c2.
The full time derivative of (14) gives:

1( )
x

x x
x

d m g ud L d L dm D
dt x dt x dt dt

dD dAdqm A q
dt dt dt

µ
µ′∂ ∂   = = − + +   ∂ ∂   

+ +

   (15)

The first spatial component of the gradient from L′ will 
be equal to:

(
2

) (

)

x y

yx z
z

yx z
x y z

gL ds m mu dx mc xD yD
x dt x dt x x

DD D qzD m x y z
x x x x x

AA Ax A y A z A q x y z
x x x x

µ ν
µν ψ

ψ ϕ

ϕ

∂′∂ ∂ ∂
= − − − − −

∂ ∂ ∂ ∂
∂ ∂ ∂∂ ∂

− − − − − − − ∂ ∂ ∂ ∂ ∂ 
∂ ∂ ∂∂

− − − − − − ∂ ∂ ∂ ∂ 

 

  

    

In view of (10) we have:
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2
1 2 3

0

( 2 )
16 4

L L
x x

c Φ Φ F F
kc R g dx dx dx

x

 
 

  

 
 

 
 

        


 

 (16)

The Euler-Lagrange equation 
d L L
dt x x

∂ ∂  = ∂ ∂ 
 from (2) 

requires that the Equations (15) and (16) should be equal 
to each other:

1( )

( )
2

(

)
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x x
x x

x y z

yx z
x y

yx z
z

d m g u dD dAdm dqD m A q
dt dt dt dt dt

gds m mu dx mc xD yD zD
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DD D qm x y z xA y A
x x x x x

AA AzA q x y z
x x x x
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2
1 2 3

0

.
16 4

c Φ Φ F F
g dx dx dx

 
 

  

 
    

 


 
 (17)
With the help of 3-vector 1 2 3( , , )g u g u g uµ µ µ

µ µ µ= −u  
we shall introduce the 3-vector of generalized momentum 
with the following components:

1 2

3

( ,

, ) (

, , ).

x x y

y z z x x

x y y y z z z

m g u mD q A m g u mD

q A m g u mD q A mu mD
q A mu mD q A mu mD q A

µ µ
µ µ

µ
µ

= − + + − +

+ − + + = +

+ + + + +

P

 (18)
In view of (18) instead of (17) it can be written in the 

3-vector form:

2
1 2 3

0

( 2 ) .
16 4

d dsmc m m q q
dt dt

c Φ Φ F F
kc R g dx dx dx

 
 

 

  

           
 

 
       

 


PF D Av v
 

 (19)
According to (19) for continuously distributed matter 

the rate of change of the generalized momentum of 
substance and the field is determined by gradients from 
the following quantities: the energy of the substance unit 
in gravitational and electromagnetic fields that can be 
found through the velocity V and the scalar and vector 
potentials; the integral by volume of the term with scalar 
spacetime curvature; the integral by volume of energy 
invariants of the gravitational and electromagnetic fields, 

which are in the volume of the substance unit, as well as 
those of their proper fields, which are generated by this 
substance and interact with it. Generalized force F in 

(19) also depends on the constant Λ and the term 
dsm c
dt

 

associated with the relativistic energy of the mass m.
We shall remind that deriving (17) and (19), we 

assumed that the velocity of the substance does not 
depend on spatial coordinates. In this regard, in (17) and 
(19) there are no gradients of the velocity components 
that appear in the case of the velocity field in some way 
connected with the points in space.

THE CASE OF A SMALL TEST PARTICLE 
OUTSIDE A MASSIVE CHARGED BODY
The equation of motion (17) can be simplified by using 

the operator equality: 
d
dt t

∂
= + ⋅∇
∂

v . This gives the 

following:

x x x x xdD D D D D
x y z

dt t x y z
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

   ,

x x x x xdA A A A A
x y z

dt t x y z
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

   ,

dm m m m mx y z
dt t x y z

∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂

   ,

dq q q q qx y z
dt t x y z

∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂

   .

Next, we shall introduce the vector of gravitational 
acceleration strength G and the vector of torsion field 
strength Ω (gravitomagnetic field) according to the 
formulas:

 
t

ψ ∂
= −∇ −

∂
DG ,  = ∇×DΩ .

It is seen that these definitions of G and Ω are 
written in generally covariant form, since these 
quantities with accuracy up to a constant factor, 
constitute the components of the gravitational tensor 
Φ D D D D                .  S i m i l a r l y  t h e 
strength of the electric field E and the induction of the 
magnetic field B are defined:

 
t

ϕ ∂
= −∇ −

∂
AE ,  = ∇× AΒ .

As far as [ ]x z ym m y mzΩ Ω× = − v Ω ,
[ ]x z yq q y qzΒ Β× = − v Β ,  then using the  previous 

equations for (17) we find:
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[ ]

[ ]

1

2
1 2 3

0

( )
2

[ ]

[ ] [ ] [ ]

( 2 )
16 4

x x

x

x x x xx

gd m g u mu dx m qD A
dt dt x t t

ds m m qc m
dt x x x

q mG m qE q

c Φ Φ F Fkc R g dx dx dx
x

µ µ ν
µνµ

µ ν µ ν
µν µν

ψ ϕ

π γ µ

∂ ∂ ∂
+ = − −

∂ ∂ ∂
∂ ∂ ∂

− − − + × ∇ ×
∂ ∂ ∂

+ × ∇ × + + × + + ×

∂
+ − Λ + − − ∂  

∫

v

v v v

D

A Ω Β

 (20)
Equation (20) is the equation of motion of the 

substance unit in the direction of the first spatial axis of 
the reference system, and it corresponds to the equation 
d L L
dt x x

∂ ∂  = ∂ ∂ 
 in (2). For other spatial axes the equations 

of motion will differ only by replacing the indices in the 
derivatives and the components of vectors. If we enter the 
3-vector 1 2 3( , , )g u g u g uµ µ µ

µ µ µ= −u , then instead of (20) 
we can write the equation of motion in 3-vector form:

      (21)

+∇ − Λ + − − 
 

[ ]

[ ]
2

1 2 3

0

( )
2

[ ]

[ ] [ ] [ ]

( 2 ) .
16 4

d m mu dx m qg
dt dt t t
dsc m m q m
dt

q m m q q

c Φ Φ F Fkc R g dx dx dx

µ ν

µν

µ ν µ ν
µ ν µ ν

ψ ϕ

π γ µ

∂ ∂
+ ∇ = − −

∂ ∂

− ∇ − ∇ − ∇ + × ∇ ×

+ × ∇ × + + × + + × +

 
 

∫

v

v v v

u D A

D

A G EΩ Β

3-vector gµν∇  in the left side of (21) is equivalent in 
its meaning to action of Christoffel symbols, which are 
used to write the equations of motion in Riemannian space 
in four-dimensional notation, both in the general theory of 
relativity and in the covariant theory of gravitation.

Since we consider a small test particle outside a 
massive charged body, then the contribution to the 
curvature R and the constant Λ is made only by the test 

particle itself. The terms 
2

16
c Φ Φ



 
 

04
F F 



 

 and 

2

16
c Φ Φ



 
 

04
F F 



  in 

(21) are associated with the energy density of gravitational 
and electromagnetic fields, respectively. If the test particle 
is small enough and has low density of mass and charge, 
then the main contribution to the energy density of the 
fields in the volume of the particle will be made by the 
external fields of the massive charged body. In addition, in 
(21) the gradient of the integral over the volume is taken, 
which in some cases can be close to zero due to symmetry 
and homogeneity of the distribution of field energy within 
the test particle. One of such cases is the approximate 
spatial homogeneity of the external field.

In Minkowski space we have: 
2 21 c−

u = v
v

, 0gµν∇ = .

If we also assume the constancy of the mass and charge 
with the time, zero gradients of the mass, charge, 

curvature and zero gradients in the distribution of field 
energy within the volume of the particle, then (21) takes 
the form of the equations of motion of the test particle 
in gravitational and electromagnetic fields in Lorentz-
invariant theory of gravitation[2]:

2 2
[ ] [ ]

1

d m m m q q
dt c

 
  = + × + + ×
 − 

G Ev v vΩ Β
v

. (22)

The left side of (22) is the rate of change with the time 
of the relativistic particle momentum, while in the right 
side there is the two-component gravitational force and 
similar to it the two-component electromagnetic Lorentz 
force. Thus, from the variation of action (1) with the 
Lagrangian (4) in the framework of the covariant theory of 
gravitation (CTG), we can obtain the equation of motion 
of a particle (22), which is valid in the special theory of 
relativity (SRT). This means that the equations of CTG 
and SRT are linked by the correspondence principle, when 
after the aspiration of the curvature of spacetime to zero 
the equations of CTG turn into the equations of special 
relativity.

