

Endosymbiotic Actinidic Archaeal Mediated Warburg Phenotype Mediates Human Disease State

Ravikumar Kurup A.1,*; Parameswara Achutha Kurup¹

¹The Metabolic Disorders Research Centre, TC 4/1525, Gouri Sadan, Kattu Road, North of Cliff House, Kowdiar PO, Trivandrum, Kerala, India.

*Corresponding author.

Received 13 January 2012; accepted 14 March 2012.

Abstract

Aims and Objectives: Endomyocardial fibrosis along with the root wilt disease of coconut is endemic to Kerala with its radioactive actinide beach sands. Actinides like rutile as well as organisms like phytoplasmas and viroids have been implicated in the etiology of these diseases. The Warburg phenotype has been related to the pathogenesis of schizophrenia, malignancy, metabolic syndrome x, autoimmune disease and neuronal degeneration. The possibility of the Warburg phenotype induced by actinide based primitive organism like archaea with a mevalonate pathway and cholesterol catabolism was considered in these disease states.

Methodology: Plasma from fasting heparinised blood was used and the experimental protocol was as follows (I) Plasma+phosphate buffered saline, (II) same as I+cholesterol substrate, (III) same as II+rutile 0.1 mg/ml, (IV) same as II+ciprofloxacine and doxycycline each in a concentration of 1 mg/ml. The following estimations were carried out:- Cytochrome F420 and hexokinase.

Results: Plasma of control subjects showed increased levels of the above mentioned parameters with after incubation for 1 hour and addition of cholesterol substrate resulted in still further significant increase in these parameters. The plasma of patients showed similar results but the extent of increase was more. The addition of antibiotics to the control plasma caused a decrease in all the parameters while addition of rutile increased their levels. The addition of antibiotics and rutile to the patient's plasma produced the same changes but the extent of change was more in patient's sera as compared to controls

Conclusion: An actinide dependent shadow biosphere of archaea in the above mentioned disease states is described. It generates the Warburg phenotype contributing to the pathogenesis of schizophrenia, malignancy, metabolic syndrome x, autoimmune disease and neuronal degeneration.

Key words: Actinide; Archaea; Warburg phenotype; Systemic disease

Ravikumar Kurup A., Parameswara Achutha Kurup (2012). Endosymbiotic Actinidic Archaeal Mediated Warburg Phenotype Mediates Human Disease State. *Advances in Natural Science*, 5(1), 81-84. Available from: URL: http://www.cscanada.net/index.php/ans/article/view/j.ans.1715787020120501.1105 DOI: http://dx.doi.org/10.3968/j.ans.1715787020120501.1105

INTRODUCTION

Endomyocardial fibrosis along with the root wilt disease of coconut is endemic to Kerala with its radioactive actinide beach sands. Actinides like rutile as well as organisms like phytoplasmas and viroids have been implicated in the etiology of these diseases^[1,2,3,4]. The Warburg phenotype has been related to the pathogenesis of schizophrenia, malignancy, metabolic syndrome x, autoimmune disease and neuronal degeneration^[4]. The possibility of Warburg phenotype induced by actinide based primitive organism like archaea with a mevalonate pathway and cholesterol catabolism was considered in this paper^[5-8]. An actinide dependent shadow biosphere of archaea and viroids in the above mentioned disease states is described.^[7,9].

MATERIALS AND METHODS

The following groups were included in the study:endomyocardial fibrosis, alzheimer's disease, multiple sclerosis, non-hodgkin's lymphoma, metabolic syndrome x with cerebrovascular thrombosis and coronary artery disease, schizophrenia, autism, seizure disorder, creutzfeldt jakob disease and acquired immunodeficiency syndrome. There were 10 patients in each group and each patient had an age and sex matched healthy control selected randomly from the general population. The blood samples were drawn in the fasting state before treatment was initiated. Plasma from fasting heparinised blood was used and the experimental protocol was as follows (I) Plasma+phosphate buffered saline, (II) same as I+cholesterol substrate, (III) same as II+rutile 0.1 mg/ ml, (IV) same as II+ciprofloxacine and doxycycline each in a concentration of 1 mg/ml. Cholesterol substrate was prepared as described by Richmond^[10]. Aliquots were withdrawn at zero time immediately after mixing and after incubation at 37°C for 1 hour. The following estimations were carried out:- Cytochrome F420 and hexokinase[11-^{13]}. Cytochrome F420 was estimated flourimetrically (excitation wavelength 420 nm and emission wavelength

520 nm). Informed consent of the subjects and the approval of the ethics committee were obtained for the study. The statistical analysis was done by ANOVA.

RESULTS

Plasma of control subjects showed increased levels of the above mentioned parameters with after incubation for 1 hour and addition of cholesterol substrate resulted in still further significant increase in these parameters. The plasma of patients showed similar results but the extent of increase was more. The addition of antibiotics to the control plasma casued a decrease in all the parameters while addition of rutile increased their levels. The addition of antibiotics to the patient's plasma caused a decrease in all the parameters while addition of rutile increased their levels but the extent of change was more in patient's sera as compared to controls. The results are expressed in tables 1-2 as percentage change in the parameters after 1 hour incubation as compared to the values at zero time.

