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Reducible Property of a Finitely Generated Module'

ZENG Li-jiang®

Abstract: In the article, G-invariant element, Inv, (V), Hom,(U,V) and other

concepts were introduced, Several lemmas were proved to use these concepts, Finally, it
had been proved that let F be a field whose characteristic dose not divide |G|. Then every
finitely generated F[G] module is completely reducible.
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Let 4 be aring and let V, W be 4 modules. Hom 4V, W) is the additive abelian group of all homomorphisms
from V to W, The same notation will be used in case V, W are left 4 modules. Let V', 4,V denote the fact that

V' is an A module, left A module respectively. V=,V is a two sided (4, B) module. Let 4, B be rings, Let
acA, beB feHom,(V,W) andlet velV, weW then the following hold.

Lemma 1: Hom,(3V 4, W) is a B module with (fb)v=£bv).

Lemma 2: Hom,(V 4, W) is a left B module with (bf)v=>b(fv).

In the following A4 is a ring which satisfies A.C.C

All the results in this article will be stated in terms of finitely generated modules (Jacobson, 1956).
This is all that will be required in the sequel. However it is well-known that analogous results hold for
arbitrary modules even if 4 does not satisfy any chain condition.

A finitely generated 4 module P is projective if every exact sequence

O—-W—V—-P—0

with V, W finitely generated 4 modules is a split exact sequence.

Lemma 3: Let B be a subring of A with 1 € B such that B satisfies A.C.C., 4 is a finitely generated
free B module and 34 is a finitely generated free left B module. Let P be a finitely generated A module. The
following are equivalent.

(i) P is B-projective.
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(i) PP, ®,, 4, .

(iii) P|W ®, 5 A, for some finitely generated B module .

The detail of proof of this lemma above can be found in Reference (Jacobson, 1956).

Lemma 4: Let e be an idempotent in 4 and let /' be an 4 module. Define f: Ve—Hom,(eA,V) by
flv)ea=vea. Then f'is a group isomorphism. If 4 is an R algebra then Ve and Hom 4(eA,V) are R modules and
fis an R-isomorphism. If V'=eA then f: eAe—FE 4(eA) is a ring isomorphism. Thus in particular
E(A)=ARE(44).

Proof: By Lemma 1 and Lemma 2 Ve and Hom(eA, V) are R modules if 4 is an R-algebra. In this case f
is clearly an R-homomorphism. In any case f is a group homomorphism and if V=ed, f is a ring

homomorphism. If 1 € Hom (eA, V) then f{h(e))=h. Thus f'is an epimorphism (Robinson, 2003; Osima; LI
& Skiba, 2008; GUO & Skiba, 2006).

The last statement follows by setting e =1. The lemma is proved. 0

Let H be a subgroup of G and let V' be an R[G] module then V=V denotes the restriction of ¥ to
R[H]. If W is an R[H] module then

wo=w ®] R[H]R[G]R[G]

R[H
The R[G] module W is said to be induced by .
Let {x;} be a cross section (Alperin & Rowen, 1997; LI et al., 2003) of H in G. Then R[G] is a free left

R[H] module with basis {x;}. Thus if ¥ is an R[H] module then V= @,V ® x, where this is a direct sum of
Rmodules andif veV, x € G then
(vOX)x=v®xx=v®yx, =y ®x;
Where xx=yx; with yEH.
Suppose that 0 is an automorphism of R[G] such that R O =Rand GO =G. Thus & defines an

automorphism of R and one of G. If H is a subgroup of G and V'is an R[H] module define the R[H] <

module VO as follows. V'C ={vo | vEV} where
vo twgog =(vtw)g forv,weV.

vaa(j:(va)o- forveV,a€R[H]

If o is an automorphism of R let V9 =51 where 0, is the automorphism of R[G] defined

by (erG rx)” = ZXEG ryx.

If o is an automorphism of G let VO =y 91 where 0, is the automorphism of R[G] defined by
(erG }"xx)o-‘ - Z)CEG l"x xa :
For x € G define the R[H"]-module
V=r®x={v&x|v &V}

Where (v® x)y*=vy ® x for y € H. clearly "=V'C where zC =x"zx for all zE H.
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Lemma 5: Let H be a subgroup of G. Let V' be an R[G] module and let ¥ be an R[H] module. Then

VQ Wo(V; @ w)°.
Proof: Let {x;} be a cross section of H in G. Define £ V& W—(V,;® W) by

FIv® w® x)}=(wx;' @ w)® x;
forvEV, we W. Clearly f'is an R-isomorphism. Let x € G. Suppose that xx=yx; with y € H. Then
SO w® x)lx=(x' @ wy ®x;
=(xy @ wy) ® x=(vxx; ® wy) @ x;
and
v ® (w® x)}x]=Hx ® (wy ® x))}= (v @ wy) A x;

Thus fis an R[G] homomorphism (REN & Shum, 2004) as required. The lemma is proved. O

Let V'be an R[G] module. An element vE V' is a G-invariant element (HUANG & GUO, 2007) or
simply an invariant element if vx=v for all x € G. Let Invg(V)denote the set of G-invariant elements in V.
clearly Invg(V) is an R module.