In contrast, the equations of general relativity do not 
have such a direct transition to the equations of special 
relativity. Indeed, in general relativity Lagrangian differs 
from (4) by the absence of gravitational terms of the 

form:
2

0 16
c Φ Φ

D u





 
   . As a result, in (21) there 

are no gravitational terms, only the following remains:

[ ]

1 2 3

0

( )
2

[ ] [ ]

( 2 ) .
4

d m mu dx q dsg c m q
dt dt t dt

q q q

F F
kc R g dx dx dx

µ ν

µν

µν
µν

ϕ

µ

∂
+ ∇ = − − ∇ − ∇ +

∂
× ∇ × + + × +

 
∇ − Λ − −  

 
∫

u A

A Ev v Β

 (23)
In order that gravitation could appear in general 

relativity as an effective force of gravitation in the weak 
field limit, in (23) the decomposition of gµν∇  should be 
carried out, and the appearing terms should be transferred 
to the right side are considered as a gravitational force. 
The difference between the positions of the general 
relativity and CTG is due to the fact that in general 
relativity gravitation is simply the curvature of spacetime 
(without specifying the reasons for this curvature), and 
in CTG gravitation is a real physical force which is 
substantiated by the mechanism of Le Sage gravitation[6]. 
In this case the scalar potential ψ of the gravitational field 
in CTG is the characteristic of scalar field associated with 
the flow of gravitons, and is proportional to the difference 
between the energy density of the graviton flux at the 
point where the potential is determined, and the energy 
density of the graviton flux at infinity. The gradients 
of the energy density of graviton flux in this case can 
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be considered as gravitational field strengths. In the 
assumption that some gravitons are tiny charged particles, 
in[1] the scheme of appearance the electromagnetic 
force and the electric potential φ is derived. If scalar 
potentials are known in a fixed frame of reference, then 
after conversion into a moving frame of reference vector 
potentials of gravitational D and electromagnetic A of 
fields appear, as a consequence of field retardation effects 
due to the limited speed of their propagation. Thus we can 
understand why the fields are described by 4-potentials 

,D
cµ
ψ = − 
 

D  and ,A
cµ
ϕ = − 
 

A .

T H E  R E L AT I O N  B E T W E E N  T H E 
L A G R A N G E  A N D  H A M I L T O N 
FUNCTIONS

Descr ibing the pr inciple  of  leas t  act ion,  we 
recorded the Lagrange function in the general form: 

( , , , , , , , , , )L L t x y z x y z D A gµ µ µν=    , where the quantities 

dxx
dt

= , 
dyy
dt

= , 
dzz
dt

=  are the components of 3-vector 

of coordinate velocity ( , , )x y z=   v  of the substance unit 
motion. Variation of the action function leads to the Euler-
Lagrange Equations (2) and (3) and requires variation of 
the Lagrangian, which has the form:

.

L L L L L LL x y z x y z
x y z x y z

L L LD A g
D A gµ µ µν

µ µ µν

δ δ δ δ δ δ δ

δ δ δ

∂ ∂ ∂ ∂ ∂ ∂
= + + + + + +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
+ + +
∂ ∂ ∂

  

  

(24)
We shall introduce the Hamiltonian H = H(t, x, y, z, Px 

, Py , Pz , Dμ , Aμ , gμv), where the quantities Px , Py , Pz are 
the components of the 3-vector of the so-called conjugate 
generalized momentum P = (Px ,Py , Pz) (conjugate with 
respect to the coordinates x, y, z). The Hamiltonian 
in the simplest case is determined by the Legendre 
transformation through the components of the conjugate 
momentum, the velocity components of the substance unit 
and the Lagrange function:

x y zH P x P y P z L L= + + − = ⋅ −   P v . (25)
With the vanishing of the variation in time, as it is 

required for the Lagrange function in the principle of least 
action, for the variation of the Hamiltonian we have:

.

x y
x y

z
z

H H H H HH x y z P P
x y z P P

H H H HP D A g
P D A gµ µ µν

µ µ µν

δ δ δ δ δ δ

δ δ δ δ

∂ ∂ ∂ ∂ ∂
= + + + + +
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂

 (26)

The result of the variation (25) is:
x x y y z zH P x P x P y P y P z P z Lδ δ δ δ δ δ δ δ= + + + + + −     

 (27)
Substituting (24) and (26) in (27) gives the following 

relations:

H L
x x

∂ ∂
= −

∂ ∂
,     

H L
y y

∂ ∂
= −

∂ ∂
,     H L

z z
∂ ∂

= −
∂ ∂

, (28)

H L
D Dµ µ

∂ ∂
= −

∂ ∂ ,  
H L
A Aµ µ

∂ ∂
= −

∂ ∂ ,  
H L

g gµν µν

∂ ∂
= −

∂ ∂ , (29)

x

Hx
P
∂

=
∂

 ,   
y

Hy
P
∂

=
∂

 ,   
z

Hz
P
∂

=
∂

 ,   
x

LP
x
∂

=
∂

,   y
LP
y
∂

=
∂

,

z
LP
z

∂
=
∂

. (30)

After determining 
L
x
∂
∂

 through Px in accordance with 

(30), and substituting in (2), taking into account (28) we 

have: xd P L H
dt x x

∂ ∂
= = −
∂ ∂

. In general, we can write down:

  
d L H
dt

= ∇ = −∇
P

. (31)

We shall find the components of the generalized 
momentum from (30), given that the velocity components 

, ,x y z    are directly included in the Lagrangian (4) 
according to (12) and (13) only in three terms, forming 
part of the Lagrangian L'. From (14) and analogous 
relations with the help of (30) can be obtained for the 
generalized momentum the same as in (18):

( , , )x y zP P P=P ,

1x x x
L LP m g u m D q A
x x

µ
µ

′∂ ∂
= = = − + +
∂ ∂ 

, (32)

2y y y
L LP m g u m D q A
y y

µ
µ

′∂ ∂
= = = − + +
∂ ∂ 

,

3z z z
L LP m g u m D q A
z z

µ
µ

′∂ ∂
= = = − + +
∂ ∂ 

.

The scalar product of the generalized momentum 
P and the velocity V, taking into account the relation 

( , , , )cdt dx cdt cdxc x y z u
ds dt ds ds

µ µ
µ= = =   , gives:

1 2

3 0

.

x y zP x P y P z m g u x m g u y
dsm g u z m q mc g u mc
dt

m q

µ µ
µ µ

µ µ
µ µ

⋅ = + + = − − −

+ ⋅ + ⋅ − +

⋅ + ⋅

   



P

D A =

D A

v

v v

v v

 (33)
Substituting this expression into (25) in view of (4), 



63 Copyright © Canadian Research & Development Center of Sciences and Cultures

Sergey G. Fedosin (2012). 
Advances in Natural Science, 5(4), 55-75

(10), (12), (13) allows us to find the Hamiltonian for the 
solid-state motion of the substance unit with the mass m 
and the charge q:

0

2
1 2 3

0

( 2 )
16 4

H mc g u m q

c Φ Φ F F
kc R g dx dx dx




 
 

 

  

   

 
      

 


 

 (34)
In mechanics the Hamiltonian is usually associated 

with the energy of a body (a substance unit). The 
first term in (34) is connected with the rest energy 
and kinetic energy of substance. Products mψ and qφ 
give the potential energy of mass and charge in the 
gravitational and electromagnetic fields associated with 
scalar potentials. The volume integral in (34) defines 
the additional energies, depending on the curvature of 
spacetime R, the constant Λ, and the field strengths. If the 
volume of the test particle is small, the volume integral in 
(34) can be neglected compared to the first three terms. 
In this case the energy of the test particle includes the 
relativistic energy of motion and energy of the particle in 
field potentials.

If we consider the formulas for dm and dq, given 
before the relation (12), then the mass and the charge can 
be expressed in terms of the volume integral of the density 
of mass and charge:

1 2 3
0

c dtm g dx dx dx
ds

ρ= −∫ ,

1 2 3
0q

c dtq g dx dx dx
ds

ρ= −∫ ,

where ρ0 – the substance density in the reference frame 
at rest relative to the substance unit; 

ds – the interval; 
ρ0q – the charge density in the reference frame at rest 

relative to the substance unit.
In view of this the Hamiltonian for a continuously 

distributed matter would have the following form:
2

1 2 3
0 0 0 0

0

( ) ( 2 ) .
16 4q

c Φ Φ F FcdtH c g u kc R g dx dx dx
ds

 
 

    
  

 
          

 
  

2
1 2 3

0 0 0 0
0

( ) ( 2 ) .
16 4q

c Φ Φ F FcdtH c g u kc R g dx dx dx
ds

 
 

    
  

 
          

 
   (35)

In Minkowski space we have the following relations:
2

0 2 21

m cmc g u
c

µ
µ =

−v
,

 
2

2 2 21
16 8

c Φ Φ
G c


 
   

    ,

2 2 20

0

( )
4 2

F F
E c Β


 


    ,

Where G – the gravitational acceleration, Ω – the 

vector of gravitational torsion field, E – the electric field 
strength, B – the magnetic induction, ε0 – the vacuum 
permittivity.

