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Abstract:  Multi-class classification is an important and on-going research subject in 
machine learning. In this paper, we propose an algorithm model for k-class 
multi-class classification problem based on p-class (2≤ p ≤ k) support vector ordinal 
regression machine (SVORM). A series of algorithms can be generated by selecting 
the different parameters p, L and the code matrix. When p = 2, they reduce to the 
popular algorithms based on 2-class SVMs. When p = 3, they improve K-SVCR in [1] 
and ν-K-SVCR in [19]. The algorithms based on p- class SVORM in this algorithm 
model are more interesting because our preliminary numerical experiments show that 
then are promising. At last, some problems for further study are suggested. 
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1.  INTRODUCTION 
 

Multi-class classification is an important problem in data mining and machine learning. A k -class 
classification problem is described as follows: Given a training 

,)()},(,),,{( 11
l

ll YXyxyxT ×∈= Λ                  (1) 

where n
i RXx =∈  is the input, },,2,1{ kYyi Λ=∈ is the output or the class label, l is the 

number of training points, our task is to find a decision function },,2,1{: kYRf n Λ=→ , by which 
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any input nRx ∈  is assigned an output or a class label )(xf . Currently there are roughly two types of 
approaches to solve this problem. One is the “all-together” approach [4, 7, 13, 16, 17] that solves the 
k -class problem by considering all training points from all classes in one optimization formulation, 
while the other is the “decomposition-reconstruction” architecture approach [1-3,5,8-12,16,18,19]. The 
“decomposition-reconstruction” architecture approach first uses a decomposition scheme to transform a 
k -class problem into a series of 2-class subproblems or 3-class subproblems and get a series of 
classifiers, and then uses a reconstruction scheme to fuse the outputs of all classifiers for a particular 
input and assign it to one of the k  classes. Most of the decomposition schemes are based on 2-class 
subproblems including “one-versus-one” method[11,12], “one-versus-rest” method [5,16] and the more 
general “error-correcting output code (ECOC)” method [3,8-10]. But recently, there are also some 
decomposition schemes based on 3-class subproblems, such as K-SVCR[1], υ -K-SVCR[19]. 

   The algorithm proposed in this paper belongs to the “decomposition-reconstruction” architecture 
approach, but instead of 2-class or 3-class subproblems, p -class subproblems are constructed, where 
p  is any integer between 2 and k . Furthermore, the p -class subproblemss are solved by support 

vector ordinal regression machine (SVORM). Note that using SVORM to solve 3-class subproblem was 
proposed first time in our work [18] and latter in [2]. This idea is developed and studied in detail here. 

The main contribution of this paper is to establish a very general algorithm model. It consists of the 
following steps: (1) For a k -class classification problem, construct several, say L , p -class 
classification subproblems, where ],2[ kp∈  is an integer parameter; (2) Solve the above L  

subproblems by SVORM and get L  classifiers )(,),(1 xfxf LΛ ; (3) For any input x , assign its 
class label.  

The rest of the paper is organized as follows: In section 2, SVORM is briefly introduced. Section 3 
and section 4 give the multi-class algorithm model and three concrete algorithms respectively. 
Preliminary experimental results are presented in Section 5. Finally, in section 6 some conclusions are 
drawn and further research is suggested. 

 

2.  SUPPORT VECTOR ORDINAL REGRESSION MACHINE (SVORM) 

 

2.1 SVORM Algorithm 
Support Vector Ordinal Regression Machine is studied in [15]. It solves a special class of multi-class 
classification problems with order. For convenience, the training set here is expressed by the following 
way: 

pj
li

j
i jxT ,,1

,,1}{ Λ
Λ

=
=

=                               (2) 
where nj

i Rx ∈  is the input, j  is the output or the class label and jl  is the number of the training 

points in each class j . Our task is to find a real value function )(xg  and an orderly real sequence 

11 −≤≤ pbb Λ , and, then, construct a decision function 
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},,1{

<−=
∈

r
pr

bxgrxf
Λ

,                (3) 

where +∞=pb . 