Table 1
Effect of Rutile and Antibiotics on Cytochrome F420

Group	CYT F420 % (Increase with Rutile)		CYT F420 % (Decrease with Doxy+Cipro)	
	Mean	<u>±</u> SD	Mean	± SD
Normal	4.48	0.15	18.24	0.66
Schizo	23.24	2.01	58.72	7.08
Seizure	23.46	1.87	59.27	8.86
AD	23.12	2.00	56.90	6.94
MS	22.12	1.81	61.33	9.82
NHL	22.79	2.13	55.90	7.29
DM	22.59	1.86	57.05	8.45
AIDS	22.29	1.66	59.02	7.50
CJD	22.06	1.61	57.81	6.04
Autism	21.68	1.90	57.93	9.64
EMF	22.70	1.87	60.46	8.06
	F value 306.749 P value < 0.001		F value 130.054 P value < 0.001	

Table 2
Effect of Rutile and Antibiotics on Hexokinase

Group	Hexokinase % change (Increase witth Rutile)		Hexokinase % change (Decrease with Doxy+Cipro)	
	Mean	\pm SD	Mean	± SD
Normal	4.21	0.16	18.56	0.76
Schizo	23.01	2.61	65.87	5.27
Seizure	23.33	1.79	62.50	5.56
AD	22.96	2.12	65.11	5.91
MS	22.81	1.91	63.47	5.81
NHL	22.53	2.41	64.29	5.44
DM	23.23	1.88	65.11	5.14
AIDS	21.11	2.25	64.20	5.38
CJD	22.47	2.17	65.97	4.62
Autism	22.88	1.87	65.45	5.08
EMF	21.66	1.94	67.03	5.97
	F value 292.065 P value < 0.001		F value 317.966 P value < 0.001	

DISCUSSION

There was increase in cytochrome F420 indicating archaeal growth. The archaea can synthesise and use cholesterol as a carbon and energy source^[6,14]. The archael origin of the enzyme activities was indicated by antibiotic induced suppression. The study indicates the presence of actinide based archaea with an alternate actinide based enzymes or metalloenzymes in the system as indicated by rutile induced increase in enzyme activities^[15,16]. The archaeal glycolytic hexokinase activity were increased. The part of the increased glycolytic hexokinase activity detected is human. The archaea can undergo magnetite and calcium carbonate mineralization and can exist as calcified nanoforms^[17].

Archaea can induce the host AKT PI3K, AMPK, HIF alpha and NFKB producing the Warburg metabolic phenotype^[18]. The increased glycolytic hexokinase activity indicates the generation of the Warburg phenotype. The generation of the Warburg phenotype is due to activation of HIF alpha. This stimulates anaerobic glycolysis, inhibits pyruvate dehydrogenase, inhibits mitochondrial oxidative phosphorylation, stimulates heme oxygenase, stimulates VEGF and activates nitric oxide synthase. This can lead to increased cell proliferation and malignant transformation. The mitochondrial PT pore hexokinase is increased leading onto cell proliferation. There is induction of glycolysis, inhibition of PDH activity and mitochondrial dysfunction resulting in inefficient energetics and metabolic syndrome. The archaea and viroid generated cytokines can lead to TNF alpha induced insulin resistance and metabolic syndrome x. The increase in glycolysis can activate glyceraldehyde 3 phosphate dehydrogenase which gets translocated to the nucleus after polyadenylation. The PARP enzyme is activated by glycolysis mediated redox stress. This can produce nuclear cell death and neuronal degeneration. The increase in the glycolytic enzyme fructose 1,6 diphosphatase increases the pentose phosphate pathway. This generates NADPH which activates NOX. NOX activation is related to NMDA activation and glutamate excitotoxicity. This leads onto neuronal degeneration^[18].

The increase in glycolysis activates the enzyme fructose 1,6 diphosphatase which activates the pentose phosphate pathway liberating NADPH. This increases NOX activity generating free radical stress and H₂O₂. Free radical stress is related to insulin resistance and metabolic syndrome x. Free radicals can activate NFKB producing immune activation and autoimmune disease. Free radicals can open the mitochondrial PT pore, produce release of cyto C and activate the caspase cascade. This produces cell death and neuronal degeneration. The free radicals can activate NMDA receptor and induce the enzyme GAD generating GABA. This activates the NMDA/GABA thalamocorticothalamic pathway mediating conscious perception. Increased free radical generation can also

intitiate schizophrenia. Free radicals can also produce oncogene activation and malignant transformation. Free radicals can produce HDAC inhibition and HERV generation. The encapsulation of HERV particles in phospholipids vesicles can mediate the generation of the acquired immunodeficiency syndrome. Free radicals can also promote atherogenesis^[18].