Substituting these relations into (34) for the case of a 
small test particle, when one can neglect the term with the 
scalar curvature R:

 

2

2 2

2 2 2 2 2 2 1 2 30

1

1 ( )
8 2

mcH m q
c

G c E c Β dx dx dx const

 




 

   


 
    

 


v
 

 (36)
For external fields it is necessary in (36) to integrate 

over the volume of the particle, and for the fields 
generated by the substance of the particle, it is necessary 
to integrate over the volume both inside and outside the 
particle. The Hamiltonian (36) as the energy of a small 
test particle is determined up to a constant, which arises 
from integration over the volume of constant Λ (for the 
meaning of this constant see our discussion after relation 
(9)). In the Minkowski space metric does not depend on 
the coordinates and time, and therefore the term with 
the constant Λ in variation of Lagrangian disappears and 
does not contribute to the equations of motion. However, 
due to the definition of the Hamiltonian (25), where the 
Lagrange function L is included as a whole, the constant 
Λ appears in (36) as additional constant.

T H E  E X P R E S S I O N  O F  T H E 
H A M I L T O N I A N  T H R O U G H  T H E 
GENERALIZED MOMENTUM
In (34) and (35) the Hamiltonian is expressed through 
the 4-velocity uμ, depending on the 3-vector of velocity 

( , , )x y z=   v . However, in the canonical form the 
Hamiltonian is defined by the components of generalized 
momentum: ( , , , , , , , , , )x y zH H t x y z P P P D A gµ µ µν= . 
We express the components of the 3-velocity through 
components of the generalized momentum P=(Px,Py,Pz), 
for  which,  taking into account  the expressions 

( , , , )cdt dx cdt cdxc x y z u
ds dt ds ds

µ µ
µ= = =   , we rewrite (32) in 

another form:

11 12 13 10
x x xP m D q A dsg x g y g z g c

m cdt
− −

+ + = − −   . (37)

21 22 23 20
y y yP m D q A dsg x g y g z g c

m cdt
− −

+ + = − −   .(38)

31 32 33 30
z z zP m D q A dsg x g y g z g c

m cdt
− −

+ + = − −   .(39)

In view of (32), we introduce the following notation:
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1
x x x

x
P m D q A

C g u
m

µ
µ

− −
= = − ,

2
y y y

y

P m D q A
C g u

m
µ

µ

− −
= = − ,

3
z z z

z
P m D q A C g u

m
µ

µ
− −

= = − , (40)

as components of a 3-vector, normalized to unit mass.
We also need the following minors:
Mαβ – minors of the matrix of the components of the 

metric tensor gαβ , where α, β = 0, 1, 2, 3;
m ik –  minors  of  the  spat ia l  submatr ix  of  the 

components of the metric tensor gik, where i, k = 1, 2, 3. 
As the examples of such minors, taking into account the 
symmetry of the metric tensor gαβ we can write down:

      (41)01 10 22 33 23 32 20 12 33 13 32

30 12 23 13 22

( ) ( )

( )

M g g g g g g g g g g

g g g g g

= − − − +

−  
02 01 21 33 23 31 02 11 33 13 31

03 11 23 13 21

( ) ( )
( )

M g g g g g g g g g g
g g g g g

= − − − +
−

03 01 21 32 22 31 02 11 32 12 31

03 11 22 12 21

( ) ( )
( )

M g g g g g g g g g g
g g g g g

= − − − +
−

11 22 33 23 32m g g g g= − , 12 21 33 23 31m g g g g= − ,

13 21 32 22 31m g g g g= − .
We shall also use the following relations:

12 21 13 31 11 11 00

12 12 23 32 22 22 00

13 13 23 23 33 33 00

.
.

.

g m g m g m M
g m g m g m M

g m g m g m M

− − = −
+ − = −

− + − = −
 (42)

13 12 23 22 33 32 0g m g m g m− + = ,

12 23 13 33 11 13 0g m g m g m− − = ,

12 11 23 31 22 21 0g m g m g m− − + = ,

12 13 23 33 22 23 0g m g m g m− − + = ,

13 11 23 21 33 31 0g m g m g m− + − = ,

12 22 13 32 11 12 0g m g m g m− + + = .
With these notations from (37), (38) and (39) we have:

( )00 11 12 13 01x y z
dsM x m C m C m C M c
cdt

= − + − − . (43)

( )00 21 22 23 02x y z
dsM y m C m C m C M c
cdt

= − + + . (44)

( )00 31 32 33 03x y z
dsM z m C m C m C M c
cdt

= − + − − . (45)

Dividing (44) and (45) by (43), y  and z  can be 
expressed by x :

( )
( )

00 01 21 22 23 02

0000 11 12 13

( ) x y z

x y z

M x M c m C m C m C M c
y

MM m C m C m C

+ − +
= +

− + −





         (46)

( )
( )

00 01 31 32 33 03

0000 11 12 13

( ) x y z

x y z

M x M c m C m C m C M c
z

MM m C m C m C

+ − + −
= −

− + −



         (47)

From (43) we find:

( )
2

2 00 01
2

11 12 13

( )

x y z

M x M cds
cdt m C m C m C

  +
= 

  − + −



. (48)

On the other hand, ( , , , )dx c x y z
dt

µ

=    , and for the 
square of the interval 2( )ds g dx dxα β

α β= . In view of this, 
we have:

2 2
00 01 022 2

2 2
03 12 13 23 11 22

2
33

1 ( 2 2

2 2 2 2

).

gds dx dx g c g cx g c y
cdt dt dtc c

g cz g x y g x z g y z g x g y

g z

α β
α β 

= = + + + 
 

+ + + + + +

 

       



 (49)
From Equations (48) and (49) it follows:

( )
2 2

200 01
00 01 022

11 12 13

2 2
03 12 13 23 11 22

2
33

( )
2 2

2 2 2 2

.

x y z

c M x M c
g c g cx g c y

m C m C m C

g cz g x y g x z g y z g x g y

g z

+
= + +

− + −

+ + + + + +

+



 

       



    

 (50)
If we substitute y  and z  from (46) and (47) in (50), 

we obtain a quadratic equation for the velocity component 
x . However, this equation is too cumbersome to write. 
Equation (50) can be simplified by introducing a new 
variable:

00 01

11 12 13x y z

M x M c
X

m C m C m C
+

=
− + −



,

11 12 13 01

00

( )x y zX m C m C m C M c
x

M
− + − −

= . (51)

Using in (50) relations (46), (47) and (51), after 
lengthy calculations we find:

2
2 ( )c gX

Z
−

= . (52)

where g is the determinant of the metric tensor gαβ, and 
g is negative:

00 00 01 01 02 02 03 03g g M g M g M g M= − + − ,
and the following abbreviation is used:

( )

2
00 11 12 13

21 22 23 31

32 33

( )

(

).

x x y z

y x y z z x

y z

Z M c C m C m C m C

C m C m C m C C m C

m C m C

= − − − + − −

− + − − +

−

 (53)

From (52) and (51) we find x , and then from (46) and 

(47) define y  and z :
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11 12 13 01

00

( )x y zc g m C m C m C Z M c
x

Z M

− − + − −
= , (54)

( )21 22 23 02

00

x y zc g m C m C m C Z M c
y

Z M

− − + +
= ,

( )31 32 33 03

00

x y zc g m C m C m C Z M c
z

Z M

− − + − −
= .

From (54) and (43) we derive the quantity 
ds
cdt :

c gds
cdt Z

−
= . (55)

We can calculate g0μu
μ using (54), (55) and the 

expression ( , , , )cdt dx cdt cdxc x y z u
ds dt ds ds

µ µ
µ= = =   :

      (56)

0 0 00 01 02

01 02 03
03

00 00

( , , , ) (

) .x y z

cdt cdtg u g c x y z g c g x g y
ds ds

C M C M C M Z g
g z

M M

µ
µ µ= = + + +

− + − −
= −

   



In (56) using the previously introduced in (40) 

notations x x x
x

P m D q A
C

m
− −

= , y y y
y

P m D q A
C

m
− −

= , 

z z z
z

P m D q A C
m

− −
=  , we can move from Cx, Cy and  

Cz to the generalized momenta Px, Py and Pz. After 
multiplying (56) by mc the result will be equal to:

01 02 03
0

00 00

( ) ( ) ( )
.x x x y y y z z zcM P m D q A cM P m D q A cM P m D q A mc Z g

mc g u
M M

µ
µ

− − − + − − − − − −
= −

Let us substitute this into the formula for the Hamiltonian (34):

01 02 03

00 00

2
1 2 3

0

( ) ( ) ( )

( 2 ) .
16 4

x x x y y y z z zcM P mD qA cM P mD qA cM P mD qA mc Z g
H m

M M

c Φ Φ F F
q kc R g dx dx dx

 
 




  

         
   

 
       

 


 

 (57)

In Minkowski space, i.e. in the special theory of 
relativity when the curvature of spacetime is absent, M00 = 
-1, M01 = M02 = M03 = 0, 1g− = , and taking into account 
the expressions (53) for Z and (40) for Cx,  Cy and Cz , the 
Hamiltonian will be expressed through the 3-vector of the 
generalized momentum P, through the scalar potentials ψ, 
φ, and vector potentials D, A:

2 2 2

2
1 2 3

0

( )

.
16 4

H c m c m q m q

c Φ Φ F F
dx dx dx const

 
 

 

  

      

 
   

 


P D A
      (57')

Similarly to (36) in the expression for the Hamiltonian 
(57’) there is some constant. In this case the gravitational 
tensor Φμv and electromagnetic tensor Fμv are differential 
functions of the potentials of fields in the form of 
derivatives of coordinates and time. The resulting 
expression (57’) for H, but without taking into account 
the gravitational field, that is, without terms with the 
potentials ψ and D, and without taking into account the 
integral with the tensors Φμv and Fμv, we can find in[5].