Using the map Η→Φ nRx :)( , where Η is a Hilbert space, the maximum margin principle leads 
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to the following optimization problem 
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(4)--(7) can be expressed as 
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where ))'()(()',( xxxxK Φ⋅Φ=  is the kernel, ,,,,,,,,( 1*
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   Now we are in a position to describe the SVORM algorithm: 

Algorithm 1. (SVORM) 

1st. Given a training set (2); 

2nd. Select 0>C  and a kernel )',( xxK , solve the dual problem (8)—(10) and get its solution 
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4th.  For ,1,,1 −= pj Λ  execute the following steps: 

4th  1.1   Try to choose a component ),0( Cj
i ∈α  in 

(*)α . If we get such i , let 
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Otherwise go to 4th  1.2   ; 

4th  1.2   Try to choose a component ),0(1* Cj
i ∈+α  in 

(*)α . If we get such i , let 
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Otherwise go to 4th  1.3; 

4th  1.3   Let  
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5th. If there exists },,1{ pj Λ∈  such that ,1−≤ jj bb  stop or go to 2; 

6th. Define +∞=pb , construct the decision function 

}.0)(:{min)(
},,1{

<−=
∈ rpr
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Λ

                   (15) 

                                                                   
 

2.2 The order in the training set 

Intuitively and geometrically, SVORM with kernel divides the p -class inputs by 1−p  parallel 
hyperplanes with fixed order in the feature space Η . Note that, there must be adjacency among the 
p -class: class j  adjoins both class 1−j  and class 1+j , but class 1−j  is not adjacent to class 

1+j . It is clear that the final partition hyperplanes in the feature space Η , and therefore the partition 

hyperplanes in the original input space 
nR  obtained by SVORM depend on the order in the set Υ ; 

when this order is changed, the classifier obtained is also changed too. Thus, for a given p -class 
training set, many different classifiers can be obtained when different order in Υ  is assigned. However, 
can we find a reasonable classifier for any order in Υ ? Generally speaking, the answer is positive if the 

kernel in SVORM corresponds a map )(xΦ  with high dimension space Η . The reason is that in high 
dimension space a training set with any order in Υ  is usually possible to be partitioned by parallel 
hyperplanes suitably although it is nor true in low dimension space. Imaging the case with three inputs 

1x , 2x  and 3x , and by putting superscripts on them with different orders, three training sets can be 
constructed following the expression of (1): 
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Let us compare the cases between 1Rx∈  and 2Rx∈ . For the first case 1Rx∈ , without loss of 
generality, assume that .321 xxx <<  Obviously, corresponding to both the training sets 2T  and 3T  
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there is no suitable parallel hyperplanes (points) with the order required. However, for the second case 
2Rx∈ . Most probably a triangle is formed by the three points 21 , xx and 3x . Now corresponding to 

the training sets 1T , 2T  and 3T , the suitable parallel hyperplanes (lines) with the order required does 
exist. This observation supports the following conclusion: Most probably for any order in Υ , SVORM 
works well when its kernel corresponds to a map )(xΦ  with high dimension space Η . 

  In order to confirm the above conclusion, we consider the artificial example appeared in [1] and 
[19], which can be visualized. There are 3 classes, and each one consists of 50 inputs generated by a 
Gaussian distribution in 2R :  

     Class I: 501 ,, xx Λ ; Class II: 10051 ,, xx Λ ; Class III: 150101 ,, xx Λ . 

By putting superscripts on them, three training sets are obtained: 
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13 xxxxxxT ΛΛΛ=             (19) 

The partition curves obtained by SVORM are shown in Fig.1, where the parameter C =1000, and the 
kernel is the polynomial kernel dxxxxK )1)'(()',( +⋅=  with degree d =2,3,4. 

 
Fig.1. Polynomial kernel , C=1000.(a) ;2,1 =dT (b) ;2,2 =dT (c) ;2,3 =dT (d) ;3,1 =dT  

(e) ;3,2 =dT (f) ;3,3 =dT (g) ;4,1 =dT (h) ;4,2 =dT (i) ;4,3 =dT  



YANG Zhixia, DENG Naiyang/Advances in Natural Science 
 Vol.1 No.1 2008  45-56 

 50

  

 From Fig 1, it can be observed that for any of the degree d =2,3,4, the training data are separated 
nicely when arbitrary order of classes is arranged. This implies the reasonability to use SVORM with 
kernel in our Algorithm 2 (Algorithm Model) established in next section. 

 

3.  MULTI-CLASS ALGORITHM MODEL 
 

Let us establish an algorithm model for a k -class classification problem by solving some p -class 
classification subproblems using SVORM. Suppose that the number of the p -class classification 
subproblems is L . In order to construct these subproblems, we extend and study the code matrix in 
[3,8-10]. A code matrix here is a matrix LkijmM ×= )(  with },,1{ pmij Λ∈ . According to its 

columns, the k -class classification problem is decomposed into L  p -class classification subproblems. 