Let ¥, W be R[G] modules. For f€ Homg (V, W) and x € G define fx by (v)(fx)={(vx")f}x for vE V.
clearly fx € Homg(V, W) and (fx)y=f(xy). In this way Homg(V, W) becomes an R[G] module.

If V, W are finitely generated R-free R[G] modules of rank m and n respectively then Homg(V, V)=R,,
Homp(W, W)=R,, and Hompy (V, W) consists of all m xn matrices with entries in R. Forx€ G let a, ,b,

respectively be the map sending v to vx, w to wx respecticely for vE V, we W. Then a, € Homg(W, W) and if
€ Homg(V, W) then fx=a,'fb,. In case W=R with rx=r for all € R and xE G, Homg(V, R)= A as an R
module. If /€ " and vE V, (v)(f)=(vx")f=u(x"'f) for x € G. Homy(V, R) made into an R[G] module in this

way will be dentoed by VR o simply V" if R is determined by context.

Lemma 6: Let V, W be R[G] modules. Then Invg(Homg(V, W))= Hompgc(V, W).

Proof: By definition /'€ Invg(Homp(V, W)) if and only if f=fx for all x € G. This is the case if and only
if (V)f=()(f)={vx"}f}x for all vE V, xE G. This last condition is equivalent to the fact that f&€ Hompgg\(V,
W). The lemma is proved. o

Lemma 7: Let H be a subgroup of G. Let V' be an R[G] module and let # be an R[H] module.Then

() {Homp(W, Vi) } “=Homp(W°, V).

(i) {Homg(Vyy, W)} =Homp(V, W).

Proof. Let {x;} be a cross section of H in G.

() If f€ {Homg(W, V)1 then =Y f;® x; for f;E€ Homp(W, V). Define }d € Homg(W°, V) by

Cw; ® x) P=Z{(w,—)f,-}x,-. Let g be the map sending f'to }d Clearly g is an R-homomorphism. If }d =0
then > {(w;)f;}x; =0 for all w;E W and so f=0 for all i.Thus /=0. Therefore g is a monomorphism. If
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h € Homg(WC, V) then (Yw; ® x)h=Y {(w)h;}x; for some h;E Homp(W, Vy)). Hence h=  with f =Y, ® x;
and so g is an epimorphism.
Let x € G. For each i, xx=yx,; where y;E€ H and x,—x; is a permutation of {x;}. Thus if /=Y f; ® x; then

fx=Y1fy: ® x,. Furthermore

(Zwl. ®xl.)(}"x) = {(sz— ®xl.x’1)}c'}x
(o @x) Fx =3 (0w fikex

and

(Zw@x) U =(Zw@x)(Z /v @x)
= D2 AMy)ix =2 AWy D iy X
Since yx;=x:x this implies that g is an R[G] isomorphism.
(iD)If € {Homg(Vy, W)} then =Y f; ® x; where f; € Homg(Vy, W). Define }d € Homg(V, W°) by
o) = Z (fol) f; ®x, . Let g be the map sending f to J. It is easily seen that g is an R-isomorphism.
Let x € G, Let xx=yx; with y,€ H for each i. Then if /=51, & x;

M) = {0 )P =D (') [, @xx = {0 5 ) 1}y, O,

W =0T /v, ®x )= Tty S ©x

Since x;l y;l = x*lx;1 this implies that g is an R[G] isomorphism. The lemma is proved. o

Lemma 8: Assume that R satisfies A.C.C. Let H be a subgroup of G. Let U, V' be finitely generated
R[G] module The following hold.

(DIf Vis R-free and U is a projective or free R[G] module then each of U® V, U*, Homy(U, V) and
Hompg(V, U) is a projective or free R[G] module respectively.

(ii) If U is R[H]-projective then U® V, U*, Homy(U, V) and Homg(V, U) are all R[H]-projective.
Proof: (i) Let V- ;-=nRn. By Lemma 5 V & ng = mnRg is free. By Lemma 4 and Lemma 7
Hom,(mRy , V) = {Hom,(mR,, nR,)}* ~ mn{Hom,(R,, R, =~ mnRy
is free and
Hom,(V,mRS) ~ {Hom,(nR,, mR,)}’ ~ mnRy
is free The rest of (i) follows from (ii) with H=<1>.