Hamilton’s equations according to (30) and (31), 

with the components of 3-vector coordinate velocity 
( , , )x y z=   v , and the components of 3-vector of the 

generalized momentum P = (Px , Py , Pz) (32) have the 
following form:

x

Hx
P
∂

=
∂

 ,  
y

Hy
P
∂

=
∂

 ,  
z

Hz
P
∂

=
∂

 ,  or  
H∂

=
∂P

v . (58)

  
d L H
dt

= ∇ = −∇
P

. (59)

In order to verify the validity of Equations (58) the 
quantity Z of (53) should be substituted into (57), and 
the quantities Cx , Cy and Cz should be expressed in terms 
of generalized momenta Px, Py and Pz, using (40). If we 
then take the partial derivatives from the Hamiltonian H 
according to (58) we shall obtain expressions (54) for the 
components of velocity. The physical meaning of equation 
(59) lies in the fact that the gradient of the Hamiltonian 
as the energy of the system, taken with opposite sign, is 
equal to the rate of change of the generalized momentum 
with time.

Now we shall write (57) in four-dimensional form, for 
which we shall use the following expressions:
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00
00 00

1g g
M M g g g
−

− = =
− −

,  00
00M g g= , (60)

01
01 01

00 00
00

M M g
M g g g

− = − = ,  
02

02 02
00 00

00

M M g
M g g g

= = , 
03

03 03
00 00

00

M M g
M g g g

− = − = .

For the first term in (57) with the help of (32) it gives:
01 02 03

01 02 03 1 2 3
00

00

( ) ( ) ( )x x x y y y z z zcM P m D q A cM P m D q A cM P m D q A mcg g u mcg g u mcg g u
M g

µ µ µ
µ µ µ− − − + − − − − − − − −

= =

00 01 02 03 0
0 1 2 3

0 000 00

( )
.

mcu g g g g g g g g mcumcg u mcg u
g g

µ
µ µ µ µ µ µ

µ µ

− + + + −
= + = +  (61)

We shall make further transformations of the following 
auxiliary quantities with the help of (41) and (42):

0
11 1 12 2 13 3 11 10 12 20

1 0 1
13 30 11 11 12 21 13 31 01 00

( ) (

) ( ) .

u m g m g m g u m g m g

m g u m g m g m g u M u M

µ
µ µ µ− + = − +

+ − + = +

( ) 0 2
21 1 22 2 23 3 02 00u m g m g m g u M u Mµ

µ µ µ− + − = − + .
0 3

31 1 32 2 33 3 03 00( )u m g m g m g u M u Mµ
µ µ µ− + = + . (62)

From (40) it follows that Cx = -g1μu
μ, Cy = -g2μu

μ,  
Cz = -g3μu

μ. Then, using (62) and the equality gvμu
μuv = c2 

the expression (53) for Z can be transformed as follows:

2
00 11 12 13 21

2
22 23 31 32 33 00

1 11 1 12 2 13 3 2 21 1

22 2 23 3 3 31 1 32 2 33 3

( ) (

) ( )

( ) (

) ( )

x x y z y x

y z z x y z

Z M c C m C m C m C C m C

m C m C C m C m C m C M c

g u u m g m g m g g u u m g

m g m g g u u m g m g m g

µ µ µ µ
µ µ µ µ µ µ

µ µ
µ µ µ µ µ µ

= − − − + − − −

+ − − + − = − +

− + + − +

− + − + =

2 0 1 0
00 1 01 00 2 02

2 0 3 2 0
00 3 03 00 00 1 01

0 0 0
2 02 3 03 00 0 00

0 0 0 0
1 01 2 02 3 03 0 00

( ) (

) ( )

.

M c g u u M u M g u u M

u M g u u M u M M c g u u M

g u u M g u u M g u u M g u u M

g u u M g u u M g u u M g u u M

µ µ
µ µ

µ µ
µ µ

µ µ µ ν µ
µ µ νµ µ

µ µ µ µ
µ µ µ µ

− + + + − +

+ + = − + −

+ + − =

− + −

Now we shall use (60):

0 0 0 0
1 01 2 02 3 03 0 00

01 02 03
0 0 000 00 00

1 2 300 00 00

00
0 0 01 02 0300 00

0 1 2 300 00

00 0 0 0 0 0 000 00
0 00 00

(

) .

Z g u u M g u u M g u u M g u u M

g M g M g M
g u u g u u g u u

g g g
g M M

g u u u u g g g g g g
g g

M M
g g u u u u g u u

g g

µ µ µ µ
µ µ µ µ

µ µ µ
µ µ µ

µ µ
µ µ µ µ

µ
µ µδ

= − + −

= − − − −

= − + + +

= − = − = −

 (63)

In (63) we used Kronecker delta 
1,
0,

ν
µ

µ ν
δ

µ ν
= 

=  ≠ 
. In 

view of (63) for the second term in (57) we find:
0 0 0

0000 00
00

mc Z g mc g u umc Z mcu
M gg g g g

− −
− = = =

− −
.

We substitute this expression and the result from (61) 
into (57):

0

2
1 2 3

0

( 2 )
16 4

H mc g u m q

c Φ Φ F F
kc R g dx dx dx




 
 

 

  

   

 
      

 


 

 (64)
The Hamiltonian (64) coincides with the expression 

for the Hamiltonian (34). Thus, we made a circle: first, by 
introducing the generalized momentum P (32) we made 
the transition from (34) to the Hamiltonian in the form of 
(57), and then by other way, we got back to (34).

To check the validity of equations (59) for the 
Hamiltonian in the form of (64), we find the quantity 

H
x

∂
−
∂

:

0

2
1 2 3

0

( ) ( ) ( )

( 2 )
16 4

H mc g u m q
x x x x

c Φ Φ F F
kc R g dx dx dx

x




 
 

 

  

   
     
   
 

        


 

From (59) it follows: 

 1( ).x
x x

d PH d m g u m D q A
x dt dt

µ
µ

∂
− = = − + +
∂

From the last two equations we obtain:

1 0

2
1 2 3

0

( ) ( )

( ) ( )

( 2 ) .
16 4

x x
d m g u mD qA mc g u
dt x

m q
x x

c Φ Φ F F
kc R g dx dx dx

x

 
 

 
 

 

  


     


 

 
 

 
        



 

 (65)
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I n  M i n k o w s k i  s p a c e :  1 2 21

m xm g u
c

µ
µ− =

−



v
, 

2

0 2 21

m cmc g u
c

µ
µ =

−v
. If we consider the situation for 

a small test particle outside the massive charged body and 
apply the relations:

x x x x xdD D D D D
x y z

dt t x y z
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

   ,

x x x x xdA A A A A
x y z

dt t x y z
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

   ,

t
ψ ∂

= −∇ −
∂
DG , = ∇×DΩ ,

t
ϕ ∂

= −∇ −
∂
AE , = ∇× AΒ ,

then with constant mass m and charge q of the particle, 
and assuming that the velocity V and the scalar products 
V · D and V · A do not directly depend on the coordinates, 
the Equation (65) turns into (22) for the component of the 

momentum 2 21

m x
c−



v
.

T H E  F O U R - D I M E N S I O N A L 
GENERALIZED VELOCITY

We shall introduce 4-vector of the generalized velocity 
with the covariant index:

0

0

qc J
s D A

J J
µ

µ µ µλ
λ

ρ
ρ

= + + . (66)

where ,D
cµ
ψ = − 
 

D  – 4-potential of gravitational 

field, ,A
cµ
ϕ = − 
 

A  – 4-potential of electromagnetic field.

