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Abstract
The study of protein stochastic system is very important 
in theorem and application. Recently, using wavelet, 
some persons have studied wavelet problems of stochastic 
processes or stochastic system, We take wavelet and use 
them in a series expansion of signals or functions, Wavelet 
has its energy concentrated in time to give a tool for the 
analysis of transient and nonstationary and time-varying 
phenomena. Wavelets have contributed to this already 
intensely developed and rapidly advancing field. In this 
paper, we study the energy of a stochastic vibration system 
of a class of protein through wavelet alternation. We give 
out the equation of the protein stochastic vibration system, 
and obtain Wavelet expansions of system for processes 
that are continuous in mean square. We obtain some new 
results for the study of the protein stochastic vibration 
system.
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system; Energy
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INTRODUCTION
The study of protein system are very important[1-4]. In 
this paper, we study the energy of a stochastic vibration 
system of a class of protein through wavelet alternation.

 With the rapid development of computerization,  

computerized scientific instruments come a wide 
variety of interesting problems for data analysis and 
signal processing. In fields ranging from Extragalactic 
Astronomy to Molecular Spectroscopy to Medical 
Imaging to computer vision, one must recover a signal, 
curve, image, spectrum, or density from incomplete, 
indirect, and noisy data. Wavelets have contributed to this 
already intensely developed and rapidly advancing fi eld.

Wavelet has its energy concentrated in time to give a 
tool for the analysis of transient, nonstationary, or time-
varying phenomena. It still has the oscillating wavelike 
characteristic but also has the ability to allow simultaneous 
time and frequency analysis with a fl exible mathematical 
foundation. We take wavelet and use them in a series 
expansion of signals or functions much the same way a 
Fourier series the wave or sinusoid to represent a signal or 
function.

Wavelet analysis consists of a versatile collection of 
tools for the analysis and manipulation of signals such 
as sound and images as well as more general digital data 
sets, such as speech, electrocardiograms, images. Wavelet 
analysis is a remarkable tool for analyzing function of 
one or several variables that appear in mathematics or in 
signal and image processing. With hindsight the wavelet 
transform can be viewed as diverse as mathematics, 
physics and electrical engineering. The basic idea is 
always to use a family of building blocks to represent 
the object at hand in an effi cient and insightful way, the 
building blocks themselves come in different sizes, and 
are suitable for describing features with a resolution 
commensurate with their size.

There are two important aspects to wavelets, which 
we shall call “mathematical” and “algorithmical”. 
Numerical algorithms using wavelet bases are similar to 
other transform methods in that vectors and operators are 
expanded into a basis and the computations take place 
in the new system of coordinates. As with all transform 
methods such as approach hopes to achieve that the 
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We can obtain solution of (4):
G(s)= 1)-(sAA 21eS   (5)
Where A1 and A2 are Constant.

THE ENERGY OF THE PROTEIN SYSTEM 
BASE ON WAVELET
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We call it as Haar wavelet[9].
The wavelet alternation of G(t) is
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computation is faster in the new system of coordinates 
than in the original domain, wavelet based algorithms 
exhibit a number of new and important properties. 
Recently some persons have studied wavelet problems of 
stochastic process or stochastic system[5-13].

We know[4] the equation of the protein vibration system 
is:
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We study its stochastic action as follow.
Let p(n, t) is the probability of system at time t, its re-

fl ect equation:

dp (n, t)
    dt

  

where, p (n, t; m, t  express the joint probability of 
system have n molecular at time t and have m molecular 
at time t  
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Then, we have
Ws = F (I1-I2)
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WAVELET EXPANSIONS OF SYSTEM
For processes that are continuous in mean square,

i.e.  E 2)(tG  and E 0)()( 2  sGtG as→s.[5]

we consider wavelet expansions of stochastics processes 
and show that for certain wavelets, the coeffi cients of the 
expansion have negligible correlation for different scales. 
We can introduce a modifi cation of the wavelets. Certain 
nonstationary processes the wavelets may be chosen to 
give uncorrelated coeffi cients.

We observe that the approximation of G(t) by Gm(t), 
where

Gm(t)= 
n

mnmn ta ),(    dtttGa mnmn )()( 

is mean square for any ,Sr  that is: E[G(t)- Gm(t)] 0 , 
as m  , t R , we express Gm(t) in the wavelet series 

is, 
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