(ii) By Lemma 3 U | (U,,)° . Hence by Lemma 5
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UV|(U,) ®V~U,®V,) ={U®V),}°
Thus by Lemma 3 U ® V' is R[H]-projective. By Lemma 7
Hom, (U, V)| Hom,(U,)°, V)~ {Hom, (U, V), }°
Hom,(V,U) | Hom,(V,(U,,)") = {Hom, (V,U),, }°
Thus Hom,(U, V') and Hom,(V ,U) are R[H]-projective by Lemma 3. The lemma is proved. o
Lemma 9: Let H be a subgroup of G and let ¥ be an module. Then v € Inv, (W) if and only if
v=Tr(w®1) forsome we Inv, (W). Furthermore H(G, H, W)= (0).
Proof: If v & Inv, (W) then Tr; (w®1) € Inv,(W°).
Let {x,} be a cross section of H in G with x;=1. Suppose that v= "> w, ®x, € Inv, (W) for

w, € W . Then for each j and each ye H
v:vx;1y®l+2wi '® X,
i>1

for suitable w, '€ W . Thus wy=w forall y € H . Hence w, € Inv, (V') and
V= z W, ®x, = Try (w, ®1) . The lemma is proved. 0

Lemma 10: Let A be a subgroup of G. Let V, W be finitely generated R[G] modules where V' is
R[H]-projective. Then

) H (G, H,7)=(0).

(i) H*(G, H, Hom,(V,W)) = H"(G, H, Hom,(W,V)) = (0)
Proof: (i) By Reference [10] V| (VH)G . Hence by Lemma 9
H'(G,H,V)|H* (G, H,(V,)")=(0)

(i) Immediate by (i) and Lemma 8. The lemma is proved. o

Lemma 11: Theorem: Let H be a subgroup of G and let /" be a finitely generated R[G] module. The
following are equivalent.

(1)V is R[H]-projective.

VI(Va).

(iii) V| W for some finitely generated R[H] module .

(iv)Homp(V, V)is R[H]-Projectice.

(VH(G, H, Homy(V, V))=(0).

(vi) There exists f€ Homgyn(V, V)=Invy{Homg(V, V)} such that Tr; (fH=1.

(vii)V'is R[H]-injective.
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Proof: By Lemma 3 (i), (ii) and (iii) are equivalent.

(ii1))—(iv). Clear by Lemma 8.

(iv)—(v). Clear by Lemma 10.

(v)—(vi). Immediate by definition and Lemma 6.

(vi)—(vii). suppose that W is an R[G] module with "C W such that V| W}, . Thus there exists a

projection e of W onto ¥ which is an R[H]-homomorphism. Hence 77 I’]f (ef) €E Hompgig(W, W).Let {x;}be a

cross section of H in G. If wE W then
WIS (ef ) = 3 (v ef }x, € Y (Wef Ix, < V
And if vE V then

VT (ef) = AL el f 1, = XA ) = v (fi) =T () =v

Hence T r,f (ef) is a projection of W onto V and so V|W as required.
(vii)—(ii). Let{x;} be a cross section of H in G with x,;=1 Define g: V—(Vy)° by gv= Zi VX, '® X;.
Thus g:TI”; (h) where h:V—V & 1 with hv=v® 1. If gv=0 then vx,”" ® x;=v® 1=0. Hence g is an

R[G]-monomorphism. Let W= {Z#I v, ®Xx,} . Then W is an R[H] module. Clearly g(V)NW=(0). If
sz‘ ®x, €V then

2vi®x,, 22“\/1)6[_1 D x, +Z(v[—v1x[_l)®x[

:g(vl)+2(vi_le;l)®xi eg()+w

i#1
Hence {(V)} =g(V)y ® W. Therefore V| {(V)“}y and so V|(Vy) since V is R[H]-injective. The theorem
is proved. O

Lemma 12: Let P be a finitely generated 4 module. The following are equivalent.

(i) P is projective.

(i1)P| ¥ for some finitely generated free 4 module.

(iii))Every diagram

P

1]
U—-V-—-0

with U, V finitely generated 4 modules in which the row is exact can be completed to a commutative

diagram
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]
U-=V—0.
Proof: It is clear by definition above.o
Lemma 13: Let B be a subring of 4 with 1€ B such that B satisfies A.C.C., 4 is a finitely generated

free B module and 34 is a finitely generated left B module, Let /" be a finitely generated 4 module, Then V'
is projective if and only if Vj is a projective B module and V' is B-projective.
Proof: Clear by definition and lemma 12.0

Lemma 14: Suppose that |G:H| has an inverse in R for some subgroup H of G. Then every finitely
generated R[G] module is R[H]-projective.

Proof: Let £=(1/|G:H|)1 € Homgy(V, V), Then TrHG (f) =1 .The result follows from lemma 11.0

Lemma 15: Suppose that |G| has an inverse in R. Then every finitely generated R[G] module is
projective and every finitely generated R-free R[G] module is projective. If furthermore V is an
indecomposable R[G] module and 7 is a submodule of V" with W|Vthen W=(0) or W=V.

Proof: Clear by lemma 14 and lemma 13. o

Theorem: Let F' be a field whose characteristic dose not divide |GJ. Then every finitely generated F[G]
module is completely reducible.

Proof: By lemma 15 every finitely generated |G| module is projective. Thus every finitely generated
F[G] module is completely reducible. Since F|G]q ¢ is completely reducible it follows that F[G] is
semi-simple. O
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