The ratio 0

0

qρ
ρ

 in (66) is the ratio of the densities of 

charge and mass of the substance unit in the reference 
frame in which the substance is at rest. The scalar Sμ J μ 
will be equal to:

0

0

qc J J
s J D J A J

J J

c J J D J A j

µ
µµ µ µ

µ µ µλ
λ

µ µ µ
µ µ µ

ρ
ρ

= + + =

+ +

 (67)

where j μ=ρ 0qu μ is the 4-vector of electric current 
density.

Taking it into account we can rewrite the Lagrangian 
(4) as follows:

+ − 
= − 

 

1 2 32

0

( 2 )

16 4

kc R s J

L g dx dx dxc Φ Φ F F

µ
µ

µ ν µ ν
µ ν µ ν

π γ µ

 − Λ −
 

 

∫  (68)

and S L dt= ∫  is the function of the action, and 

1 2 3g d g c dt dx dx dx− Σ = −  – an invariant 4-volume, 
provided that dx0 = cdt. With the help of (11) and the 
subsequent relations we can write down:

1 2 3

0

dg d b c dt dx dx dx c d dV ds dV
dt

ds dV

τ τ ′− Σ = = = =

Thus, the invariance of the 4-volume g d− Σ  with 
respect to the change of coordinates is expressed in the 
invariance of the interval ds  of the moving substance 
unit, and in the invariance of the three-dimensional 
volume dV0 of the substance unit in the co-moving frame 
of reference.

We shall designate ( ) 1 2 3
2L s J g dx dx dxµ

µ= − −∫  in 

(68) and find the variation δL2, associated with variation 
of part the action function 2 2S L dt= ∫ :

2 2S L dtδ δ= ∫ ,

( ) 1 2 3
2L s J g dx dx dxµ

µδ δ= − −∫ . (69)

( ) ( )

0

0

.q

s J g s J g J g s

s g J s J g

c J
J g D A

J J

µ µ µ
µ µ µ

µ µ
µ µ

µµ
µ µλ

λ

δ δ δ

δ δ

ρ
δ

ρ

− − = − − − − =

= − − − − −

 
 − + +
 
 

(70)

We shall use the following standard formulas:

2
g

g g gµν
µνδ δ

−
− = ,              J J g J Jµ µ ν

µ µν= ,

( )
( )1

J J J

g J J
g

µ σ µ µ σ
σ

σ µ µ σ
σ

δ ξ ξ

ξ ξ

= ∇ − =

 ∂ − − −

 (71)

( ) 0
0 0 2 u u

c
σ ν σ

σ σ ν
ρ

δ ρ ρ ξ ξ= −∇ + ∇ ,

( ) 0
0 0 2

q
q q u u

c
σ ν σ

σ σ ν

ρ
δ ρ ρ ξ ξ= −∇ + ∇ ,

where the variations δJ μ, δρ0, δρ0q are taken from[7-8], 
and displacement ξμ are variations of the coordinates, due 
to of which arise the variation of mass 4-current δJ μ, the 
variation of mass density δρ0 and the variation of charge 
density δρ0q.

We shall transform the first term in (70) in view of (71):
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( )
( ) ( ) .

s g J s g J J

s g J J g J J s

µ σ µ µ σ
µ µ σ

σ µ µ σ σ µ µ σ
σ µ σ µ

δ ξ ξ

ξ ξ ξ ξ

 − − = − ∂ − − = 
 −∂ − − + − − ∂ 

In this expression the term with the total divergence 
in the integration over the 4-volume in the function of the 
action will not make any contribution. The remaining term 
will be transformed further:

( ) ( )g J J s s s J gσ µ µ σ σ µ
σ µ σ µ µ σξ ξ ξ− − ∂ = ∂ − ∂ − ,

where the value s sσ µ µ σ∂ − ∂  is the rotor of 4-vector 
of generalized velocities Sμ.

We shall transform the expression in the third term in 
(70):

2

2

2

k
k

k k k k
k k k k

k k
k k

g Jc J
J g c J g

J J g J J

g J J g g J g J J g J J J g
c J g

g J J g J J g J J g J J

J g J J J g g J J J J g
c g

g J J g J J g J J

µµµ µ

λ σ λ
λ σ λ

α β α β
µ µ µ α β µ α βµ

σ λ σ λ σ λ σ λ
σ λ σ λ σ λ σ λ

µ µ α β α β
µ µ α β α β

σ λ σ λ σ λ
σ λ σ λ σ λ

δ δ

δ δ δ δ

δ δ δ δ

  
  − − = − − =
  

   
 + + = − − − =
 
 

 +
= − − − − .

2

c g J J g

g J J

α β
α β

σ λ
σ λ

δ −  = −
 
 

With the help of (71) we shall find the variation 0

0

qρ
δ

ρ
 
 
 

:

0 0 0 0 0 0
2

0 00)( )
q q q qσ

σ

ρ ρ δρ ρ δρ ρ
δ ξ

ρ ρρ
−   

= = − ∇   
   

.

Substitution in (70) and (69) of the obtained above expressions gives:

( ) 1 2 3
2

0 1 2 3

0

q

S s J g dx dx dx dt

c J
s g J s J g J g D A dx dx dx dt

J J

µ
µ

µµ µ µ
µ µ µ µν

ν

δ δ

ρ
δ δ δ

ρ

= − − =

  
  = − − − − − − + + =

    

∫

∫

( ) 0 1 2 3

0

.
2

qg c J Js s J s J g J D j A J A g dx dx dx dt
g J J

µ ν
µνσ µ α µν µ µ σ µ

σ µ µ σ α µ µ σ µσ λ
σ λ

δ ρ
ξ δ δ ξ

ρ

      = ∂ − ∂ − + − − + ∇ −      
∫

 (72)

We shall designate
 

= − Λ + − − 
2

1 2 3
1

0

( 2 )
16 4

c Φ Φ F FL kc R g dx dx dx
µ ν µ ν

µ ν µ ν

π γ µ 
 

∫ in (68) and take in[3] the variation δL1, 

associated with the variation of the action function 1 1S L dt= ∫ . This gives the following:

1 1S L dtδ δ= ∫ ,

2
1 2 3

1
0

( 2 )
16 4

c Φ Φ g F F g
L kc R g dx dx dx

 
  

  

  
      
 
 

  .

2

1

1 2 3

0

1
2 4 2

1 ,
2

c US kc R g R g g Φ D g

WF A g g dx dx dx dt


    

   


 

  

   
 

 


           
 


   




  (73)
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where Uμv is the stress-energy tensor of gravitational 
f i e ld  (9 ) ,  and  the  s t r e s s -energy  t ensor  W μ v  o f 
electromagnetic field has the form:

2
0

2
0

1
4

1
4

W c g F F g F F

c F F g F F

α β αν κ β α β µν
κν µν

α κ β α β µν
κ µν

ε

ε

 = − + = 
 

 + 
 

 (74)

By the principle of least action, the variation of the 
action must be equal to zero: 1 2 0S L dt S Sδ δ δ δ= = + =∫ . 
We shall substitute here (73) and (72), and equate to 
zero all the terms inside the integrals, placed before the 
variations δgμv, δDμ , δAμ , ξ

μ:
gµνδ :

1
2 2 2

1 0
2

U Wkc R g R g

c J Js J g
g J J

µν µν
µν µν µν

µ ν
α µν

α σ λ
σ λ

 − + −Λ − − − 
 

 
 + =
 
 

, (75)

δDμ:
2

0
4
c Φ J  

 
     ,

δAμ:
0

1 0F jα µ µ
αµ

∇ − = , (76)

ξ μ: ( ) 0

0

0qs s J J Aσ σ
σ µ µ σ σ µ

ρ
ρ

 
∂ − ∂ + ∇ = 

 
. (77)

Equations (76) are equivalent to the gravitational (5) 
and electromagnetic (6) field equations. The first term in 
Equation (77) can be expanded by using the operator of 

proper-time-derivative 
D u
D

µ
µτ

= ∇  according to[1], and 

the 4-vector of generalized velocity (66):

( ) 0 0

0

0

0

.q

D s
s s J u s J s

D

D s c J
J s J J D

D J J

J A j A

µσ σ σ
σ µ µ σ σ µ µ σ

µσ σ σσ
µ σ µ µ σλ

λ

σ σ
σ µ µ σ

ρ ρ
τ

ρ
τ

ρ
ρ

∂ − ∂ = ∇ − ∇ = −

 
 ∇ = − ∇ − ∇ −
 
 

 
∇ − ∇ 

 
Taking into account (77) it follows:

0

D s c J
J J D j A

D J J
µ σ σ σσ

µ µ σ µ σλ
λ

ρ
τ

 
 = ∇ + ∇ + ∇
 
 

. (78)

As far as according to (66):

0 0

0

0

q

D s c J
u s J J D

D J J

j A J A

µ µσ σ σ
σ µ σ σ µλ

λ

σ σ
σ µ µ σ

ρ ρ
τ

ρ
ρ

 
 = ∇ = ∇ + ∇ +
 
 

 
∇ + ∇  

 

,

so comparing with (78) we find:

0

0

.

qc J
J J D j A J A

J J

c J
J J D j A

J J

µσ σ σ σ
σ σ µ σ µ µ σλ

λ

σ σ σσ
µ µ σ µ σλ

λ

ρ
ρ

    ∇ + ∇ + ∇ + ∇      
 
 = ∇ + ∇ + ∇
 
 

 (79)
We shall apply the following relations:

( )J D J D J D D J Φ   
                ,

J A J A J Fσ σ σ
µ σ σ µ µσ∇ − ∇ = ,

0 0

c J D u
J u u

DJ J
µ µσ σ

σ σ µλ
λ

ρ ρ
τ

 
 ∇ = ∇ =
 
 

,

0 0
c J

J u u
J J

σ σσ
µ µ σλ

λ

ρ
 
 ∇ = ∇ =
 
 

.