Thus Algorithm 1 can be used to yield L  classifiers )(,),(1 xfxf LΛ . 

Next question is, for a given input x , how to assign the class it belongs to. Using the L  classifiers 
obtained above, we get a row vector formed by the outputs of these classifiers: 

)).(,),(()( 1 xfxfxF LΛ=  Obviously, if it happens that this row vector is the same with the i -th 
row in the code matrix M , the input x should be assigned to the class i . So, in general, the input x  
should be assigned to the class whose corresponding row of the matrix M  is closest to the row vector 

)(xF . Here the closeness is measured by the Hamming distance defined as follows: 

 

Definition 1. Given ),,,( 1 Laaa Λ=  L
L Rbbb ∈= ),,( 1 Λ ,  the Hamming distance ),( bad  

between a and b is defined as the number of their different components 

|}|{|),( ss basbad ≠= ,             (20) 

where || ⋅  is the number of the elements in the set. 

Now we are in a position to describe our algorithm model: 

 

Algorithm 2. (Multi-class algorithm model) 
1st.  Given a training set 

,)()},(,),,{( 11
l

ll YXyxyxT ×∈= Λ     (21) 

where n
i RXx =∈  is the input, },,2,1{ kYyi Λ=∈ is the output or the class label, l is the 

number of training points; 

2nd.  Select the positive integers },,2{ kp Λ∈ and L. Construct the code matrix ,)( LkstmM ×= , 

where };,,1{ pmst Λ∈  

3rd.  Construct the L, p-class classification subproblems: For Lt ,,1Λ= , according to the t-th 

column T
kttt mmm ),,( 1 Λ=  of the code matrix M, divide the inputs ix , Li ,,1Λ= , in the training 
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set (21) into p classes by assigning ix to the class tyi
m , and the t-th subproblems is constructed; 

4th.  Executing Algorithm 1 to the above subproblems, we get L, p-class classifiers 
)(,),(1 xfxf LΛ ; 

5th.  Construct a row vector )).(,),(()( 1 xfxfxF LΛ=  Assign a test point x  to the class 

J, 
),),((minarg rr

mxFdJ =
 where ),( ⋅⋅d  is Hamming distance defined by (20), rm is the r-th 

row of M.                                                                                                                                                □ 

A main advantage of the above algorithm model is its generality; It yields many algorithms by 
selecting the parameters p and L, and constructing the code matrix. 

 

4.  SOME ALGORITHMS 
 

In order to evaluate the above algorithm model, concrete algorithms will be derived from it. For this 
purpose, it is necessary to construct some code matrices. First, let us list some properties the code matrix 
should have:  

 
Property 1. Any element of code matrix is one among the integers p,,2,1 Λ . Furthermore, in each 

column of the code matrix, p,,2,1 Λ  should come forth at least once respectively because p-class 
classification subproblem will be solved.            

 Property 2. In the code matrix, there does not exist any two columns which lead to the same 
partition supersurfaces. Note that, for any subproblem corresponding to a column, a classifier is obtained 
by executing Algorithm 1 to it. If the i-th column and the j-th column of the code matrix is identical, the 
same classifier, and therefore the same partition surpersurfaces, will be obtained. This case should be 
excluded. Furthermore, similar case happens when the i -th column and the j-th column are 
complementary: they divide the k classes into p groups in the same way and label these p groups with the 
complete inverse order. For example, when k=p=3, the column T)3,2,1(  and T)1,2,3(  are 
complementary . Obviously, they yield the same partition surpersurfaces and therefore one of them 
should be deleted.                                           

 Remind that when 2-class or 3-class classifier are used, a popular strategy to construct the 
subproblems is ``one-verse-rest" or ``one-verse-rest-verse-one". When p-class classifiers are used, it is 
easy to see that the above Property 1 and 2 will be satisfied if the code matrix is constructed by extending 
the above strategy ------ keeping ``the rest" to be the second class in the p-class subproblems. This leads 
to the following two algorithms for k-class classification problem:  

Algorithm 3. ( Multi-class algorithm based on 3-class SVORM) 

The same with algorithm model except that p=3 and L=k(k-1)/2 are selected, and the code matrix 

LkstmM ×= )(  is constructed by ̀ `one-verse-rest-verse-one" decomposition architecture. For example, 

for a 4-class problem (k=4), the code matrix M should be a 64×  matrix:  
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⎟⎟
⎟
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⎝

⎛

=

222322
123232
211223
222111

M . 