The lymphocytes depend on glycolysis for its energy needs. The increase in glycolysis owing to the induction of Warburg phenotype can lead to immune activation. Immune activation can lead to autoimmune disease. TNF alpha can activate the NMDA receptor leading to glutamate excitotoxicity and neuronal degeneration. TNF alpha activating NMDA receptor can contribute to schizophrenia. TNF alpha can induce expression of HERV particles contributing to generation of acquired immunodeficiency syndrome. Immune activation has also been related to malignant transformation mediated by NFKB. TNF alpha can also act upon the insulin receptor producing insulin resistance. NOX activation consequent to the generation of the Warburg phenotype also activates the insulin receptor. Thus there is a hyperinsulinemic state leading on to metabolic syndrome x^[18].

Thus the induction of the Warburg phenotype can lead to malignancy, autoimmune disease, metabolic syndrome x, neuropsychiatric disease and neuronal degeneration. The Warburg phenotype leads to inhibition of pyruvate dehydrogenase and accumulation of pyruvate. The accumulated pyruvate enters the gaba shunt pathway and is converted to citrate which is acted upon by citrate lyase and converted to acetyl CoA, used for cholesterol synthesis. The pyruvate can be converted to glutamate and ammonia which is oxidised by archaea for energy needs. The increased cholesterol substrate leads to increased archaeal growth and further induction of the Warburg phenotype^[18].

REFERENCES

- [1] Hanold, D. & Randies, J. W. (1991). Coconut Cadang-Cadang Disease and Its Viroid Agent. *Plant Disease*, 75, 330-335.
- [2] Valiathan M. S., Somers, K., Kartha, C. C. (1993). *Endomyocardial Fibrosis*. Delhi: Oxford University Press.
- [3] Edwin, B. T. & Mohankumaran, C. (2007). Kerala Wilt Disease Phytoplasma: Phylogenetic Analysis and Identification of a Vector, *Proutista Moesta*. *Physiological and Molecular Plant Pathology*, 71(1-3), 41-47.
- [4] Kurup, R. & Kurup, P. A. (2009). *Hypothalamic Digoxin, Cerebral Dominance and Brain Function in Health and Diseases*. New York: Nova Science Publishers.
- [5] Eckburg P. B., Lepp, P. W., Relman, D. A. (2003). Archaea and Their Potential Role in Human Disease. *Infect Immun*, 71, 591-596.
- [6] Smit, A. & Mushegian, A. (2000). Biosynthesis of Isoprenoids via Mevalonate in Archaea: The Lost Pathway.

- Genome Res, 10(10), 1468-84.
- [7] Adam, Z. (2007). Actinides and Life's Origins, Astrobiology, 7, 6-10.
- [8] Schoner, W. (2002). Endogenous Cardiac Glycosides, a New Class of Steroid Hormones. *Eur J Biochem*, 269, 2440-2448.
- [9] Davies P. C. W., Benner, S. A., Cleland, C.E., Lineweaver, C.H., McKay, C.P., Wolfe-Simon, F. (2009). Signatures of a Shadow Biosphere. *Astrobiology*, 10, 241-249.
- [10] Richmond, W. (1973). Preparation and Properties of a Cholesterol Oxidase from Nocardia Species and Its Application to the Enzymatic Assay of Total Cholesterol in Serum. *Clin Chem*, 19, 1350-1356.
- [11] Snell E. D., Snell, C. T. (1961). *Colorimetric Methods of Analysis* (Vol. 3A). New York: Van NoStrand.
- [12] Glick D. (1971). Methods of Biochemical Analysis (Vol. 5). New York: Interscience Publishers.
- [13] Colowick, Kaplan, N. O. (1955). *Methods in Enzymology* (Vol. 2). New York: Academic Press.

- [14] Van der Geize R., Yam, K., Heuser, T., Wilbrink, M. H., Hara, H., Anderton, M. C. (2007). A Gene Cluster Encoding Cholesterol Catabolism in a Soil Actinomycete Provides Insight into Mycobacterium Tuberculosis Survival in Macrophages. *Proc Natl Acad Sci USA*, 104(6), 1947-52.
- [15] Francis, A. J. (1998). Biotransformation of Uranium and Other Actinides in Radioactive Wastes. *Journal of Alloys and Compounds*, 271(273),78-84.
- [16] Probian, C., Wülfing, A. & Harder, J. (2003). Anaerobic Mineralization of Quaternary Carbon Atoms: Isolation of Denitrifying Bacteria on Pivalic Acid (2,2-Dimethylpropionic Acid). Applied and Environmental Microbiology, 69(3), 1866-1870.
- [17] Vainshtein M., Suzina, N., Kudryashova, E., Ariskina, E. (2002). New Magnet-Sensitive Structures in Bacterial and Archaeal Cells. *Biol Cell*, *94*(1), 29-35.
- [18] Wallace, D.C. (2005). Mitochondria and Cancer: Warburg Addressed. *Cold Spring Harbor Symposia on Quantitative Biology*, 70, 363-374.