This gives in (79):

0
0

0

qDu
J Φ j F J A

D
   

   




 
 

     
 

 . (80)

Above it was assumed that the mass and the charge 
of substance unit in the variation does not change. In 

this case, the density ratio 0

0

qρ
ρ

 will be unchanged, the 

covariant derivative 0

0

q
σ

ρ
ρ

 
∇  

 
 is zero, and (80) turns into 

the equation of motion of substance in gravitational and 
electromagnetic fields, taken in the covariant theory of 
gravitation under these conditions (see the equation (35) 
in [3] ).

Now we shall consider the equation for the metric (75). 
If we separate out the terms g µνΛ  and s J gα µν

α , then 

with condition 
3

16
ck
π γ β

= −  (75) is divided into two 

equations:

4

1 8
2

c J JR g R U W
c g J J

µ ν
µν µν µν µν

σ λ
σ λ

π γ β  
 − = + +
 
 

,

 (81)

  
4

8
c s J α

απ γ β
Λ

= . (82)

In view of (67), expression (82) coincides with (8). As 



70Copyright © Canadian Research & Development Center of Sciences and Cultures

The Hamiltonian in Covariant Theory of Gravitation

for (81), from the comparison with (7) it follows that it 
should equal to:

c J J
g J J

µ ν
µν

σ λ
σ λ

φ = . (83)

Equation (82) can be considered as the gauge of the 
cosmological constant, with which it is possible to use 
Equation (81) to find the metric.

We shall remind that the variations δJ μ, δρ0, δρ0q in 
(70) found in[7-8], were determined from the condition 
that the mass and charge of substance unit are constants 
during variation. This leads to the equation of motion 
of the type (80), in which instead of the proposed total 

derivative 0( )D u
D

µρ
τ

 (the rate of change of mass 4-current) 

the quantity 0

D u
D

µρ
τ

 appears as the product of the mass 

density and the 4-acceleration.

The Hamiltonian and the Problem of Mass 
The Hamiltonian (64) can be represented in another form 
by using the generalized 4-velocity (66). If we assume 

that 0

0

qρ
ρ

 sets in (66) the charge to the mass ratio, and 

considering that 0 0g s sµ
µ = , for the Hamiltonian we have:

0

2
1 2 3

0

( 2 )
16 4

H mcs

c Φ Φ F F
kc R g dx dx dx

 
 

  

 

 
      

 


 .

 (84)
From here it follows that the contribution to the energy 

of substance unit with mass m is made by the timelike 
component of 4-vector of generalized velocity with the 
covariant index S0, and the energy of fields, found by the 
integral over the volume of space. In addition, the amount 
of energy is corrected by the curvature of spacetime 
(the term with curvature R), and is determined up to a 
constant (the term with Λ). Hamiltonian H sets the energy 
in such a way that the energy in each reference frame 
is different. This applies to the value of the generalized 
4-velocity of the substance unit, and the total momentum 
of the substance and fields. So it should be, because in the 
theory of relativity only a definite combination of energy 
and momentum can be maintained invariant and preserved 
in each reference frame.

The Hamiltonian (84) looks like it should be the 
timelike component of a 4-vector of energy-momentum 
Hμ , written with a lower (covariant) index. In this case, 
the timelike component of this 4-vector is associated with 
the energy and the spatial component should be connected 
with the momentum of substance unit. We shall make the 
notation:

2
1 2 3

0

0

( 2 )
16 4

c Φ Φ F F
kc R g dx dx dx

N u
c

 
 

  

 
      

 




 

 (85)
where N is an invariant associated with the energy of 

fields and with amendments to the energy arising from the 
curvature R and from the constant Λ,

0u
c

 – the timelike component of the dimensionless 

4-velocity 
u
c
µ , and the 4-velocity 

u
c
µ

 is a simplest 

4-vector of unit length.
With this definition, the integral (85) is assumed to 

be equal to the timelike component of a 4-vector. Then, 
taking into account (66) we have:

0 0 0 0 0

0
0 0

0

q

N NH H m cs u m c u m cD
c c
Nm c A m c u m q
c

ρ
ψ ϕ

ρ

 = = − = − + + 
 

 = − + + 
 

 (86)

Equation (86) in view of (85) coincides with the 
expression for the Hamiltonian (34). Now we shall write 
the 4-vector of the Hamiltonian in the contravariant form:

N NH m cs u m c u m cg D q cg A
c c

µ µ µ µ µν µν
ν ν

 = − = − + + 
 

 (87)
As there is the 4-vector of generalized velocity Sμ 

in (87), the 4-vector of the Hamiltonian contains the 
4-vector of the generalized momentum in the form msμ. 
The timelike component of the 4-vector Hμ must specify 
the relativistic energy E, and the spatial components 
– multiplied by the speed of light momentum P. This 
follows from the conventional expression of the 4-vector 
energy-momentum of a free particle without taking 
into account of the action of fields on it:P μ=mcuμ. 
This vector in the flat Minkowski space, i.e., in the 
special theory of relativity, is expressed as follows: 

 
2

2 2 2 2
, ,

1 1

mc mcp mсu E c
c c

 
 
   
   

v pv v  . Fields 

and interactions with other particles can vary quantities 
E and P, but when the particle becomes free, from the 
invariance of the mass m, the speed of light c and the 

equality 2 2 2 2 2 2
2

1 p p m u u m c E c p
c

µ µ
µ µ= = = −  should 

follow the well-known formula for the relationship 
between mass, energy and momentum for a particle 
in relativistic physics, valid in any inertial frame of 
reference. According to this formula, one can find the 
momentum of the particle at certain energy and rest mass 
of the particle, or determine the rest mass and the type of 



71 Copyright © Canadian Research & Development Center of Sciences and Cultures

Sergey G. Fedosin (2012). 
Advances in Natural Science, 5(4), 55-75

the particle by its momentum and energy.
By analogy with the 4-vector energy-momentum 

Pμ=(E,cp) from the components of the 4-vector H μ (87) 
we obtain:

0 0 0NE m c u m cg D qcg A
c

ν ν
ν ν

 = − + + 
 

.

1 1 1
2x

Np m u m g D qg A
c

ν ν
ν ν

 = − + + 
 

,

2 2 2
2y

Np m u m g D qg A
c

ν ν
ν ν

 = − + + 
 

,

3 3 3
2z

Np m u mg D qg A
c

ν ν
ν ν

 = − + + 
 

. (87')

For the case of substance without its direct interaction 
with another substance (other bodies), located only in 
its own gravitational and electromagnetic fields, energy 
E and momentum P of the substance unit at constant 
mass and charge can not change, and must be equal to 
some constant for the energy and constant vector for the 
momentum. This can be represented by the equation Hμ 

= const, describing the conservation laws of energy and 
momentum of a closed system.

If in (85) we neglect the term with the curvature R and 
determine the constant equal to zero needed for the energy 
calibration, which arises due to the constant Λ, then in the 
weak field limit, at the transition to the special theory of 
relativity, for the energy and the momentum in (87’) we 
obtain:
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From (88) it is seen that the term 
2

2 21

m c
c−v

 plays 

the role of kinetic energy, and other terms belong to the 
potential energy. In this case the potential energy includes 
not only the energy of the field strengths, but also the 
energy associated with the scalar field potentials.

From the substance unit we can proceed to a separate 
moving body, for which in case of straight-line motion 
with constant velocity in the absence of external fields, 

the relations 2c
ψ

=D v , 2c
ϕ

=A v  are valid. In this case 

for the momentum we have:
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Here the gravitational scalar potential ψ and the 

electromagnetic scalar potential φ are understood as 
the averaged potentials inside the body, arising from its 
own fields. To find the rest mass of the body, taking into 

account the fields we should write the ratio 2

EM
c

=  with 

V = 0. We shall use (88) to determine the rest mass with 
the help of volume integral:
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  (90)

The rest mass M of the body differs from the mass 
m  of its substance due to the contribution from the field 
energies and energy of internal motion. If the body as 
a whole is at rest, but its substance is in some internal 
motion with speed V′, it contributes to the overall mass 
due to the kinetic energy, as well as due to the emerging 
field of gravitational torsion Ω, and due to the magnetic 
field B. Determining the mass the terms with field 
strengths should be integrated over volume both inside 
and outside the body.