                                                                         
Algorithm 4.  ( Multi-class algorithm based on 4-class SVORM) 

The same with algorithm model except that p=4 and L=k(k-1)(k-2)/3! are selected, and the code 
matrix LkstmM ×= )( is constructed by ``one-verse-rest-verse-one-verse-one" decomposition 
architecture. For example, for a 4-class classification (k=4), the code matrix 

M should be a 44×  matrix: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

2444
4233
3321
1112

M . 

                                                                 
Surely, the above approach is rather restrictive. We are able to construct a code matrix with much 

more columns, which satisfies both the Property 1 and Property 2. The code matrix with the largest 
number maxL  of the columns is called the exhaustive code matrix. In order to compute maxL  for given k 
and p, consider all of the possible subproblems. Obviously all subproblems can be obtained by the 
following steps: (i) Divide k class into p groups; (ii) Put the p groups in order. Denoting the number of 
the ways to execute step (i) as N(k,p) and noticing that there are p! ways to execute step (ii), the number 
of all possible subproblems should be N(k,p)\cdot p! . So recalling Property 2, we have  

,2/!),(max ppkNL ⋅=                (22) 
where N(k,p) can be computed by recursive formula: 

1 2 2

1 2
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L
L
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L
                      , , , 0,1, , 1.m j k j p= = −L L

 

For example, for the case k=4, p=3, we have maxL =18, and the exhaustive code matrix is: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

223233222133133133
232321133222313313
322112313313222321
111222331331331222

M . 

With increasing k and p, the consuming time by SVORM using the exhaustive code matrix usually 
becomes unacceptable. So a practical way is to use a smaller code matrix by selecting some of its 
columns, say L columns, from the exhaustive code matrix. In order to select the best or better L columns, 
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we consider the power of the code matrix to correct errors appeared in the classifiers 
)(,),(1 xfxf LΛ . 

Definition 2. Suppose the classifier )(,),(1 xfxf LΛ  are obtained by Algorithm 2 when the 

LkijmM ×= )(  is used, we say that the code matrix is able to correct at least r errors if, for any input x , 
the Algorithm Model assigns its class correctly when the number of errors in  

)).(,),(( 1 xfxf LΛ  is not greater than r. 

Definition 3. For a code matrix LkijmM ×= )( , the minimum Hamming distance between any pair 
of rows of the code matrix M is called the minimum Hamming distance of the code matrix M. 

Similar to the result about the power of a code matrix to correct errors, we have the following 
theorem:  

Theorem 1. For a code matrix LkijmM ×= )( , where },,1{ pmij Λ∈ , if its the minimum 

Hamming distance is mind , the code matrix can correct at least [( mind -1)/2]$ errors ( ][⋅ is the integral 
part of ·).                      

Let us return to the problem of selecting L columns from the exhaustive code matrix. The above 
theorem shows that the best way is to select such L columns that the minimum Hamming distance mind  
of the Lk ×  matrix obtained is the largest. Following this idea but with approximation, we propose a 
strategy as follows: 

Construction of the code matrix randomly: Select an integer L and construct several, say h, Lk ×  
matrixes hMM ,,1 Λ  by selecting L columns randomly from the exhaustive code matrix. Compute 

their minimum Hamming distances )(,),( min1min hMdMd Λ . Take the code matrix M to be the one 

among hMM ,,1 Λ  whose minimum Hamming distance is the largest. 

The above strategy leads to the following algorithm: 

Algorithm 5 (Multi-class algorithm based on 3-class SVORM with random) 
The same with algorithm model except that p=3, L are selected property, and the code matrix 

LkijmM ×= )(  is constructed as follows: firstly construct an exhaustive code and then construct $h$ 

matrixes hMM ,,1 Λ  by choosing randomly L columns from the exhaustive code matrix. Select the 
code matrix M as 

)}.(,),(min{arg min1min hMdMdM Λ=                      (23) 

                                                                                                                                              

5.  NUMERICAL EXPERIMENT 
 

For three concrete algorithms (Algorithm 3--5) established in Section 4, the numerical experiments 
results are presented for several problems from the usual UCI Repository of machine learning databases 
[6]. A summary of the characteristics of the selected datasets (Iris, Wine, Glass, 

Vowel, Vehicle and Segment) is described in Table 1. Since no test data sets are provided in these 

six benchmark datasets, we use K-fold cross validation to evaluate the performance of the algorithms. 
That is, each dataset is split randomly into K subsets and one of these sets is reserved as a test set. This 
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process is repeated K times, where K=5 for the dataset Vehicle, while K=10 for the rest. In addition, 
following the approach in [14], the kernel matrix is reduced for Vechile, where 30% data of datasets were 
randomly chosen. The numerical experiments are implemented by using Matlab 7.0 on Intel Pentium IV 
2.60GHz PC with 256MB of RAM. 

