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Abstract
This paper studies the state feedback stabilization of a 
kind of nonlinear discrete singular large-scale control 
systems by using Lyapunov matrix equation, generalized 
Lyapunov function method and matrix theory. There 
gives some sufficient conditions for determining the 
asymptotical stability and instability of the corresponding 
singular closed-loop large-scale systems while the 
subsystems are regular, causal and R-controllable. At 
last, an example is given to show the application of main 
result.
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INTRODUCTION
With the development of modern control theory and 
the permeation into other application area, one kind of 
systems with extensive form has appeared which form 
follows as: 

EX (t) = f (X(t), t, u(t))
Where nRtX )(  is a n - state vector, mRtu )( is a 
m control input vector, E  is a n×n matrix, it is usually 

singular. This kind of systems generally is called as the 
singular control systems. It appeared large in many areas 
such as the economy management, the electronic network, 
robot, bioengineering, aerospace industry and navigation 

and so forth. Singular large-scale control systems have a 
more practical background. The actual production process 
can be described preferably by singular large-scale control 
systems, particularly by discrete singular large-scale 
control systems. The causality of discrete singular systems 
makes related results complicated and challenging for us. 
At present, the research results of the problem above are 
seldom. The asymptotical stability (Sun & Peng, 2009; 
Sun & Chen, 2004) and stabilization (Yang & Zhang, 
2004; Sun & Chen, 2011) of discrete linear singular 
large-scale systems has been considered by Lyapunov 
function method. This paper consider the state feedback 
stabilization of a kind of nonlinear discrete singular 
large-scale control systems by introduce weighted sum 
Lyapunov function method, and give its interconnecting 
parameters regions of stability.

D E F I N I T I O N S  A N D  P R O B L E M 
FORMULATION
Consider the nonlinear discrete singular large-scale 
control systems with m  subsystems:
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rank (Ei) = ri ≤ ni , E = Block  diag (E1, E2, . . . , Em), 
rank (E) = r < n, B = Block  diag (B1, B2, . . ., Bm)

Now we give some concepts about discrete singular 
system:

Ex(k+1) = Ax (k)    (2)
and discrete singular control system:
Ex(k+1) = Ax (k) + Bu (k) ( k = 1, ..., N)  (3)
where E and A are n n constant matrices, B is a 
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n m constant matrix, rank (E) = r < n,   nx k R is a 
semi-state vector,   mu k R is a control input vector.

Defi nition 1 (Yang & Zhang, 2004): Discrete singular 
system (2) is said to be regular if 

 det 0zE A  , for some z C .
Defi nition 2 (Yang & Zhang, 2004): The zero solution 

of discrete singular system (2) is said to be stable if for 
every , there exists a > 0, such that ||x(k; k0x0)||<e, 
for all k ≥ k0, whenever the arbitrary initial consistency 
value x(k0) = x0 which satisfi es ||x0|| < .

Defi nition 3 (Yang & Zhang, 2004): Discrete singular 
control system (3) is said to be causal if x(k) can be 
uniquely determined by x(0) and control input vectors 
u(0), u(1), ..., u(k) for any k ( 0 ≤ k ≤ N ). Otherwise, it is 
said to be non-causal.

Now consider the isolated subsystems of systems:
)()()1( kUBkxAkxE iiiiiii  ),,2,1( mi     (4)                             

Assume tha t  a l l  sys tems of  sys tems (4)  a re 
R-controllable, we choose the linear control law

Ui(k) = Kixi(k)(i = 1, ..., m)     (5)
Then singular closed-loop large-scale systems of 

systems (1) are given by 
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The corresponding closed-loop isolated subsystems are
      1 1, ,i i ii i i iE x k A B K x k i m       (7)                            

In order to investigate the stabilization of discrete 
singular large-scale control systems (1), we give the 
following lemmas:

Lemma 1 (Yang & Zhang, 2004): The system (3) is 
said to be R-controllable if 

rank [zE A   B] = n
for some z C .
Lemma 2 (Yang & Zhang, 2004): Discrete singular 

control system (3) is said to be causal if and only if 
deg {det (zE A)} = rank (E)
Lemma 3 (Yang & Zhang, 2004): Assume that 

, nu v R , n nV R  is a positive semi-defi nite matrix, then 
2uTVv ≤ euTVu + e-1vTVv holds for all e > 0.

Lemma 4 (Wo, 2004): Assume that the system (2) is 
regular and causal, then it is asymptotically stable if and 
only if given positive definite matrix W, there exists a 
positive semi-defi nite matrix V which satisfi es 

ATVA ETVE = ETWE
Lemma 5 (Wo, 2004): Assume that the system (2) is 

regular, causal, and there exists a function v(Ex) which 
satisfi es the following conditions, then the sub-equilibrium 
state of systems (2) Ex = 0 is asymptotically stable.

(a) v(Ex) = (Ex(k))TV(Ex(k)), where V is a positive 
semi-defi nite matrix, and rank(ETVE) = rankE =r;

(b) ))(())(())(( kExWkExkExv T , here W is a positive 
defi nite matrix.

MAIN RESULTS
Theorem 1: Assume that all isolated subsystems (4) of 
systems (1) are R-controllable, all closed-loop isolated 
subsystems (7) are regular, causal and asymptotically 
stable, and there exist real numbers  0,0    which 
satisfi es that 
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then when
3Wi  2Vi  3[δλM(Vi) + (m1)δλM + (m1)2δλM]Ii > 0
(i = 1, 2, ..., m)    (10) 

the zero solution of the singular closed-loop large-
scale systems (6) are asymptotically stable, the discrete 
singular large-scale control systems (1) are stabilizable. 
The interconnecting parameter region of stability is given 
by (10). Here Wi is a positive defi nite and Vi is a positive 
semi-definite matrix from Lemma 4, and λM(Vi) denotes 
the maximum eigenvalue of matrix Vi, )}({max

1 iMmiM V



, and Ii is a ni × ni  identity matrix.

Proof: systems (7) are regular and causal, as they are 
asymptotically stable, then given positive defi nite matrix 
Wi, Lyapunov matrix equation 
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have positive semi-defi nite solution Vi.
Construct quadratic form 
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as the scalar Lyapunov function of systems (7).
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By using Lemma 3, choose e = 1, we have
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corresponding dimension constant matrices. Thus the singu-
lar closed-loop large-scale systems (6) are equivalent to 
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Theorem 1 is proved.
Theorem 2: Assume that all subsystems (4) of system (1) 
are R-controllable, all closed-loop isolated systems (7) 
are regular, causal, and given positive defi nite matrix Wi,
there exists a positive semi-definite matrix Vi which 
satisfi es
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          1,i m  , 
 (13)

the zero solution of the discrete singular closed-loop 
large-scale systems (6) are unstable, the discrete singular 
large-scale control systems(1) are not stabilizable.

Proving is similar with Theorem 1, here it can be 
omitted.

EXAMPLE
Consider the following 5-order discrete singular large-
scale control system which consists of two sub-systems
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We choose the control law Ui(k) = Kixi(k) (i = 1, 2), 

1
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K

 
    
 

, 2
1 0
2
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It is easy to test that (8) and (9) are holded, then we 
know this system (14) is satbilizable from Theorem 1.

CONCLUSION
In this paper, the state feedback stabilization of a kind of 
nonlinear discrete singular large-scale control systems 
is investigated by using generalized Lyapunov function 
method. According to the bound limit parameter of 
interconnecting terms, there gives some sufficient 
conditions for determining the asymptotical stability 
and unstability of the singular closed-loop large-scale 
system while the subsystems are regular, causal, and 
R-controllable. 
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