Now we shall use the relation (8) and apply it to (90) 

in case of stationary and not rotating solid body:

2 2 20
0 0 02

2 20
02

1 1
8 2

1 1
8 2

M c G E dV
c

m G E dV
c

ε
ρ

π γ

ε
π γ

 
′= + − = 

 
 

′ + − 
 

∫

∫
 (91)

where 0ρ′  is constant mass density associated with 

the cosmological constant Λ. The density 0ρ′  is obtained 
by excluding all the fields in the substance. For example, 
if the body is divided into pieces and spread to infinity 
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with zero velocity, then the normal field of gravitation 
and the electromagnetic field will not be making large 
contribution to the density of the substance parts, and the 
total mass of these parts will be equal to m′.

According to (91), the mass of the whole body 
becomes greater than the total mass of its parts, due to 
the contribution of the gravitational energy with density 

21
8

G
π γ

. Simultaneously, the electrical energy of the 

body reduces its mass. These findings are consistent with 
results obtained by another way in[3, 4, 9]. In the cosmic 
bodies the gravitational energy is generally higher than 
the electromagnetic energy, so as we move from small to 
large bodies the body mass should increase, as well due to 
the potential energy of gravitation.

We shall note that instead of using the 4-vector of 
Hamiltonian (87) to estimate the energy, momentum and 
mass, we can use another approach based on integration 
over volume of the timelike components of the stress-
energy tensors of substance fαβ (83), the gravitational 
field U αβ (9), as well as the electromagnetic field W αβ (74). 
From the properties of the left side of the equation for the 
metric (81) it follows that the covariant derivative of the 
right side is equal to zero:

( )

0

U Wµν µν µν µν µν µ αν
ν ν ν ν α

β µα
βα

φ τ τ τ

τ

∇ + + = ∇ = ∂ + Γ +

Γ =
(92)

This equation is equivalent to the equation of motion 
of substance in the gravitational and electromagnetic 

fields (80), in which it is considered that 0

0

0q
σ

ρ
ρ

 
∇ = 

 
.

Then we shall use the procedure, which was used 
in[5] and many other works on the theory of gravitation, 
to simplify the integration of (92) over 4-volume. If 
we introduce a frame of reference relative to which the 
substance unit at a given time is moving like it should 
move according to the special theory of relativity, in this 
reference frame the Christoffel symbols µ

ν αΓ  and β
βαΓ  

in (92) are equal to zero. Then the covariant derivative 

ν∇  of the tensor U Wµν µν µν µντ φ= + +  is equal to the 

ordinary derivative ν∂ , which is the 4-divergence of the 

tensor µντ  due to minimizing by the index ν . Instead 

of (92) we obtain the equality 0µν
ν τ∂ = , the left part 

of which can be integrated over the 4-volume, taking into 
account the Gauss theorem, and in this case 1g− = :

1 2 3P c dt dx dx dx dSµ µν µν
ν ντ τ= ∂ =∫ ∫ ,

where dSv is the element of an infinite hypersurface 
surrounding the 4-volume. The projection of this 
hypersurface at the hyperplane x0=const gives a three-

dimensional volume element dS0=dx1dx2dx3=dV, and for 
the 4-vector energy-momentum we can write down:

0 0 0 0 0
0 ( )P dS dV U W dVµ µ µ µ µ µτ τ φ= = = + +∫ ∫ ∫ .

 (93)
In contrast to (87), the expression (93) does not 

contain the energy of substance in its proper field, that 
is, the energy associated with scalar potentials ψ and φ. 
Despite this, for a stationary homogeneous ball in its 
proper gravitational field the mass-energies of this field 
according to (90) and (93) coincide. This follows from the 
next equation:

2 0 0
0 0 02 2 2

2
02

1 1 1 1
8
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8

bdV G dV U dV
c c c

G dV
c

ρ ψ
π γ

π γ

 
+ = = 

 
 

−  
 

∫ ∫ ∫

∫
 (94)
where dVb is the differential of volume of the ball, dV0 

– the differential of volume of space inside and outside of 
the ball.

According to (94), the potential energy of the ball 
in its proper gravitational field associated with the 
scalar potential is two times greater than the potential 
energy associated with the field strengths. The same is 
true for the electromagnetic field, as in case of uniform 
arrangement of charges in the volume of the ball, and at 
their location only on the surface. Equation (94) in its 
meaning resembles the virial theorem for a stationary 
system of particles bound by its proper gravitational field 
– in this system the absolute value of the total potential 
energy is approximately equal to double kinetic energy of 
all particles.

For the relativistic energy of substance from (88), and 
respectively, from (93) we also obtain the equality:

2

2 21
sub

m cE
c

=
−v

,

2 2
0 0 2 20

02 2 2 2
1

1 1
sub

c m cE dV c dV
c c

ρ
φ= = − =

− −
∫ ∫ v

v v
.

One aspect of the application (93) is the discrepancy 
between the mass-energy field of the moving bodies that 
are found either through the field strengths in the potential 
energy, or through the energy flux density and the 
momentum of the field (the so-called problem of 4/3). An 
attempt to solve this problem was made in[9] on the basis 
of the contribution of the field mass-energy into the total 
body mass. At the same time taking into account (94) we 
obtain the equality of the momentum in (89) and the total 
momentum of substance and field contained in (93) in the 
spatial components of 4-vector P μ.

We now turn our attention to the mass ratio of the 
substance unit contained in (90) and (91), for the case 
when the contribution to the mass of the mass-energy of 
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the electromagnetic field in comparison with the mass-
energy of the gravitational field is small. Taking into 
account (94), then for the masses of rest substance the 
relation must be valid: m′<M<m, where the mass m is a 
part of the rest energy mc2;  the mass M determines the 
total mass of substance together with the field; the mass 
m′, as it follows from (8), is the substance mass scattered 
to infinity, where all fields are set to zero. Which of these 
masses determine proper potentials and strengths of the 
gravitational field of the considered substance unit? In our 
opinion, the observed mass is the mass M, it must specify 
both the inert and the gravitational properties of the mass. 
This mass should be included in the formulas for the 
potential and field strength, and in the potential energy. 
Then for a homogeneous stationary ball we can write 
down:

2 2

2
20

02 2

1 1

6 2
25

m m dM dq
c c

Mm E dV
Rc c

ψ ϕ

εγ

′ = + + =

 − +  
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 = − +  
 

∫

∫ ∫

∫
Since the observed mass is M, then the mass m  can 

be determined from the last equation, and then the mass m′ 
can be calculated from the first equation. The mass density 
of substance ρ0 through the 4-vector of mass current 
density J μ = ρ0u

μ is included in the Lagrangian (4) for a 
substance unit, and is also included in the Hamiltonian 
(35). In the integration over three-dimensional volume 

of the term 0 0
cdt c g u
ds

µ
µρ  in (35), the mass m appears, 

and the integration over the volume of the term 0
cdt
ds

ρ ψ  

leads in the result of the integration to appearing of the 
mass M. The difference between the masses m and M is 
due to the fact that at the addition of substance units into 
a coherent body the 4-velocity uμ is assumed constant, 
whereas the scalar potential ψ in itself is a function 
of mass (more precisely, at the constant density of the 
substance the potential ψ within the body depends on the 
characteristic size of the body, or the amount of mass). 
Changing of the potential ψ while the summation of 
the substance units into a single body in the course of 
integration over volume instead of m gives the mass M, 
which is used to calculate the energy of the field.

The stated above reveals the difference of forms 
of writing, and complementarity of Hamiltonian and 

Lagrangian approaches in finding the mass, energy and 
momentum of the moving substance.

A C T I O N  A S  T H E  F U N C T I O N  T O 
DETERMINE THE EFFECT OF TIME 
DILATION
In view of (10) and (12), we shall write the differential of 
the action function for a substance unit with the mass m 
and the charge q:

2
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0

( 2 ) .
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dS L dt mc g dx dx mD dx qA dx

c Φ Φ F F
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 (95)
From (95) it is seen that the action is a scalar 

quantity. In addition, the differential of the action can 
be decomposed by the differentials of the interval 

ds g dx dxµ ν
µν= , the 4-vector of displacement dx μ, and 

the coordinate (global) time dt, taken with the relevant 
factors.