 

Table 1. Characteristics of the selected datasets from the UCI repository 
 

Dataset Patterns          Features        Classes 
Iris 
Wine 
Glass 
Vehicle 
Segment 
Vowel 

150              4                3 
178              13               3 
214              4                6 
846              18               4 
210              17               7 
528              10               11 

    In our algorithms, the kernels and parameters are selected as follows: For data sets ̀ Iris' and ̀ Wine', 
the parameter C=10, and the polynomial kernels dxxxxK )1)'(()',( +⋅= with degree d=2 and d=3 
are employed respectively. In all of our three algorithms, for data sets `Glass',  `Vehicle',`Segment' and 
`Vowel', the parameter C=1000, 112  ,100,1000 respectively, and the Gaussian kernels 

)
2

||'||exp()',( 2

2

σ
xxxxK −

−=  with 5.32,2=σ ,100,0.5 are employed respectively. In addition, in 

Algorithm 5, the parameter L=k(k-1)/2 is selected. 

  Let us make some observation from Table 2. Comparing the algorithms based on 2-class 
subproblems (the first 2 columns) with the ones based on 3-class subproblems (the columns 3,4,5 and 7), 
the latter is superior to the former. Among the algorithms based on 3-class subproblems, our algorithm 
(Algorithm 3 and 5) are a little better than both K-SVCR [1] and υ -K-SVCR [19]. Note that among all 
of the algorithms Algorithm 4 is best, where 4-class subproblems are solved. So the experiments show 
that it is promising to establish multi-class algorithms with higher 

precision from our algorithm model by selecting proper integer p and code matrix M.  

 

Table 2.  Percentage of error on the validation set on Algorithm 3—5 
 

Dataset 1-v-r  1-v-1  K-SVCR  υ -K-SVCR  Algorithm 3   Algorithm 4    Algorithm 5 
Iris 
Wine 
Glass 
Vehicle 
Segment 
Vowel 

1.33   1.33  [1.93,3.0]    1.33       1.33         1.33             -- 
5.6    5.6   [2.29,4,29]   3.3        2.81          --              -- 
35.2   36.4 [30.47, 36.35] [32.38,36.35] 28.50         10.28         27.10 
--     17.72   19.29      --        18.11         5.12          16.14 
--     12.86   13.33     --        15.71         5.24          13.33 
39.8   38.7     --        --        7.85           --             -- 

1-v-r: ``one versus rest" , 1-v-1: ``one versus one". For Iris, Wine and Glass, the results of the first four algorithms 
come from[19], while for Vowel, the results of the first two algorithms come from [17]. For Vehicle and Segment, 
the showing results are computed by ourself. 
 

6.  CONCLUSIONS 
 

In this paper, an algorithm model is proposed which includes a series of algorithms for the multi-class 
classification based on p-class (2≤ p ≤ k)) SVORM. When p=2, our algorithms are reduced to the 
multi-class algorithms based on 2-class SVMs. And when p=3, our algorithms are related with [1] and 
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υ -K-SVCR [19]. But our algorithms are not only more general but also are easier to be implement 
because there is no any parameter corresponding to δ  in [1] and 2υ  in [19] which require tuning 
carefully. Surely, more important are the algorithms based on p-class subproblems with 4≥p  (maybe 
including p=3); which can be expected to improve the precision. This opinion is supported by our 
preliminary numerical experiment. 

   For the algorithm model proposed in this paper, there are still some problems deserve to be studied 
further. They include: 

 1st. Compare the precision and efficiency of the algorithms with different p, L and code matrix; 

 2nd.  Construct a proper code matrix efficiently; 

3rd. Improve the algorithm model further. For example, introduce a weight vector to the classifiers 
)(,),(1 xfxf LΛ  because they usually have different precision. Due to the precision can be measured 

by the leave-one-out error, it maybe used to decide the weight vector.
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