Now we shall turn to the results obtained in[1]. It was 
shown there that the expression dη = Dμdxμ contains a 
specific gauge function of gravitational field, which equals 
to ( )D dx dtµ

µη ψ= = − ⋅∫ ∫ D v , provided dr = vdt. A 
similar specific calibration function for electromagnetic 
field is equal to ( )A dx dtµ

µϑ ϕ= = − ⋅∫ ∫ A v . We shall 
remind that the fundamental field potentials are defined 
up to the coordinate and time derivatives from an arbitrary 
gauge function. If we replace the 4-potentials for the 
gravitational field as follows:

  D D Fµ µ µ′ = − , (96)
w h e r e  w e  i n t r o d u c e  t h e  4 - v e c t o r 

1 ,F
c tµ µ

ηη η
 ∂

= ∂ = ∇ ∂ 
,  then the  s t rengths  of  the 

gravitational field and the equations of motion of 
substance in the field will not change. The same is true 
for the electromagnetic field and its specific gauge 
function ϑ . The gauge transformation (96) in the case 
where the specific gauge function is selected in the form 

( )D dx dtµ
µη ψ= = − ⋅∫ ∫ D v , actually clears the existing 

potentials of the gravitational field. Although it seems that 
the system has not changed, it is not so. In fact, it turns out 
that when comparing two systems, in one of which some 
gauge transformation is made by changing the potentials, 
there are different rates of time flow. For gravitational and 
electromagnetic fields the difference of a clock indications 
in weak field approximation is described by the following 
formulas:
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2

1 2 2
1

m D dx
mc

µ
µτ τ− = ∫ ,

2

1 2 2
1

q A dx
mc

µ
µτ τ− = ∫ . (97)

The clock 2, which measures the time τ2, is check 
one and the clock 1 measures the time τ1 and is under 
the influence of additional 4-field potentials Dμ or Aμ. 
Time points 1 and 2 within the integrals indicate the 
beginning and the end of the field action. If there is only 
a static gravitational field with zero vector potential, then 

2D dx dµ
µ ψ τ= . Assuming then, that initially all the 

clocks had zero indication, for the difference in the clocks’ 
indications from (97) we obtain the effect of gravitational 

time dilation: 
2

1 2 2 22 2
1

1 d
c c

ψτ τ ψ τ τ− = =∫ .

From the time difference (97) we can move to the 
phase shift for the same type of processes in different 
points of the field. To do this, in (97) in the denominators 
it is necessary to replace mc2 by the value of the 
characteristic angular momentum. In quantum mechanics 
this value is the Dirac constant 



 (this value is equal to 
Planck constant h, divided by 2π), which allows to take 
into account the appropriate phase shift which is inversely 
proportional to this constant:

2

1 2
1

m D dxµ
µθ θ− = ∫



, 
2

1 2
1

q A dxµ
µθ θ− = ∫



. (98)

Phase shift in (98), obtained due to the electromagnetic 
4-potential Αμ, is proved by the Aharonov-Bohm effect.

If we divide the first part in (95) by mc2 and take the 
integral, we can obtain the standard time dilation effect 
due to the clock motion with the speed V:

1 2 2 22
0 0

2 2
00 00

0 0

1

1

t t

t t

m c g dx dx d s
cmc

g c d t g d t

µ ν
µντ τ τ τ− = − = − =

− −

∫ ∫

∫ ∫v
 (99)

here the clock speed V is measured by the local 
observer at the point with the timelike component of 
the metric g00 ; the moving clock measures time τ1, and 

the fixed clock – the time 2 00
0

t

g d tτ = ∫  of the local 

observer, expressed by the coordinate time t.
In (95), there is one more, the last term in the integral 

form, which in our opinion should also influence the 
effect of time dilation. Any gauge transformation of 
4-potentials does not affect the values of field strengths, 
which are part of the tensors Φμv and Fμv. The energy of 
fields associated with the substance mass m, depends not 
only on the absolute value of the 4-potentials, but also on 
the rates of their changes in spacetime, that is, the field 
strengths. Each additional energy must affect the intrinsic 
properties of substance, including the flow rate of proper 
time. From this we deduce:

  
   2

1 2 3
1 2 2

0

0

( 2 )
161

4

t

c Φ Φk c R
g dx dx dx dt

mc F F

µ ν
µ ν

µν
µν

π γ
τ τ

µ

− Λ +
  − = − −  
  −    

∫ ∫

From the stated above it follows that the action is 
not only a function by which from the principle of least 
action the equations of motion are obtained, through 
the Legendre transformation the Hamiltonian, or the 
Hamilton-Jacobi equations are defined. The action 
function has also a direct physical meaning as the function 
describing the change in some intrinsic properties of 
physical bodies. These include the intrinsic properties 
of the rate of the time flow, and consequently the rate 
of increase of the phase angle of periodic processes 
depending on time. The special role of time in relation to 
spatial size as a characteristic property of physical bodies 
is due to the fact that the time shift during motion and in 
the fundamental fields is an absolute effect, whereas the 
change of the observed size is only relative.

SUMMARY
Based on the principle of least action and Euler-Lagrange 
equations, we presented in (17) the relativistic equation 
of motion of a substance unit in fundamental fields (for 
motion along the axis OX of the Cartesian reference 
frame). This equation is written for the case when the 
velocity depends only on time, and can be specified for 
the general case by introducing into the equation the 
dependence of the velocity on the spatial coordinates. 
After determining the generalized momentum for the 
substance and the field we obtain vector Equation (19), 
which expresses the dependence of the generalized force 
on different physical variables for the substance in the field.

Difference in positions of the covariant theory of 
gravitation (CTG) and the general theory of relativity 
(GTR) describing the motion of a small test particle in 
an external field is demonstrated in equations (21) and 
(23). In weak fields, the equation of CTG (21) exactly 
transforms into the Lorentz-covariant equation of motion 
(22) which is used in the special theory of relativity. In 
contrast, for appearance of the gravitational force in GTR, 
not only the weak-field approximation is required, but 
also preliminary calculation of the gradients of the metric 
tensor. This is due to the fact that in GTR the gravitational 
field potentials are related to the metric tensor components 
and are not independent quantities. We shall note also 
that in contrast to CTG, in GTR there is no definite limit 
transition into special theory of relativity, that is, into the 
case of weak fields, based on the principle of conformity 
and conservation laws for such quantities as energy, 
momentum and angular momentum[10].

Hamiltonian, expressed through the 4-velocity and 
characterizing the energy of the particle (substance unit) 
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with mass m, is given by (34). For continuously distributed 
substance Hamiltonian is determined by an integral over 
the 4-volume in relation (35). After simplification of these 
expressions we obtain formula (36) for the relativistic 
energy of the particle taking into account the energy of 
fields in the framework of the special theory of relativity. 
The expression for Hamiltonian through generalized 
momenta is given in (57), and relation (57’) sets the 
energy of the particle for flat Minkowski space.

In relation (66) we introduced into theory the 4-vector 
of generalized velocity Sμ and wrote with the help of it 
the Lagrangian (68). After applying the principle of least 
action to this Lagrangian we obtain equations for the 
gravitational and electromagnetic fields (76), the equation 
of substance motion (80), and the equation for the metric 
(81) and the relation for the cosmological constant (82). 
In addition, the timelike component of the 4-vector Sμ is 
directly included into Hamiltonian (84), and the product of 
the particle mass and the contravariant 4-vector Sμ sets the 
4-vector of the generalized momentum in the form msμ. 
As a result, Hamiltonian (84) is the timelike component 
of a 4-vector with covariant index Hμ associated with the 
energy and momentum. We denoted it as a 4-vector of 
the Hamiltonian (4-energy), in contravariant form it is 
determined in (87) and according to (87’) it sets the energy 
and momentum of the particle through the mass, charge, 
4-velocity, 4-potentials and field strengths. The alternative 
expression of energy and momentum of the particle 
through the energy-momentum tensors of substance and 
fields is given in (93) in the form of a 4-vector of energy-
momentum.

The mass of the particle can be determined from (87’) 
by calculating the energy E in the limit of zero velocity 
and dividing this energy by the square of the light speed. 
In the weak-field approximation formula (90) holds for 
the mass of a body at rest. The relation for three masses 
associated with the body follows from (91)-(94): m′ < 
M < m, where the mass m is part of the rest energy mc2; 
the mass M determines the relativistic mass of the body 
substance with the proper fields as the measure of inertia 
and gravitational mass; the mass m′ is the mass of the 
substance scattered at infinity, where all fields are zero. In 
this case, we see that the relation holds: m M M m′− ≈ − .

From the analysis of the differential of action function 

(95) we find a change in the rate of time (97) in physical 
objects due to the action of potentials of the gravitational 
and electromagnetic fields. For quantum objects the 
corresponding phase shift is expressed by relations (98). 
The motion of clocks changes the rate of time according to 
(99). The action function also includes the field strengths 
(through tensors Φμv and Fμv), and we assume that they, 
as well as each component of the action function, should 
lead to some change in the rate of clock and the phase of 
processes. Perhaps this idea can be proved experimentally 
by measuring the quantum-mechanical phase shift under 
the influence of field strengths in those cases when the 
field strengths rather change the energy of the field than 
influence the motion of particles.
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